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Abstract. Debris flows represent some of the most relevant phenomena in geomorpholog-
ical phenomena. Due to the potential destructiveness of such flows, they are the target of a
vast amount of research. Numerical work traditionally focuses on unresolved single-phase
solvers with modified rheological considerations, usually derived from simplified theoretical
frameworks or experimental data. Due to the flow characteristics, both time and spatially
resolved data are difficult to compile in an experimental set-up.

The DualSPHysics meshless numerical implementation based on Smoothed Particle Hy-
drodynamics is expanded with a Distributed Contact Discrete Element Method in order to
explicitly solve the fluid and the solid phase. This represents a resolved model, were no ad-
hoc formulations are used concerning the momentum exchanges between the phases. The
model is validated for buoyant flows and wet solid-solid interactions, using both analytical
and experimental data. Implementation is done using optimized algorithms for massively
parallel architectures.

An experimental set-up for stony debris flows in a slit check dam is reproduced nu-
merically, with retention curves being derived and compared. The results show similar
quantities of retained solid material, indicating that the model seems to provide reliable
results and can provide both meaningful industry solutions and new research prompts re-
garding debris flows.
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1 INTRODUCTION

Debris flows are regarded as one of the most feared flow-related phenomena, due to the
large destructive potential of infrastructure and danger to human lives. It is no surprise
that a large body of work has been produced concerning its genesis, behavior and miti-
gation measures, both by fundamental phenomenological approaches reduced to analytic
or simplified numerical problems and experimental campaigns. The flow characteristics
ensure that complex measurements on important quantities remain difficult to perform.
The inwards of a debris flow has only been accessible by analogy with simpler flows and
conceptual work. Hope is therefore deposited in numerical work, to provide increasingly
plausible insights into the mechanics of the flow. The amount of data amassed does not
meet a reliable numerical solution, however. Existing conceptual models map poorly to a
satisfactory numerical solution: the span of spacial scales involved in these flows start at
the smaller energy carrying flow structures, up to the largest particles in the flow, possibly
in the order of meters; the time scales range from millisecond inter-particle collisions to
the duration of the flow; large deformations on the non-continuous multiphasic medium
difficult any traditional approximation and the highly unsteady flow and free-surface
deformations pose a challenge for state-of-the-art Finite-Volume codes, considering just
single phase flows.

This work presents a relatively new approach to model these phenomena, using mesh-
less methods. Recent advances in computer architectures, namely the introduction of
massively parallel resources for consumer machines paved the way to explore these more
computationally intensive methods. DualSPHysics [7] is a high performance meshless nu-
merical implementation, based on Smoothed Particle Hydrodynamics (SPH). The model
has been extensively validated for fluid flows [6, 1, 2], gracefully dealing with complex,
time evolving geometries and unsteady free surface conditions. Introducing solid bodies
with no kinematic restrictions leaded to successful buoyancy tests [5]. Further expand-
ing the model with a Distributed Contact Discrete Element Method (DCDEM) [4], fully
arbitrary fluid-solid interactions are introduced, with a relatively small set of conceptual
assumptions. This represents a resolved model, were no ad-hoc formulations are used con-
cerning the momentum exchanges between the phases, bypassing the need for a simplified
conceptual model for specific scenarios, such as debris flow.

The application of the model to a debris flow is done by reproducing an experimental
campaign where debris flow mitigation measures are studied. This experimental activity
was part of the R&D project STOPDEBRIS, which was funded by QREN and developed
by a multidisciplinary team from AQUALOGUS, Engenharia e Ambiente, in partnership
with CEris-IST. A flume is fitted with a check-dam, intended to control the transport and
deposition processes of the sediments carried downstream by debris flows. Since check-
dams are considered as one of the simplest and most effective engineering measures against
debris flows [19, 16] they were widely applied all over the world as a short-term mitiga-
tion measure. Check dams are composed of a weir, two wings and a robust foundation,
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although there are a variety of other check dam solutions. Open-type check dams present
a very attractive characteristic: they allow small sediment particles to pass through,
while trapping larger blocks. The implemented open-type check dam is a slit dam, whose
effectiveness in debris flows mitigation has been documented in the literature.

