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Abstract. The objective of this work is to apply asymptotic homogenization techniques
to predict elastic properties and strengths in unidirectional fiber reinforced composites
(Glass/Epoxy and Carbon/Epoxy). Considering the composite's microstructure, the ho-
mogenization permits the prediction of elastic properties. The homogenized elastic proper-
ties were compared to experimental data and to properties generated through RVE (repre-
sentative volume element) analysis. The results from the numerical methods (asymptotic
homogenization and RVE) showed good agreement for some elastic properties, but some
large discrepancies were also found for some cases. Moreover, considering loads applied
to the macro level, the asymptotic homogenization allows to obtain stresses at the micro
level. Due to the micromechanical model employed, different failure criteria can be ap-
plied for fiber and matrix, and the component that fails for an applied external load can
be detected. A modified von Mises failure criterion was applied for matrix and maximum
stress failure criterion was used to predict fiber failure. A methodology to predict strength
properties using asymptotic homogenization is presented in this paper. A comparison was
made between strength properties calculated through asymptotic homogenization and RVE.
Good agreement was found between them. Composite's strengths calculated through ho-
mogenization were compared to strengths experimentally obtained and some discrepancies
were found between them. Also, numerical failure envelopes were compared to Puck &
Schürmann failure envelopes.
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1 INTRODUCTION

Fiber reinforced composites [1] are widely used in aeronautic and aerospace industry due
to its low mass and high strength properties. Several other applications are also seen:
tennis rackets, baseball bats, boats, wind turbines, etc. It is crucial in projects that use
composite materials to know its elastic properties and to predict when failure is going to
happen. With the increase of computers' capabilities, numerical techniques that are able
to perform predictions of elastic properties and failure envelopes of composites are sought
by researchers. These techniques can be also faster and cheaper compared to experimental
tests.
An example of analysis at micro level is found in [2], where elastic and strength properties
are calculated using a representative volume element (RVE) of a polymer composite re-
inforced by fibers, whose matrix is modelled as elasto-plastic with isotropic damage law.
In [3], failure envelopes are generated through micro analysis where a RVE is used to
model a plain weave textile composite using finite element method. Also, Tsai-Wu [4]
and maximum principal stress failure criteria [3] are applied in fibers and matrix regions,
respectively, in order to evaluate failure. In [5], the constituents' strength are calculated
in a micro analysis whose inputs are the strengths of a laminate ply. In this study, it is
assumed that failure can happen also at the interface between fiber and matrix. In [6],
it is proposed a correction for matrix stresses, calculated assuming linear behaviour. A
methodology to evaluate failure in unidirectional fiber reinforced composites is shown in
[7] and comparisons of failure envelopes using different failure criteria for the constituents
are performed.
In the present work, the asymptotic homogenization technique [8] is applied to unidi-
rectional fiber reinforced composites (Glass/Epoxy and Carbon/Epoxy) to determine its
homogenized equivalent elastic properties. A comparison is performed between elastic
properties calculated through asymptotic homogenization and representative volume ele-
ment from [2]. Also a comparison between experimental elastic properties of a composite
from [9] and its homogenized elastic properties is made.
In addition, stresses at micro level obtained through asymptotic homogenization are used
to evaluate failure of the composite. Given strength properties of the constituents, fail-
ure criteria are applied to each region of the mesh: generalized von Mises criterion for
matrix, Eq.(8), and maximum stress for fiber, Eq.(4). A methodology that calculates fail-
ure stresses in linear elastic materials is shown. Composite's strengths calculated using
asymptotic homogenization and RVE are compared. Moreover, failure envelopes gener-
ated by asymptotic homogenization are compared to the macroscopic envelopes obtained
using Puck & Schürmann [10] failure criterion.

2 ASYMPTOTIC HOMOGENIZATION

Asymptotic homogenization techniques allow to obtain micromechanics elastic properties
of a composite considering its microstructure. In this technique, two levels are considered:
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the macro (x) and the micro (y). The micro level is considered to be periodic and it is
represented by an unit cell formed by matrix and fiber. Its geometry can be changed in
order to vary fiber volume fraction and cross section shape. Inclusions and holes can also
be inserted in it. In the present work, a hexagonal unit cell (Fig.1) is used to perform the
homogenization.

