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Instituto Superior Técnico, Universidade de Lisboa

Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
e-mail: simao.rodrigues,andre.marta@tecnico.ulisboa.pt

Keywords: turbomachinery, discrete adjoint, multi-stage, gradient-based optimization,
parallel processing, design framework

Abstract. The use of computational fluid dynamics (CFD) tools in turbomachinery has
seen an increase as a result of the exponential growth of computational power, as well
as of improvements of the accuracy of numerical simulations. These tools are often used
in optimization environments, where gradient-based optimization algorithms are the most
common due to its efficiency. The optimization may contain a large number of design
variables (typically in the order of thousands), such in cases of shape optimization. In
these cases, the adjoint approach for calculating the gradients is beneficial, as it provides
a way of obtaining function sensitivities with a computational cost that is independent of
the number of design variables, as opposed to what happens with the well known finite-
difference approach. The interaction between adjacent blade rows has an important impact
on the whole performance of a multistage turbomachine. The most commonly used method
to address these effects in the simulation of multiple rows is the mixing-plane treatment,
that has become a standard industrial tool in the design environment. In this paper,
improvements on the adjoint solver of a proprietary CFD solver for multistage turboma-
chinery applications are presented, namely the adjoint counterpart of the mixing-plane
formulation used in the direct solver. The solver is developed using the discrete ADjoint
approach, where the partial derivatives required for the assembly of the adjoint system of
equations are obtained using automatic differentiation tools.

1 INTRODUCTION

With the growth in computational power, external and internal flow simulations using
high-fidelity computational fluid dynamic (CFD) models have become a routine, with the
emerging trend being to use optimization techniques as part of the design process, both
in academia and industry.

1



Simão S. Rodrigues, André C. Marta

Given the nature of the flow models, a numerical simulation may take hours or even
days to complete a function evaluation, meaning that an optimization case, which may
require hundreds of function evaluations to find an optimum, may lead to a prohibitive
time requirement. For this reason, the most commonly used optimization methods are
the gradient based (GB) ones, which are the most efficient. These GB methods, however,
require the calculation of the derivatives, which, if using methods such as the commonly
used finite difference method, may also lead to prohibitive computational and time re-
quirements, in the case of a high number of design variables. This problem is overcome
by the adjoint method, which produces exact derivatives with a cost that is independent
of the number of design variables.

The adjoint method was first introduced to computational fluid dynamics by Pironneau
[1] and further extended by Jameson to optimization of airfoil profiles [2] and wings [3].
More recently it as been used in solving multi-point aerodynamic shape [4, 5] and aero-
structural [6] optimization problems, magneto-hydrodynamic flow control [7] and turbine
blades [8]. Other developments on the application of the adjoint approach to gradient-
based optimization in turbomachinery environments have also been made. However, most
of these cases cannot account for the interaction between different blade passages, which
has an important impact on the whole performance of a multistage turbomachine [9]. Its
incorporation on the optimization environment would therefore provide an more realistic
insight of the direction to which the optimization should proceed. Frey et al. [10], Wang
et al. [12, 11] and Walther and Nadarajah [13, 14] present adjoint solvers which allow
multi-row optimization.

While Frey et al. uses finite differences to obtain the derivatives to set-up the adjoint
system of equations, in their work, Walther and Nadarajah manually differentiate the
routines that compute those derivatives manually.

Following the work of Marta et al. [15] on the implementation of the adjoint solver of
a proprietary turbomachinery CFD solver, this paper describes the work developed on
the implementation of the adjoint multistage interface onto the same adjoint solver using
Automatic Differentiation (AD) tools to obtain the derivatives for the adjoint equations.
This allows for a much faster development than if differentiating by hand while still
obtaining the computational benefits of avoiding the finite difference method.