The objective of this paper is to introduce and discuss the preliminary results of the
SPH-DCDEM model by comparing with an experimental study. This should provide a
good indication on the qualities of the model concerning the macro-scale results of a fully
resolved debris flow.

2 FORMULATION

In SPH, the fluid domain is represented by a set of nodal points where physical prop-
erties such as mass, velocity, pressure and vorticity are known. These points move with
the fluid in a Lagrangian manner and their properties change with time due to the inter-
actions with neighbouring particles. The therm Smoothed Particle Hydrodynamics arises
from the fact that the nodes, for all intended means, carry the mass of a portion of the
medium, hence being easily labelled as Particles, and their individual angular velocity is
disregarded, hence the Smooth. The method relies heavily on integral interpolant theory
[14], that can be resumed to the exactness of

A (r) =

∫
Ω

A (r′) δ (r − r′) dr′, (1)

for any continuous function A(r) defined in r′, where δ is the Dirac delta function and r
is a distance. The nature of the Dirac delta function renders this identity useless however,
and an approximation at r can be obtained by replacing it with a suitable weight function
W , called a kernel function. W should be an even function, defined on a compact support,
i.e. if the radius is εh then W (r − r′, h) = 0 if |r − r′| ≥ εh, with limh→0W = δ and∫

Ω
W (r′, h) dr′ = 1, where h is the smoothing length and defines the size of the kernel

support. This leads to

A (r) =

∫
Ω′
A (r′) W (r − r′, h) dr′, (2)

known as the integral interpolant. An approximation to discrete Lagrangian points can
be made, by a proper discretization of the kernel function

Ai ≈
∑
j

AjVjW (rij, h), (3)

called the summation interpolant, extended to all particles j, |rij| = |ri−rj| ≤ εh, where
Vj is the volume of particle j and Ai is the approximated variable at particle i. The cost
of such approximation is that particle first order consistency, i.e., the ability of the kernel
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approximation to reproduce exactly a first order polynomial function, may not be assured
by the summation interpolant, since∑

j

VjW (rij, h) ≈ 1, (4)

which is speciality understandable in situations were the kernel function does not verify
compact support, for example near the free surface or other open boundaries. Forcing the
summation to equal 1 is called the Shepard correction

Ai =

∑
j AjVjW (rij, h)∑
j VjW (rij, h)

, (5)

restoring up to 1st order consistency, for non-uniform distributions and incomplete sup-
port. A spacial first order derivative can be written as

∇A (r) =

∫
Ω′
∇r′A (r′) W (r − r′) dr′ ⇒

∇Ai ≈
∑
j

AjVj∇W (rij, h),
(6)

but it is also subject to corrections in order to ensure consistency up to the desired
precision [14].

3 DISCRETIZATION OF GOVERNING EQUATIONS

3.1 Equations of Motion in SPH

The nature of the classical SPH formulation renders an incompressible system difficult
to model [9], and as a result most studies rely on the discretization of the compressible
Navier-Stokes system

dv

dt
= −∇p

ρ
+ ∇τ + g (7)

dρ

dt
= −ρ∇v, (8)

where v is the velocity field, p is the pressure, ρ is the density and τ and g are the stress
tensor and body forces, respectively. The continuity equation is traditionaly discretized
by employing the notion that ρ∇v = ∇(ρv)− v∇ρ, rendering equation (8)

dρi
dt

= −ρi
∑
j

mj(vi − vj)∇W (rij, h) (9)
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This produces a zero divergence field for a v = k field. Equation (7) can be written as

dvi
dt

= −
∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇W (rij, h)+

+
∑
j

mj

(
4µrij∇W (rij, h)

(ρi + ρj)(|rij|2 + η2)