Figure 1: Periodical fiber distribution in the composite and the hexagonal unit cell.

2.1 Homogenized elastic properties

The homogenized elastic properties of the composite are obtained at micro scale by:

EH
ijkl =

1

Y

∫
Y

(
Eijkl − Eijkm

∂χklm
∂yn

)
dY. (1)

In Eq.(1), tensorial notation is used, with the indexes vary from 1 to 3. Y is the volume
of the unit cell, Eijkl are the elastic properties of each point within the microstructure,
yn are the coordinates in the unit cell, χklm are the auxiliar displacement fields that are
obtained from the following equations,∫

Y

Eijmn
∂χklm
∂yn

∂δui
∂yj

dY =

∫
Y

Eijopε
kl
op

∂δui
∂yj

dY. (2)

In Eq.(2), εklop are unitary constant strain test fields and δui are the virtual displace-
ments. Equation (2) is here solved in the software PREMAT [8] using finite element
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method [11].

2.2 Micro stresses

After computing the elastic properties, stresses at micro level can be calculated with the
aid of the χklm fields. Equation (3) allows the determination of the stress tensor σij for
each point of the unit cell:

σij =

(
Eijkl − Eijmn

∂χklm
∂yn

)
∂u0

k

∂xl
=

(
Eijkl − Eijmn

∂χklm
∂yn

)
ε0kl. (3)

In Eq.(3), ε0kl are the strains at macro level that are obtained from the average macro-
scopic displacement field u0 and xl are the coordinates at macro level. In our case the
stress calculations are performed using the software POSTMAT [8].

3 FAILURE ANALYSIS

Failure happens in a structure when it can not perform anymore the function for which
it was designed. To tell whether a structure fails or not for a given set of loadings is a
fundamental question that every designer needs to answer. There are a large number of
failure criteria applied to composite materials available in the open literature. Here, two
types of failure criteria are shown: those applied to the macro level and those applied to
the micro level.

3.1 Failure criteria at macro level

Failure criteria at the macro level are mostly conceived to be straightforward to apply once
the local stresses at a lamina of composite material are known. Tsai-Wu [4], maximum
stress, maximum strain [1], Puck & Schürmann [10] are some examples of failure criteria
that uses stresses at macro level. To be able to tell, for an applied load, which constituent
(matrix or fiber) fails is an important data for design that a few failure criteria can predict.
One example of criterion that reveals this information is the Puck & Schürmann [10]. In
this paper, it will be used as a benchmark to validate the failure envelopes obtained using
asymptotic homogenization.

3.2 Failure criteria at micro level

For an applied load to the structure at macro level, the distribution of stress at micro
level (unit cell) can be obtained using the asymptotic homogenization technique. As said
before, the micro domain is discretized in order to apply the finite element method. Then
the stresses at micro level are obtained for each single node of the microstructure mesh
and different failure criteria can be applied for matrix and fiber. Because of that, the
knowledge of which constituent fails first for an applied load is possible. In this work,
the structure is considered to fail when at least one nodal stress state exceeds the failure
criterion.
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3.2.1 Fiber failure criteria

Carbon and glass reinforcing fibers are considered to be transversally isotropic [5]. They
have considerably higher elastic modulus and strength in the longitudinal direction than
the matrix. In [5], the authors apply a quadratic failure criterion for fiber and show that
terms regarding transverse strength can be eliminated from it. The result is a criterion
that compares the normal stress in the fiber σf11 to fiber longitudinal strengths:

−Xf
C < σf11 < Xf

T . (4)

Where Xf
C (Xf

C > 0) and Xf
T are the compressive and tensile strength of the fiber in

the longitudinal direction, respectively.