2 BACKGROUND

In a turbomachinery design environment various parameters can be used to define its
geometry and operating conditions, such as blade stagger, camber angle and thickness
distributions and axial and radial stacking. All these inputs will influence one or more
performance characteristics that are to be studied (and improved), such as efficiency,
pressure ratio or mass flow. This can constitute an optimization problem, where the
adjustable parameters are the design variables and the performance characteristics are
the functions of interest, either the cost function or come constraints. The generic CFD
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design problem can be formulated as

Minimize I(α, q(α))

w.r.t α,

subject to R(α, q(α)) = 0

C(α, q(α)) = 0,

(1)

where I is the cost function, α is the vector of design variables, q is the flow solution and
C represents additional constraints that may or may not involve the flow solution. The
flow governing equations are expressed in the form R = 0 and appear as a constraint, as
the solution q must always obey the flow physics.

2.1 Flow governing equations

The present work uses the Reynolds-Averaged Navier-Stokes equations (RANS) for de-
scribing the flow. The Navier-Stokes equations, in conservation form, can be written
as

∂q

∂t
+
∂fi
∂xi
− ∂fvi

∂xi
= 0, (2)

where, q, fi and fvi
are the vectors of state variables, inviscid, and viscous fluxes, respec-

tively, define as

q =


ρ
ρu1

ρu2

ρu3

ρE

 , fi =


ρui

ρu1ui + pδi1
ρu2ui + pδi2
ρu3ui + pδi3
ρEui + pui

 , fvi =


0

τijδi1
τijδi2
τijδi3

ujτij + qi

 , (3)

where ρ is the density, ui is the mean velocity in direction i, E is the total energy, τij
is the viscous stress and qi is the heat flux. To model the Reynolds stresses, Wilcox’s
two-equation k−ω turbulence model [16] is used, resulting in a system with 7 equations.

The RANS equations can be expressed in their semi-discrete form, as

dqijk
dt

+Rijk(q) = 0, (4)

where R is the residual of the inviscid, viscous, turbulent fluxes, boundary conditions
and artificial dissipation. The triad (i, j, k) represents the three computational directions.
Since this work deals with the steady solutions of the RANS equations the unsteady term
is dropped out.
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2.2 Adjoint equations

Following the work by Giles and Pierce [17] in derivation of the adjoing equations for
systems of PDEs, the adjoint for the flow equations in eq. (4) can be expressed as[

∂R

∂q

]T
ψ =

[
∂I

∂q

]T
, (5)

where I is the function of interest and ψ is the adjoint vector, which is used in the calcu-
lation of the total gradient of the function of interest with respect ot the computational
grid coordinates of each node x, given by

dI

dx
=
∂I

∂x
−ψT ∂R

∂x
. (6)

Since typically the design variables α are not geometric parameters handled directly by
the CFD solver, it is necessary to apply the chain rule of differentiation to express the
gradient of I with respect to the desired design parameters as

dI

dα
=
dI

dx

dx

dα
. (7)

The last term in eq. (7), ∂x/∂α, implies the sensitivity analysis of the grid generation
routine, which implicitly defines the function x = x(α).

2.3 Multistage mixing plane

The use of mixing planes to permit a quasi-steady analysis of inherently unsteady multi-
stage turbomachinery flows is a well-established idea [9]. Holmes [18] describes a mixing
plane algorithm that achieves several key goals, including complete flux conservation at
the interface, robustness, indifference to local flow direction and non-reflectivity. It con-
sists in using a control-theory based flux balance algorithm to drive the differences between
the fluxes in the two faces to zero, by updating the conserved variables in the ghost cells
with a value based on the flux differences. To assure maximum non-reflectivity in the
interface, the method uses the two dimensional approach of Giles [19].

The overall mixing-plane algorithm (which is schematically represented in fig. 1) con-
sists in the following:

1. Compute the fluxes from conserved quantities and average them at each spanwise
position;

2. Communicate the radial profiles of averaged quantities between blade rows;

3. Interpolate the received profiles to match local cell distribution;

4. Compute the variation in the conserved variables to be applied to the ghost cells,
from the flux differences, and update them.