)
vij+

+
∑
j

mj

(
τi
ρ2
i

+
τj
ρ2
j

)
∇W (rij, h) + g

(10)

The first term of the right side is a symmetrical, balanced form of the pressure term [14].
The second and third terms represent a laminar viscosity term [15] and a sub-partcile
stress (SPS) [8], respectivley. The SPS term introduces the effects of turbulent motion
at smaller scales than the spatial discretization. Following the eddy viscosity assumption
and using Favre-averaging, the SPS stress tensor for a compressible fluid can be written
as

ταβ
ρ

= 2νt

(
Sαβ −

1

3
δαβSαβ

)
− 2

3
CI∆

2δαβ|Sαβ|2, (11)

where ταβ is the sub-particle stress tensor, νt = (CS|rij|)2|Sαβ| is the eddy viscosity, CS
is the Smagorinsky constant, CI = 6.6×10−3 and Sαβ is the local strain rate tensor, with
|Sαβ| = (2SαβSαβ)1/2.

Newton’s equations for rigid body dynamics are discretized as

MI
dV I

dt
=
∑
k∈I

mkfk (12)

II
dΩI

dt
=
∑
k∈I

mk(rk −RI)× fk, (13)

where body I possesses a mass MI , velocity V I , inertial tensor II , angular velocity ΩI

and center of gravity RI . fk is the force by unit mass applied to particle k, belonging to
body I. This force encompasses body forces, fluid resultants as well as the result of any
rigid contact that might occur.

3.2 Rigid contact considerations for DEM particles

The contact force F T
i acting on particle i resulting from collision with particle j is

decomposed into F n and F t, normal and tangential components respectively. Both of
these forces are further decomposed into a repulsion force, F r, that takes into account
the deformation of the particle, and a damping force, F d, for the dissipation of energy
during the deformation.
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In the current work, the normal forces are given by a modified, non-linear, Hertzian
model [12]

F n,ij = F r
n + F d

n = kn,ijδ
3/4
ij eij − γn,ijδ

1/4
ij δ̇ijeij, (14)

where kn,ij is the stiffness constant of pair ij, δij = max(0, (di + dj)/2 − |rij|) is the
particle overlap, eij is the unit vector between the two mass centres and γn,ij is the
damping constant. The stiffness and damping constants are given by [12]

kn,ij =
4

3
E∗
√
R∗; γn,ij = Cn

√
6M∗E∗

√
R∗, (15)

with Cn of the order of 10−5. The other parameters are given by

1

E∗
=

1− ν2
I

EI
+

1− ν2
J

EJ
; R∗ =

rirj
ri + rj

; M∗ =
mImJ

mI +mJ

, (16)

where E is the Young modulus, ν is the Poisson ratio and m is the mass of the body.

Regarding tangential contacts, the complex mechanism of friction is modelled by a
linear dash-pot bounded above by the Coulomb friction law. The Coulomb law is modified
with a sigmoidal function in order to make it continuous around the origin regarding the
tangential velocity [18]. One can write

F t,ij = min(µIJF n,ij tanh(8δ̇tij)e
t
ij; f

r
t + f dt ), (17)

where
F r
t + F d

t = kt,ijδ
t
ije

t
ij − γt,ij δ̇tijetij (18)

µIJ , the friction coefficient at the contact of I and J , should be expressed as a function of
the two friction coefficients of the distinct materials. The stiffness and damping constants
are derived to be kt,ij = 2/7kn,ij and γt,ij = 2/7γn,ij [10], as to insure internal consistency
of the time scales required for stability. This mechanism models the static and dynamic
friction mechanisms by a penalty method. The body does not statically stick at the point
of contact, but is constrained by the spring-damper system.

