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Abstract Fouling is one of the main problems in the operation of heat exchangers since it 

reduces the heat transfer efficiency. In industrial practice therefore these equipment have 

to be periodically removed for cleaning. The availability of fouling monitoring methods 

supports decision making concerning the periodic cleaning and therefore can reduce 

operational costs. This paper presents a model to estimate the heat transfer coefficient for 

the slurry polymerization process based on the Extended Kalman Filter (EKF). Some 

advantages of this proposed method are that neither special sensors nor steady state 

operating conditions are needed. Results indicate that the EKF can predict the parameter 

reasonably well with deviations up to 5% at the end of the campaign. The model allows 

identifying the fouling of the heat exchangers, one of the main drivers of production costs 

in industry, therefore avoiding unnecessary shut down for maintenance.  
 

 

 

1. INTRODUCTION 

The operation of heat exchangers over time usually produces a phenomenon called fouling, 

which is the deposit of material from a flowing fluid onto the exchanger surface. The 

deposited layer has a lower thermal conductivity, damaging the heat transfer capacity and the 

heat exchangers performance as well. Another undesirable consequence is the reduction of 

cross-sectional area since it offers more resistance to fluid flow [1]. Heat exchangers, then, 

have to be periodically cleaned. Al-Haj (2012) concluded that around $40,000 to $50,000 are 

wasted per heat exchanger per cleaning due fouling [2]. The availability of fouling monitoring 

methods supports decision making concerning the periodic cleaning and therefore might 

reduce operational costs. 

Measurement techniques [3] as ultrasound or radiography are used for measurement of 

fouling. Another cheaper alternative is the use of mathematical techniques. Simpler methods 

based only on a model of the heat exchanger or pressure drop [4] can be replaced by more 
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powerful techniques. Riverol and Napolitano [5] used artificial neural networks to predict the 

overall heat transfer coefficient in a tubular heat exchanger for beer production. Sabrina et al. 

[1] and Petermeier et al. [6] demonstrated the capacity of fuzzy logic to observe heat transfer 

coefficient over time. Another approach is the use of Extended Kalman Filter (EKF), a well 

known method for state estimation [7], to predict the heat coefficient over time as the work of 

Shoaib [8]. Jonsson et al. [9] showed the advantages of EKF compared to traditional 

techniques that require that the system must be in steady state operating conditions. Palsson et 

al. [10] compared the use of the EKF and ANN for fouling detection in a counterflow heat 

exchanger and the EKF outperforms. 

The slurry polymerization process is widely used in the production of polyolefins. The 

reaction is highly exothermic and the heat generated by the reaction must be removed in order 

to control the reactor temperature. As Fig. 1 shows, part of the heat generated is removed by 

the jacket but the greatest part is removed by recirculating the slurry through three external 

heat exchangers (P-01, P-02 and P-03). The slurry worsens the fouling phenomenon so that it 

is more critical in this process than in traditional heat exchangers. The dirty walls not only 

reduce heat transfer capacity but also increase pressure drop and the heat exchangers 

efficiency. In industrial practice each heat exchanger is monitored independently based on its 

pressure drop and on the overall energy balance in order to remove it for periodic cleaning. 

The objective of this study is to develop a model based on EKF for predicting fouling in the 

heat exchangers of the slurry polymerization process in order to support the decision about 

shutting down an equipment for cleaning. 

 

Figure 1. Cooling system of polyethylene manufacturing process 

2. PROCESS MODEL 

A detailed mathematical model of the polymerization reactor was developed in previous 

work [11]. The current study focuses on the modeling of the heat exchangers through 

mass and energy balances. According to Salau [12], who investigated a gas phase 

polymerization process, the best model to represent a heat exchanger comprises a dynamic 

model divided into   stages, as Fig. 2 depicts. Therefore, each heat exchanger           
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in Fig. 1 (P_01, P-02 and P-03) is modeled according to:  

       

  
 

       

    
                   

       

       
                                                   

       

  
 

       

    
                   

       

        
                                        

where   is the mass flow rate,   is mass in heat exchanger,    is specific heat,    is the 

heat exchange area and     is the logarithmic mean temperature. The indexes   and   stand 

for water and slurry respectively. The number of stages ( ) that better fits the model has 

to be investigated. The overall heat transfer coefficient was modeled as a function of time 

in order to represent the fouling: 

                                                                                     

where          is the heat transfer coefficient for the clean heat exchanger          . The 

parameters   and   must be estimated from process data for each equipment. In the real 

plant the process does not stop due to the maintenance of one heat exchanger , it continues 

to operate with the other two heat exchangers. Different fouling levels are considered to 

each heat exchangers increasing from P-01 to P-03. 

 

Figure 2. Schematic model of the exchanger with   stages (Adapted from [12]) 

2.1. Parameter estimation using Extended Kalman Filter 

The Extended Kalman Filter (EKF) uses a dynamic and non-linear mathematical model of 

the process to predict its states. Based on the estimated state and its corresponding 

measured value, the EKF corrects the prediction minimizing the squared sum of 

deviations between the predicted and the measured values. The procedure of prediction 

and correction is repeated at each time instant. The EKF allows estimating the state of a 

process in the presence of measurement noise, even if the exact model of the process is 

not known. For more details on EKF, the reader should address to [7]. 

In order to estimate the heat transfer parameter by the EKF, then, the heat transfer 

parameter has to be considered as an additional state besides water and slurry outlet 

temperatures, which are measured. The model representing the heat exchanger           
is given as:  
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(4b) 

      

  
       (4c) 

 

where   is the mass flow rate,   is the temperature, the subscript   corresponds to inlet 

stream,   is mass in heat exchanger,    is the specific heat,    is the heat exchange area 

and the sub-indexes  ,   and   represent water, slurry and the heat transfer parameter, 

respectively. A white noise               , i. e., with zero mean and covariance      

is added to each state. The model representing the heat exchanger in the EKF considers 

    and the arithmetic mean temperature instead of the logarithm mean temperature.   