3.2.2 Matrix failure criteria

Epoxy matrix is considered as an isotropic material with different tensile and compressive
strengths. There are several experiments, [5], showing that matrix failure depends on the
deviatoric stress invariant J2 and on the volumetric stress invariant I1. Defining these
stress invariants:

I1 = σm11 + σm22 + σm33, (5)

I2 = −(σm11σ
m
22 + σm11σ

m
33 + σm33σ

m
22) + (τm12)2 + (τm23)2 + (τm23)2. (6)

In Eq.(5) and (6), σmij are the components of the stress tensor of the matrix. The
invariant J2 of the deviatoric tensor is given by:

J2 =
I2

1

3
+ I2. (7)

A failure criterion based on the relationship between the invariants I1 and J2 is pre-
sented in [5]. It is known as the modified von Mises criterion for isotropic material that
has different compressive and tensile strength, and is given as follows,

3J2

TmCm
+
I1 (Cm − Tm)

TmCm
= 1. (8)

Where Cm and Tm are respectively the compressive and tensile strengths of matrix.

3.2.3 Methodology of failure analysis

A stress σ0 is applied at the macro level in a certain point of a lamina, assuming the
common hypothesis of plane stress. It has the same direction of ~s, as shown in Fig.2, but
its magnitude is arbitrary at first.
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Figure 2: Load applied at a macro level in a macro stress space whose direction is defined by ~s.

Based on σ0, the micro stresses tensor σ1 are then obtained (now a 3D stress state),
through homogenization [8], for each node of the mesh. Once the constitutive model
assumed in this paper is linear elastic, if the macro load applied is multiplied by a scalar
β, the micro stresses are also multiplied by this scalar:

βσ0 ⇒ βσ1. (9)

To find the macro failure stress in ~s direction means finding the scalar β that causes
this failure. With this search in mind, the failure criterion applied to fiber turns into
applying an arbitrary macro stress with ~s direction that generates a micro stress state
with σf11 being the normal component in the longitudinal direction. Then, βf is obtained
using Eq.(4):

βf =

{
Xf
T/σ

f
11 if σf11 > 0

−Xf
C/σ

f
11 if σf11 < 0

. (10)

To apply the failure criterion in Eq.(8) for matrix, turns into solving a quadratic
equation where two values are obtained:

βm =
I1 (Tm − Cm)±

√
∆

6J2

,∆ = I2
1 (Cm − Tm)2 + 12J2TmCm. (11)

As we want to find a failure load in a specific direction of stress space, the value for
βm is chosen to be the positive one. Having in hands βf and βm of all mesh nodes, the
value β that causes failure in the composite lamina is:

β = min (βf , βm) . (12)
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4 RESULTS

In this section, composite's elastic properties generated through asymptotic homogeniza-
tion technique are compared to elastic properties experimentally obtained. In addition,
a comparison between elastic properties generated through asymptotic homogenization
technique and the RVE technique is made.
Following the methodology presented in Section 3, failure analysis is done to deter-
mine composite's strengths and a comparison is made to experimental data. In addi-
tion, strengths determined through asymptotic homogenization and RVE are compared.
Finally, failure envelopes using Puck & Schürmann [10] criterion are compared to the
numerical failure envelopes generated using the failure methodology here described.

4.1 Elastic properties - asymptotic homogenization and experimental data

Here, comparisons between experimental elastic properties and homogenized elastic prop-
erties are made. The two composites used in this analysis are: E-Glass 21xK43 Gevetex
/LY556/HT907/DY063 epoxy and AS4/3501-6 epoxy. Their constituents' properties are
found in [9] and can be seen in Tab.1. Properties El and νt are, the longitudinal elastic
modulus and transverse Poisson's ratio, respectively.

El (GPa) νt
Fiber

E-Glass 21xK43 Gevetex 80 0.2
AS4(carbon) 225 0.2

Matrix
LY556/HT907/DY063 epoxy 3.35 0.35

3501-6 epoxy 4.2 0.34

Table 1: Elastic properties of fibers and matrices from [9].