Although fig. 1 only represents the transfer of information from one row to another, for
simplicity, this algorithm occurs in both directions for each interface.
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Pitchwise averaging

2. / 3. Exchange 

averaged quantities

4. Update 

boundary conditions

1. Create 

radial pro!le

Row 1

Row 2SPA
N

W
ISE (R

A
D

IA
L)

D
IR

EC
TIO

N

PITCHWISE 

(TANGENTIAL)

DIRECTION

Figure 1: Schematic representation of the multistage mixing-plane interface steps.

3 IMPLEMENTATION

In this section the flow solver and the implementation approach of its adjoint are briefly
described.

3.1 Flow solver

The proprietary flow solver is capable of solving the steady, Reynolds-averaged Navier-
Stokes equations (RANS), as well as the unsteady Reynolds-aveaged Navier-Stokes equa-
tions (URANS) [20]. It supports three-dimensional, multi-block and structured grids.
Available turbulence models include the k − ω, k − ε and SST, having the option to use
wall functions or wall integration for the boundary layer resolution.

3.2 Adjoint solver

A discrete adjoint solver for the mentioned flow solver was previously implemented by
using the so called ADjoint hybrid approach [21]. In this approach, the solver is derived
with the aid of an automatic differentiation (AD) tool, which is selectively applied to
the flow solver source code to produce the routines that evaluate the partial derivative
matrices ∂R/∂q, ∂I/∂q, ∂R/∂x and ∂I/∂x of eqs. (5) and (6). The AD tool chosen in
the mentioned work, as well as in the present work, was Tapenade [22], as it supports
Fortran 90, which is the programming language used in the flow solver implementation.
Once the adjoint linear system of equations is assembled, the Portable, Extensible Toolkit
for Scientific Computation (PETSc) [23] is used to solve it.
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3.3 Adjoint multistage interface

Assuming a simulating of a turbomachine stage consisting in a rotor-stator pair of
blade rows (row 1 and row 2), if no multistage interface is used, a system of equations
eq. (5) is solved for each row. However, to consider the influence of the rows on each
other, two coupled systems of equations must be solved, as schematically represented in
fig. 2. There will be two horizontal strips of non-zero values on the non diagonal part of

BLADE 1

BLADE 2

q∂
R∂

R

q

Inlet Face Blade 2

Exit Face Blade 1

Ψ

Ψ

Figure 2: Schematic representation of the adjoint system of equations for two coupled turbomachinery
rows.

the coupled system matrix, relative to the influence of the cells in the face of one row to
the residual of some of the cells on the other row.

Going back to the multistage interface described in section 2.3, the derivative of the
residual of a certain cell in the receiver in order to the state variables of another cell in
the donor (the terms outside of the diagonal of the matrix represented in fig. 2) could be
expressed as

∂Rrec

∂qdon

=
∂Rrec

∂qrec

∂qrec

∂prec

∂prec

∂pdon

∂pdon

∂w̃don

∂w̃don

∂qdon

, (8)

where p is a profile containing the radial distribution of certain quantities and w̃ is
pitchwise average of the quantities of interest, given, for example, by

w̃j =

∑ni

i=1wijaij∑ni

i=1 aij
, (9)

with aij being the area of the cell and i, j the pitchwise and spanwise directions, respec-
tively.

Following the ADjoint approach, the original flow solver code was first rewritten so
that it consisted in routines that could be differentiated by Tapenade to obtain the partial
derivatives of the RHS of eq. (8). Currently, only the terms ∂w̃don/∂qdon, ∂pdon/∂w̃don

and ∂prec/∂pdon have been fully developed and verified. The term ∂qrec/∂prec, which
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represents the treatment of the boundary conditions is still a work-in-progress, as is the
adaptation of the already developed routines that compute the term ∂Rrec/∂qrec.

4 CONCLUSIONS

This paper presented a description of the implementation of the mixing-plane interface
on the adjoint solver of a proprietary CFD turbomachinery solver. The partial derivatives
required for the assembly of the adjoint system of equations were obtained using the AD
tool Tapenade. It produced routines that evaluate the derivatives, in a shorter develop-
ment time than would be necessary if differentiating by hand. The adjoint mixing plane
interface is still a work-in-progress at the time of writing of this paper, as the treatment
of the boundary conditions as not been yet fully differentiated.
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