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Abstract. Here, we numerically study a dynamic problem which models the evolution
of the concentration of surfactants, including the effects of the diffusion and the sur-
face diffusion. A kinetic expression which can be reduced to the well-known Langmuir-
Hinshelwood equation is used to model the relation between the surfactant concentration
and the surface concentration. The variational formulation is written as a coupled system
of parabolic elliptic partial differential equations, for which an existence and uniqueness
result is recalled. Then, fully discrete approximations are introduced by using the classical
finite element method to approximate the spatial variable and the implicit Euler scheme
to discretize the time derivatives. An a priori error estimates result is shown, from which
the linear convergence of the approximation is derived under suitable additional regularity
conditions.

1 INTRODUCTION

The effect of surfactants is a very important issue in many real world applications, in
which the surface tension plays a significant role. For instance, some examples could be
the control of the droplet size when forming emulsions, foams, suspensions and pharma-
ceuticals, the inkjet printing, etc. In this paper, we assume that the process is governed
by a mixed kinetic-diffusion model, that is, a kinetic relation between the surfactant and
surface concentrations which is written in terms of an expression that generalizes the
Langmuir-Hinshelwood ordinary differential equation.
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Recently, we have published several papers dealing with related problems as the linear
Henry isotherm [7], the mixed kinetic-diffusion case [8] or the Langmuir-Hinshelwood
equation [6]. However, in all these papers we reduced the problem to its one-dimensional
setting, because we considered that the molecules moved in a vertical direction and that
no diffusion took place on the surface. Therefore, following other authors (see, e.g., [1]),
in this work we consider that the problem is either two- or three-dimensional and that
there is diffusion of the surface concentration.

2 THE MODEL

Let Ω ⊂ R
n+1, n = 1, 2, be an open and bounded domain with a Lipschitz continuous

boundary denoted by ∂Ω. Here, we assume that it is the union of three disjoint parts ΓD,
ΓN and ΓS such that meas (ΓD), meas (ΓS) > 0; the latter being assumed as a compact
C∞ Riemannian manifold with a Lipschitz boundary.
Let us denote by n the unit normal vector to ΓS exterior to Ω and by µ the outer unit
normal vector to ∂ΓS , which is tangent to ΓS at every boundary point.

For a function g, being defined and regular in a neighbourhood of ΓS, the surface (or
tangent) gradient is given by

∇S g = Dg − (n · Dg)n,

where Dg(y) is the gradient of g at point y ∈ ΓS. Thus, the surface gradient at a
point y ∈ ΓS is the projection of the gradient at y onto the tangent plane to ΓS at y.
Furthermore, denoting by (D1g, . . . , Dn+1g) the components of the surface gradient, the
Laplace-Beltrami operator is defined by the surface divergence of the surface gradient,
that is,

∆Sg := ∇S · ∇S g =

n+1
∑

i=1

Di Dig.

Therefore, in this work we consider the following problem which models the evolution
of concentration of surfactant for a solution with concentration below the so-called critical
micelle concentration (cmc), see [1]:

∂c(x, t)

∂t
−D∆c(x, t) + u(x, t) · ∇c(x, t) = 0 in Ω× (0, T ), (1)

c(x, t) = cb(x, t) on ΓD × (0, T ), (2)

D
∂c(x, t)

∂n
= 0 on ΓN × (0, T ), (3)

D
∂c(x, t)

∂n
= −ṠΓ on ΓS × (0, T ), (4)

c(x, 0) = c0(x) in Ω, (5)
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∂ξ

∂t
(x, t)−DS ∆Sξ(x, t) + ξ(∇S · u(x, t)) + uτ (x, t) · ∇Sξ(x, t) = ṠΓ on ΓS × (0, T ),(6)

DS ∇Sξ(x, t) · µ(x) = 0 on ∂ΓS × (0, T ), (7)

ξ(x, 0) = ξ0(x) on ΓS, (8)

with the source term in (6) given by (see [1])

ṠΓ = ka
Lc(x, t)

(

1−
ξ(x, t)

ξm

)

− kd
Lξ(x, t). (9)