The model might be rewritten using the state space notation, according to: 

                (5) 

The measurement model of variable   at time instant   is given by: 

                                                                 

where      is the measurement noise, which is Gaussian with zero mean and covariance 

    . It is assumed that the states and measurement noises are uncorrelated, i.e., 

          
     for all   and   and   and   represent confidence in the model and the 

measurements respectively. The matrix   is the measurement matrix with constants 

elements,             , since water and slurry outlet temperature are the 

measured variables. 

 

The extended Kalman filter comprises the following steps, repeated at each time instant: 

1. Prediction of states (   ) and error covariance matrix (  ): 

                     
  

    

   (7) 

                                         
  

    

   

(8) 

where the minus sign indicates the prediction step and the plus sign indicates the 

correction step,      is the Jacobian matrix applied to the estimated states at the 

previous moment and is described by: 

       
     

     
 
          

 (9) 

2. .Computation of the Kalman gain: 

                         
  

 (10) 



Leandro J. T. Lopes, Cristiano H. O. Fontes and Karen V. Pontes 

 5 

3. Correction of the estimated states based on the Kalman gain and on the error 

covariance matrix: 

                                                                                           

                                                                                          

3. RESULTS AND DISCUSSION 

Initially the number of stages  , representing the heat exchanger discretization, on the 

model prediction is investigated. Then, the robustness of the Kalman filter with respect to 

the initial conditions is evaluated and the results of the estimation of the heat exchange 

coefficient are presented.  

3.1. Number of stages of the heat exchanger 

The test was performed with sequential step changes in the slurry flow rate (-22%) at 

       s and water flow rate (-16%) at        s for          . Figure 3 shows the 

results for the slurry outlet temperature in the last stage. As can be seen, the number of 

stages did not show a significant change in the prediction, especially at the stationary 

condition: the highest deviation in temperature when     compared to     is 0.25 K. 

As the increment of each stage increases two differential equations, a number of two 

stages is considered in order to avoid unnecessary increase in the computational effort. 

 

Fig 3 – Evaluation of the number of stages of the heat exchanger model. 

3.2 Starting conditions and parameters for the Extended Kalman Filter 

According to Paim [13],      values of the order of     a     were assumed in order to 

ensure fast convergence at the beginning of the estimation. The matrix      , which gives 

the confidence on the measurements, was chosen according to the common values used in 

literature [9]. In order to determine the matrix  , diagonal values in the range from      

to    were investigated. The larger the   value, the higher the convergence speed and the 

higher is the estimation noise. The value of      was chosen as the best speed-to-noise 
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ratio. In order to determine the influence of the initial condition of the heat transfer 

coefficient on the EKF results, fifty random values with mean       W/m
2
K and standard 

deviation equals to    W/m
2
K were tried. Fig. 4 illustrates the estimated parameter of the 

P-01 exchanger, indicating the robustness of the EKF since, regardless of the initial 

condition, the convergence is reached. Therefore, parameter values and starting conditions 

applied to the Kalman Filter are:  

    
      

      
      

       
    
    

           
                    
                    
           

          
     
     
     

  

 

Fig 4 – Comparison of the initial condition of the estimated parameter on the EKF prediction . 

3.3 Results for the overall heat transfer coefficients estimation  

Fig. 5 shows the water and outlet temperatures as well as the estimated heat transfer 

coefficient for each heat exchanger when a noise of ± 2% is added to the measurements. 

EKF acts as a filter for the measured temperatures while estimating the parameter     . As 

fouling increases, i.e.      decreases,       decreases and       increases due to the lower 

thermal exchange between the sides of the heat exchanger. 

 

As the rate of fouling increases, estimation becomes more difficult. Fig. 5d  shows  that, at  

the  end  of  the  operation for  the  exchanger  P-03, the EKF decreases its tracking 

capacity of the overall heat transfer coefficient. The error, though, reaches a maximum of  

5% taking into account the operating time used, therefore a satisfactory prediction is 

obtained. Best results in the state estimation can be obtained using a smaller sampling 

rate, despite the increase in the computational effort. Based on these results, the engineers 

and operators at industrial practice can conclude if the decrease in heat exchanger 

efficiency is due to fouling, deciding whether to shut down the equipment for cleaning. 

The availability of the developed model can therefore avoid unnecessary maintenance, 

reducing operational costs.  
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Fig 5 – Results for state estimation. ▬ Process values (simulation). ▬ EKF estimation. a) Heat 

Exchanger P-01. b) Heat Exchanger P-02. c) Heat Exchanger P-03. d) U/Uclean for Heat Exchanger P-03. 

e) Error evolution over time for the Heat Exchanger P-03. 

4. CONCLUSIONS 

Prediction of fouling in heat exchangers is important to help operators and engineers to 

carry out maintenance at the appropriate time minimizing energy costs and maximizing 

the productivity. This work seeks to solve the problem of identifying heat exchangers 

fouling in a slurry polymerization process using the Extended Kalman Filter. Some 

advantages of this proposed method are that neither special sensors nor steady state 

operating conditions are needed. Only measurements of the inlet and outlet temperatures 

in heat exchangers and flows of slurry and water are considered. 

The EKF was successfully applied to identify fouling in heat exchangers since the model 

can predict the heat exchanger parameter with deviations up to 5% at the end of the 

campaign. The low cost strategy proposed can provide large gains for the industrial plant, 

supporting the decision-making at operational level and enabling a better schedule for 

equipment shut down for maintenance. 
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