3.3 Pressure Field Recovery, Stability Region and Particle Movement

The presented compressible formulation of SPH for the Navier-Stokes employs an equa-
tion of state to determine the pressure field, in order not to solve an additional partial
differential equation, that relies on the correct tracking of a free surface, such as the
Poisson equation [11]. Following [14], the commonly used estimate relationship between
pressure and density is Tait’s equation

pi =
ρ0c

2
0

γ

[(
ρi
ρ0

)γ
− 1

]
(19)
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where ρ0 is a reference density, c0 is a numerical sound celerity and γ = 7 for a fluid like
water. According to equation 19, the compressibility of the fluid depends on c0, in such a
way that for a hight enough sound celerity the fluid is virtually incompressible. However
the value of c0 in the model should not be the actual speed of sound since this value is
present in the definition of the stability region of the scheme. The stability region must
be modified to accommodate another restriction, the DEM compatible time-step. The
CFL condition can be written as

∆t = C min

[
min
i

(√
h

|f i|

)
; min

i

 h

c0 + maxj |hvijrij

r2
ij
|

 ; min
i

(
π/C50

√
kn,ij
M∗

)]
,

(20)

where C is the CFL constant of the order of 10−1 determined in accordance with the
case. The first term results from the consideration of force magnitudes, the second is a
combination of the CFL condition for numerical information celerities and a restriction
arising from the viscous terms [9] and the third term takes into account a theoretical
solution for the DEM stability constraints, that disregards the CFL. If the sound celerity
in the simulation is too high, it will render ∆t very small and the computation more
expensive. Following [14], c0 is kept to an artificial value of around 10 times the maximum
flow speed, restricting the relative density fluctuations at less than 1%. As a consequence,
the estimated pressure field by equation (19) usually shows some instabilities and may
be subject to scattered distributions. The diffusive terms introduced in [13], designed to
smooth the oscillations in the pressure field are used in equation (8). These terms do not
allow a hydrostatic solution since a net force is developed near the free surface, but the
test cases in this work represent a very unsteady flow, for which such terms are acceptable.
Come complex formulations incur on much more expensive computations [3].

4 MODEL SET-UP

The simulations are based on a flume described in [17], where vertical slits with a
spacing s, a 20% slope and a recirculating mechanism are the main characteristics. The
numerical flume presents fully periodic conditions, allowing for both fluid and solid phase
recirculation. Two slit typologies were tested, named P1 and P2, as defined in [17]. Three
spacings were tested, s/d95 ∈ [1.18; 1.36; 1.49], as per the experiments.

The scales of the sediment grain interactions are orders of magnitude inferior to the d50
of the granulometric curve. This may represent a problem for the numerical discretization,
as even smaller distances need to be evaluated for the force computations (Equation
14), and machine precision can start to affect the computations after a large number of
iterations. In order to curb such effect, the geometric scale of the numerical experiment
was doubled, as

λl =
Lm
Lp

= 2 (21)
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where λl is the geometrical scale, Lm is the characteristic length of the model and Lp
the same length on the physical prototype. Assuming Froude similarity, the discharges
scale as

λQ =
λV
λt

=
λ3
l

λ
1/2
l

= λ
5/2
l (22)

It is considered that liquid and solid discharges introduced upstream are independent,
i.e., it is not intended that the solid discharge corresponds to the capacity discharge for
the given liquid discharge, considering the inclination, geometry and roughness of the
flume. Table 1 shows the used model discharges and the corresponding prototype values.

Prototype Model
Ql(m

3s−1) 0.018 0.1018
Qs(m

3s−1) 0.00033 0.0018

Table 1: Model and prototype discharges

To promote a correct inlet of solid material, a hopper is modelled, placed on top of the
channel. It was heuristically dimensioned to ensure an average solid discharge compatible
with the one presented in Table 1. Solid sediment grain sizes are generated according
to a random algorithm that reproduces a log-normal function, effectively approximating
the granulometric curve from [17]. The grains are dispersed in the hopper and are let to
achieve their natural equilibrium positions at the start of the simulation. The proposed
initial conditions generator allows to generate two entirely distinct solutions based on the
same granulometric curves, corresponding to several experimental runs.