In this problem, we denote by c(x, t) and ξ(x, t) the volumetric and surface surfactant
concentrations, respectively, at point x ∈ Ω and time t ∈ (0, T ) (T > 0 is the final
time). Moreover, cb denotes the bulk concentration, the positive constants D and DS

are the bulk and the surface diffusion coefficients, respectively, c0 is a function defined in
Ω, which gives the initial concentration of surfactant, and ξ0 is a function defined on ΓS

which denotes the initial surface concentration. Note that equation (6) allows diffusion
along the surface ΓS, and equation (9) describes the adsorption-desorption transport
of surfactant molecules between the bulk phase and the surface, as stated in [1]. The
convective terms in (1) and (6) have been included here for the sake of completeness, where
u(x, t) represents the velocity of the bulk molecules and uτ is its tangential component
given by uτ = u− (u ·n)n. The positive constants ka

L and kd
L denote the adsorption and

desorption rate constants, respectively, and ξm > 0 is the maximum surface coverage.
Therefore, the dynamic process considered is governed by two mechanisms: diffusion

from the bulk phase to the sublayer and adsoption from the sublayer to the surface. We
remark that, since surfactant solutions below the level of cmc are taken into account, a
constant diffusivity and an incompressible bulk phase can be assumed.

Now, we obtain the variational formulation of this problem. Denote by V the following
subspace of H1(Ω):

V = {v ∈ H1(Ω); v|ΓD
= 0},

endowed with the inner product and the associated norm given, respectively, by

((u, v)) =

∫

Ω

∇u · ∇v dx, ‖v‖V = ((v, v))1/2.

We denote by V ′ the dual space to V and by 〈·, ·〉 the scalar product for the duality V ′,
V . Moreover, we recall the inner product in H = L2(Ω) given by

(u, v)H =

∫

Ω

u v dx,

with the associated norm ‖v‖H = (v, v)
1/2
H . Furthermore, we consider the Hilbert space

W(0, T ) = {v ∈ L2(0, T ;V ); v′ ∈ L2(0, T ;V ′)},
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the time derivative being understood in the distributional sense and endowed with the
norm

‖v‖2W(0,T ) = ‖v‖2L2(0,T ;V ) + ‖v′‖2L2(0,T ;V ′).

On the other hand, on the boundary ΓS we consider the space X = L2(ΓS) with the
inner product and norm given, respectively, by

(u, v)X =

∫

ΓS

u v dΓ, ‖v‖X = (v, v)
1/2
X ,

where dΓ is the surface element on ΓS. Regarding Sobolev spaces on surfaces we also
consider the space

H1(ΓS) = {f ∈ X ; Dif ∈ X, i = 1, . . . , n+ 1} ,

endowed with the inner product and its associated norm given by (see [4])

(u, v)H1(ΓS) =

∫

ΓS

u vdΓ+

∫

ΓS

∇Su · ∇Sv dΓ, ‖v‖H1(ΓS) = (v, v)
1/2
H1(ΓS)

.

Let γ : V → X denote the trace operator on ΓS. From the continuity of the trace operator,
it follows that

‖γv‖X ≤ K ‖v‖V for all v ∈ V with K = ‖γ‖L(V,X). (10)

We denote by H1(ΓS)
′ the dual space to H1(ΓS). Since ΓS is a compact manifold with

Lipschitz boundary we consider the Gelfand triple (see [9], p. 267):

H1(ΓS) →֒ X →֒ H1(ΓS)
′, (11)

and we define the Banach space

WS(0, T ) = {v ∈ L2(0, T ;H1(ΓS)); v
′ ∈ L2(0, T ;H1(ΓS)

′)}.

Finally, we introduce the following truncation operator R : X → X given by

R(η) = η+ − (η − (1− σ)ξm)+, (12)

with σ ∈ [0, 1] and η+ = max{0, η} denotes the positive part of η. We note that this oper-
ator is required for mathematical reasons. Using it, we introduce the following truncated
version of equation (9):

ṠΓ = ka
Lc(x, t)

(

1−
R(ξ(x, t))

ξm

)

− kd
Lξ(x, t). (13)
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Using Green’s formula, boundary conditions (2), (3), (4) and (7), and equation (13),
we obtain the following weak formulation of problem (1)-(8).
Problem P. Given c0 ∈ H , ξ0 ∈ X and u ∈ L∞(0, T ;L∞(Ω;Rn+1)), find c ∈ W(0, T )
and ξ ∈ WS(0, T ) such that c(0) = c0, ξ(0) = ξ0 and, for a.e. t ∈ (0, T ),