E-Glass 21xK43 Gevetex/LY556/HT907/DY063 epoxy and AS4/3501-6 epoxy experi-
mental elastic properties are also found in [9] and are shown in Tab.2 and 3, respectively.
The asymptotic homogenization was applied twice for each composite with different fiber
volume fractions. The first volume fraction is the same as considered in the experiment
and the second one was chosen in order to reduce the differences between the numerical
and experimental E1 property (elastic modulus at fiber direction). This procedure was
adopted since the fiber volume fraction in a composite may vary in production. When the
fiber volume fraction was changed, good agreement to experimental data was obtained
for properties E1 and ν23. The maximum variation found, for both composites, was for
E2. Analyses of mesh convergence were done in order to ensure that elastic properties
did not diverge with mesh refinement.
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Experimental data Asymptotic homogenization

Elastic properties Vf = 62% Vf = 62%
∆

(%)
Vf = 66%

∆
(%)

E1 (GPa) 53.480 50.658 5.3 53.722 0.5
E2 (GPa) 17.700 12.771 27.8 14.469 18.3
E3 (GPa) - 12.620 - 14.236 -
G12(GPa) 5.830 4.623 20.7 5.213 10.6
G23(GPa) - 4.511 - 5.146 -
G13(GPa) - 4.588 - 5.156 -

ν23 0.400 0.393 1.8 0.378 5.5
ν13 - 0.249 - 0.244 -
ν12 0.278 0.248 10.8 0.242 12.9∑

= 66.4
∑

= 47.8

Table 2: Experimental elastic properties of a E-Glass 21xK43 Gevetex/LY556/HT907/DY063 epoxy
composite [9] and from asymptotic homogenization. The difference between experimental data and

homogenized is ∆ = 100 |Exp−AH|
Exp . The sign ”-” means that experimental data were not provided.

Experimental data Asymptotic homogenization

Elastic properties Vf = 60% Vf = 60%
∆

(%)
Vf = 55%

∆
(%)

E1 (GPa) 126.000 136.010 7.9 124.940 0.8
E2 (GPa) 11.000 16.131 46.6 13.863 26.0
E3 (GPa) - 15.936 - 13.760 -
G12(GPa) 6.600 5.919 10.3 5.128 22.3
G23(GPa) - 5.682 - 4.861 -
G13(GPa) - 5.877 - 5.104 -

ν23 0.400 0.398 0.5 0.414 3.5
ν13 - 0.248 - 0.254 -
ν12 0.280 0.246 12.1 0.253 9.6∑

= 77.4
∑

= 62.2

Table 3: Experimental elastic properties of a AS4/3501-6 epoxy composite [9] and from asymptotic

homogenization. The difference between experimental data and homogenized is ∆ = 100 |Exp−AH|
Exp . The

sign ”-” means that experimental data were not provided.

4.2 Elastic properties - asymptotic homogenization and RVE

An AS4/Epoxy composite, whose constituents' elastic properties are found in [2] and
shown in Tab.4, has its elastic properties obtained through RVE and asymptotic homog-
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enization. The results from RVE are found in [2].

El (GPa) νt
Fiber

AS4(carbon) 225 0.2
Matrix

Epoxy 3.76 0.39

Table 4: Elastic properties of AS4 fiber and Epoxy matrix from [2].

The RVE results were based on Vf = 65% and once more, two volume fractions were
used to perform homogenization: Vf = 65% and Vf = 61%. The first was the same
as used in the RVE analysis in [2] and the second was considered because provided the
closest E1 elastic modulus (fiber direction) in comparison to the obtained with the RVE.
The results from both methods are seen in Tab.5.

RVE Asymptotic homogenization

Elastic properties Vf = 65% Vf = 65%
∆

(%)
Vf = 61%

∆
(%)

E1 (GPa) 138.910 146.910 5.8 138.050 0.6
E2 (GPa) 9.380 19.271 105.4 16.666 77.7
E3 (GPa) - 18.935 - 16.461 -
G12(GPa) 5.080 6.047 19.0 5.310 4.5
G23(GPa) - 6.452 - 5.268 -
G13(GPa) - 5.978 - 5.539 -

ν23 0.35 0.464 32.6 0.483 38.0
ν13 - 0.259 - 0.266 -
ν12 0.245 0.257 4.9 0.265 8.2∑

= 167.7
∑

= 129.0

Table 5: Elastic properties calculated through RVE [2] and asymptotic homogenization for different
values of fiber volume fraction. The difference between RVE and asymptotic homogenization is ∆ =

100 |RV E−AH|
RV E . The sign ”-” means that numerical data from RVE were not provided.

When Vf = 65%, the elastic properties calculated through asymptotic homogenization
are very different to those found with the RVE. The minimum difference in the properties
is at ν12 and the maximum is at E2. However, when Vf = 61% the elastic properties E1

and G12 are very similar to those found using RVE. Properties E2 and ν23 have significant
differences and it is believed to be caused by the random fiber distribution in the RVE
cell, since fiber relative positioning in the matrix affects the mechanical properties of a
composite. The maximum variation continues to be E2 and the minimum is now at E1.
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4.3 Composite strength - asymptotic homogenization and experimental data

Following the methodology of failure presented in Section 3, the strengths of an E-Glass
21xK43 Gevetex/LY556/HT907/DY063 epoxy and AS4/3501-6 epoxy composites are ob-
tained numerically. Their constituents' strength properties are found in [9] and shown in
Tab.6, where St and Sc are the tensile and compressive strength, respectively.

St (MPa) Sc (MPa)
Fiber

E-Glass 21xK43 Gevetex 2150 1450
AS4(carbon) 3350 2500

Matrix
LY556/HT907/DY063 80 120

3501-6 epoxy 69 250

Table 6: Strength properties of fibers and matrices from [9] used in the failure analysis.

The results for each composite are presented in Tab.7 and 8, respectively, and compared
to experimental data from [9]. In those tables, properties Xt and Xc are respectively the
tensile and compressive strengths in the longitudinal direction. Yt and Yc are respectively
the tensile and compressive strengths in the transversal direction and S12 is the in-plane
shear strength.

In Tab.7, there are large discrepancies between numerical and experimental strengths.
The highest variation happens at Xc. The analysis in Tab.8 shows better agreement to
experimental data, and the highest variation happens at Yt. These results indicate that
modifications in the failure determination procedure in Section 3 may be necessary to
better estimate lamina strengths using asymptotic homogenization.

Experimental data Asymptotic homogenization

Strength properties Vf = 62% Vf = 66%
∆

(%)
Xt(MPa) 1140 1236.750 8.5
Xc(MPa) 570 974.135 70.9
Yt (MPa) 35 51.316 46.6
Yc (MPa) 114 135.566 18.9
S12(MPa) 72 46.059 36.0

Table 7: Experimental strength properties of a E-Glass 21xK43 Gevetex/LY556/HT907/DY063 epoxy
composite [9] and from asymptotic homogenization. The difference between experimental data and

homogenized is ∆ = 100 |Exp−AH|
Exp .
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Experimental data Asymptotic homogenization

Strength properties Vf = 60% Vf = 55%
∆

(%)
Xt(MPa) 1950 1859.920 4.6
Xc(MPa) 1480 1388.503 6.2
Yt (MPa) 48 36.585 23.8
Yc (MPa) 200 209.022 4.5
S12(MPa) 79 63.953 19.0

Table 8: Experimental strength properties of a AS4/3501-6 epoxy composite [9] and from asymptotic

homogenization. The difference between experimental data and homogenized is ∆ = 100 |Exp−AH|
Exp .

4.4 Composite strength - asymptotic homogenization and RVE

Strengths of an AS4/Epoxy composite, whose constituents' strengths are found in [2]
and shown in Tab.9, are obtained numerically using the methodology of failure prediction
presented in Section 3. Those are compared to the strengths obtained through a RVE
model [2], as depicted in Tab.10.

St (MPa) Sc (MPa)
Fiber

AS4(carbon) 3350 2500
Matrix

Epoxy 93 124

Table 9: Strength properties of AS4 fiber and Epoxy matrix [2].

RVE Asymptotic homogenization

Strength properties Vf = 65% Vf = 61%
∆

(%)
Xt(MPa) 2056.5 2055.845 0.0
Xc(MPa) - 1534.212 -
Yt (MPa) 67.7 63.632 6.0
Yc (MPa) 122.5 127.773 4.3
S12 (MPa) 47.9 51.201 6.9

Table 10: Strength properties calculated through RVE ([2]) and asymptotic homogenization for
an AS4/Epoxy composite. The difference between RVE and asymptotic homogenization is ∆ =

100 |RV E−AH|
RV E . The sign ”-” means that numerical data from RVE were not provided.
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Good agreement is seen between strength calculated through asymptotic homogeniza-
tion and RVE. The minimum discrepancy happened at Xt and the maximum at St.