〈c′(t), v〉V ′×V +D((c(t), v)) + (u(t) · ∇c(t), v)H + (ka
Lγc(t)

(

1−
R(ξ(t))

ξm

)

, γv)X

= (kd
Lξ(t) , γv )X , ∀v ∈ V, (14)

〈ξ′(t), w〉H1(ΓS)′×H1(ΓS) +DS

∫

ΓS

∇Sξ(t) · ∇SwdΓ + (kd
Lξ(t), w )X + (uτ (t) · ∇Sξ(t), w)X

= (ka
Lγc(t)

(

1−
R(ξ(t))

ξm

)

, w )X − ((∇S · u(t))ξ(t), w )X , ∀w ∈ H1(ΓS), (15)

where we suppressed the dependence on the spatial variable for the sake of clarity.
The following is the main result concerning Problem P (see [5] for details).
Theorem 1. Assume that D, DS, k

d
L , ka

L and ξm are positive constants, and c0 ∈ H,
ξ0 ∈ X and u ∈ L∞(0, T ;L∞(Ω;Rn+1)) with ∇S · u ∈ L∞(0, T ;L∞(ΓS)) and uτ ∈
L∞(0, T ;L∞(ΓS;R

n+1)). Then problem P has a unique solution c ∈ W(0, T ) and ξ ∈
WS(0, T ).

The proof of Theorem 1 is carried out in several steps and it is based on the study
of two intermediate problems, followed by the application of the Schauder fixed point
theorem.

3 FULLY DISCRETE APPROXIMATIONS

Now, we provide a finite element algorithm to approximate solutions to Problem P and
we will show an a priori error estimates result.

The discretization of Problem P is done as follows. First, we assume that Ω is a
polyhedral domain and we consider a finite dimensional space V h ⊂ V , approximating
the variational space V , given by

V h = {vh ∈ C(Ω) ; vh|K ∈ P1(K), ∀K ∈ T h, vh = 0 on ΓD}, (16)

where P1(K) represents the space of polynomials of global degree less or equal to one in
K and we denote by (T h)h>0 a regular family of triangulations of Ω (in the sense of [3]),
compatible with the partition of the boundary ∂Ω into ΓD, ΓN and ΓS; i.e. the finite
element space V h is composed of continuous and piecewise affine functions. Let hK be
the diameter of an element K ∈ T h and let h = max

K∈T h

hK denote the spatial discretization

parameter. Moreover, let (T̃ h)h>0 be the triangulation induced by (T h)h>0 onto ΓS. Then,
we construct the finite element space Xh, approximating the Sobolev space H1(ΓS), in
the form:

Xh = {wh ∈ C(ΓS) ; w
h
|
K̃

∈ P1(K̃), ∀K̃ ∈ T̃ h}, (17)
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where P1(K̃) represents the space of polynomials of global degree less or equal to one in
K̃.

Finally, we assume that the discrete initial conditions, denoted by ch0 and ξh0 , are given
by

ch0 = PV hc0, ξh0 = PXhξ0, (18)

where PV h and PXh are the standard L2-projection operators over the finite element
spaces V h and Xh, respectively.

To discretize the time derivatives, we consider a uniform partition of the time interval
[0, T ], denoted by 0 = t0 < t1 < . . . < tN = T , and let k be the time step size, k = T/N .
For a continuous function f(t), let fn = f(tn).

Therefore, using the implicit Euler scheme and assuming that all the constants are
equal to one for the sake of clarity, we obtain the following fully discrete approximation
of Problem P.
Problem Ph. Given ch0 ∈ V h, ξh0 ∈ Xh, find chk = (chkn )Nn=0 ⊂ V h and ξhk = (ξhkn )Nn=0 ⊂
Xh such that chk0 = ch0 , ξ

hk
0 = ξh0 and, for n = 1, . . . , N ,

((chkn − chkn−1)/k, v
h)H + ((chkn , vh)) + (un · ∇chkn , vh)H + (γchkn (1− R(ξhkn )), γvh)X

= (ξhkn , γvh )X , ∀vh ∈ V h, (19)

((ξhkn − ξhkn−1)/k, w
h)X +

∫

ΓS

∇Sξ
hk
n · ∇Sw

h dΓ + (ξhkn , wh )X + ((uτ )n · ∇Sξ
hk
n , wh)X

= (γchkn (1− R(ξhkn )), wh )X − ((∇S · un)ξ
hk
n , wh )X , ∀wh ∈ Xh. (20)

Proceeding as in the proof of Theorem 1, we can prove the existence of a unique solution
to Problem Ph.