Figure 3: Comparison between Failure envelopes generated through Asymptotic Homogenization and
Puck and Schürmann criterion.

4.5 Composite strength - asymptotic homogenization and Puck & Schürmann
criterion

The methodology of failure presented in Section 3 is applied to the AS4/Epoxy composite
of Tab.9 to investigate failure under plane stress loads in order to produce numerical fail-
ure envelopes. The composite's strengths obtained through this methodology (Tab.10)
are used as Puck & Schürmann [10] failure criterion inputs. In addition, Tab.11 shows
additional input parameters required by Puck & Schürmann failure criterion, where p⊥|| is
the slope of the (σn, τn1) envelope for σn ≤ 0 at σn = 0, E1 is the composite's elastic mod-
ulus in the longitudinal direction, νf12 is Poisson's ratio of the fibers (strain in tranversal
direction caused by a stress in the longitudinal direction), mσf is the mean magnification
factor for the fibers and Ef is fiber modulus in the longitudinal direction. Figure 3 shows
the numerical results and the Puck & Schürmann criterion.
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Puck terms Value
p⊥|| 0.25

E1 (GPa) 146.91
νf12 0.2
mσf 1.1

Ef (GPa) 225

Table 11: Inputs for Puck & Schürmann criterion.

At the σ1 − τ12 plane, a good agreement between the failure envelopes obtained using
asymptotic homogenization and the Puck & Schürmann criterion is obtained. At the
second and third quadrants, where the maximum difference between asymptotic homog-
enization and Puck & Schürmann was 0.13%. At the first and fourth quadrants, such
difference was 12.84%. At the σ2 − τ12 plane, better correlation is observed in the first
and forth quadrants, where the maximum difference was 8.85%. At second and third
quadrants, the maximum difference was 12.93%. Finally, at the σ1 − σ2 plane, good
agreements are seen at the uniaxial loads, where the maximum difference was 4.32%. The
maximum difference found over the envelope was 21.40% at the fourth quadrant.

5 CONCLUSIONS

The asymptotic homogenization revealed to be a good method to predict elastic prop-
erties, once the homogenizations of the composites E-Glass 21xK43 Gevetex/ LY556/
HT907/DY063 epoxy and AS4/3501-6 epoxy showed good agreement to experimental
data. The maximum difference to experimental data found on the E-Glass 21xK43
Gevetex/ LY556/HT907/DY063 epoxy was 18% and on the AS4/3501-6 epoxy was 26%,
which is considered reasonable. A point worth mentioning that may explain the discrep-
ancies is the fiber misalignment which was not included in the micromechanical model.
The composite AS4/Epoxy had elastic properties calculated through asymptotic homog-
enization and compared to properties obtained with a RVE method. Some predicted
properties show good agreement but large discrepancies were also found for some cases.
Those are believed to happen because the fiber distribution in those methods are different,
and the relative fiber positioning within the unit cell changes the composite's mechanical
properties [12].
In terms of assessing the asymptotic homogenization in terms of strength/failure predic-
tion using the methodoly presented in Section 3, strengths of E-Glass 21xK43 Gevetex/
LY556/ HT907/DY063 epoxy and AS4/3501-6 epoxy composites were calculated. The
comparison of the strengths obtained numerically and experimentally revealed significant
discrepancies. Moreover, strengths of the AS4/Epoxy composite were obtained through
asymptotic homogenization and compared to results from RVE technique. These nu-
merically predicted strength properties had good correlation, with a maximum difference
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between them of 6.9%.
Finally, failure envelopes generated through asymptotic homogenization and Puck &
Schürmann criterion were compared. Good correlations were observed between them.
This reveals that if the composite's unidirectional failure strengths (Xt, Xc, Yt, Yc, S12),
predicted through homogenization, show good agreement to experimental data, the nu-
merical failure envelopes are going to be close to the composite's failure envelopes obtained
experimentally.
With the objective to obtain numerical failure envelopes close to experimental, future
work has been focusing on correcting the methodology of failure to obtain composite's
strengths with good agreement to experimental data.
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