Now, our aim is to obtain a priori error estimates on the numerical errors cn − chkn and
ξn − ξhkn . Then, we assume the following additional regularity on the continuous solution:

c ∈ C1([0, T ];H) ∩ C([0, T ];V ), ξ ∈ C1([0, T ];X) ∩ C([0, T ];H1(ΓS)). (21)

We have the following a priori error estimates result.
Theorem 2. Let the assumptions of Theorem 1 and the additional regularities (21)

hold. If we denote by (c, ξ) and (chk, ξhk) the respective solutions to problems P and Ph,
respectively, then the following estimates are obtained, for all vh = {vhkn }Nn=0 ⊂ V h and
wh = {whk

n }Nn=0 ⊂ Xh,

max
0≤n≤N

‖cn − chkn ‖2H + max
0≤n≤N

‖ξn − ξhkn ‖2X + k

N
∑

j=1

(

‖cj − chkj ‖2V + ‖ξj − ξhkj ‖2H1(ΓS)

)

≤ Ck−1
N−1
∑

j=1

(

‖cj − vhj − (cj+1 − vhj+1)‖
2
H + ‖ξj − wh

j − (ξj+1 − wh
j+1)‖

2
X

)

+Ck
N
∑

j=1

(

‖cj − vhj ‖
2
V + ‖c′j − (cj − cj−1)/k‖

2
H + ‖ξj − wh

j ‖
2
H1(ΓS)
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+‖ξ′j − (ξj − ξj−1)/k‖
2
X

)

+ C max
0≤n≤N

‖cn − vhn‖
2
H + C max

0≤n≤N
‖ξn − wh

n‖
2
X

+C‖c0 − ch0‖
2
H + C‖ξ0 − ξh0‖

2
X . (22)

Estimates (22) are the basis for the analysis of the convergence rate. Hence, as an
example, assume the following additional regularity conditions on the continuous solution:

c ∈ C([0, T ];H2(Ω)) ∩H2(0, T ;H) ∩H1(0, T ;V ),
ξ ∈ C([0, T ];H2(ΓS)) ∩H2(0, T ;X) ∩H1(0, T ;H1(ΓS)).

(23)

From these regularities, taking into account the approximation properties of the projection
operators we easily obtain that (see [3])

‖c0 − ch0‖
2
H + ‖ξ0 − ξh0‖

2
X ≤ Ch2.

We have the following.
Corollary 1. Let the assumptions of Theorem 2 and the additional regularities (23)

hold. Therefore, the numerical approximation of Problem P by Problem Ph is linearly
convergent; that is, there exists a positive constant C, independent of the discretization
parameters h and k, such that

max
0≤n≤N

‖cn − chkn ‖H + max
0≤n≤N

‖ξn − ξhkn ‖X ≤ C(h+ k).

The proof of Corollary 1 is done by using the classical properties on the approximation
by the finite element spaces and the projection operators PV h and PXh (see again [3]),
and taking into account that (see [2] for details),

k−1
N−1
∑

j=1

(

‖cj − vhj − (cj+1 − vhj+1)‖
2
H + ‖ξj − wh

j − (ξj+1 − wh
j+1)‖

2
X

)

≤ Ch2
(

‖c‖2H1(0,T ;V ) + ‖ξ‖2H1(0,T ;H1(ΓS))

)

,

k

N
∑

j=1

(

‖c′j − (cj − cj−1)/k‖
2
H + ‖ξ′j − (ξj − ξj−1)/k‖

2
X

)

≤ Ck2
(

‖c‖2H2(0,T ;H) + ‖ξ‖2H2(0,T ;X)

)

.
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