The proposed parameters for the material properties, used in Equations 14 to 18, are
summarised in Table 2.

E(GNm−2) 45
ν(−) 0.35
µ(−) 0.35

Table 2: Sediment mechanical characteristics

The resolution of the model was set at 0.008 m, resulting in over 1.6 × 106 particles.
An overview of the domain can be seen in Figure 1.

5 PRELIMINARY RESULTS

The sediment trapping efficiency is accounted by measuring the solid discharges at a
position sufficiently upstream and immediately downstream of the dam. The experimental
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Figure 1: Overall domain configuration.

procedure applied volumes, but due to the recirculation of solid particles, for the analysis
of the numerical solution such approach is impractical.

Immediately after the opening of the hopper, a substantial amount of material falls to
the flume, as indicated in Figure 2, at t = 3.0 s.

Figure 2: P1 type slits, t = 3.0 s

As the material is carried downstream, deposition starts at the dam section. Figure 3
shows in detail a render of the solution in the dam area, at t = 8.0 s.

As the material is dispensed from the hopper, the retention upstream of the dam
becomes more effective. At t = 35.0 s, the state of the solution is represented in Figure
4.

9
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Figure 3: P1 type slits, t = 8.0 s

Figure 4: P1 type slits, t = 35.0 s

Figures 2 to 4 are rendered from a particular simulation. As the sediment particles
are generated with a random arrangement as initial conditions, significant instantaneous
variations occur if one compares similar runs. On average, at t = 40.0 s the hopper is
exhausted and the flow is assumed to reach equilibrium conditions close to 10 s after that,
when the last solid particle reaches the backwater of the dam. A 15 s interval was used
to count solid discharges and derive retention trapping rates. Figures 5 and 6 show the
relationship between sediment trapping efficiency, E, and the relative spacing s/d95 for
each tested solution.

The numerical results present a good comparison with the experimental data. A notice-
able under prediction of the efficiency for small spacings is shown, for both slit geometries.
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Figure 5: Sediment trapping efficiency results. P1 type slits. Experimental (·) Numerical (�)
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Figure 6: Sediment trapping efficiency results. P2 type slits. Experimental (·) Numerical (�)

For P2 slits the trend is accompanied with increasing spacing, but no zero efficiency is
established for s/d95 = 1.49, contrasting with the experimental results. This is due to
single sediment particles getting retained for long enough to affect the measurements.

The differences should be explained both by discretization shortcomings and differ-
ences in the initial conditions from the experimental to numerical experiments. Besides
conceptual considerations, the doubling of the geometrical dimensions to allow for more
relaxed length and time scales is bound to introduce differences in the flow depth in the
locus of the dam. This is because Froude similarity is not an exact hypothesis in the
vicinity of the slits. This may affect the retention properties of the numerical dam, but
insufficient experimental data is available to provide more insight. Another important
difference is related to the experimental procedure initial conditions, that are not marked
by a smooth, fixed bed: an approximately 5 cm thick layer of sediment is deposited along
the flume, also contributing to the total amount of mobile solid material if the flow is
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capable of mobilizing it, besides introducing considerable resistance to the flow.

6 CONCLUSIONS

The work details a high-performance meshless method, capable of dealing with arbi-
trarily defined fluid-solid flows. An experimental campaign concerning stony debris flows
is reproduced, with comparable results being drawn, despite significant differences in the
conditions of the tests. The data points present maximum deviations of 9% to the ex-
perimental data, well within the variation of experimental runs of the same test. The
model provides relevant data, that can greatly enrich experimental efforts. Further work
on initial conditions and performance aspects is on course, hopefully improving both the
approximation of the experimental runs and the overall performance of the DualSPHysics
model.

ACKNOWLEDGEMENTS

This research was partially supported by project PTDC/ECM/117660/2010, funded
by the Portuguese Foundation for Science and Technology (FCT). First author acknowl-
edges FCT for his PhD grant, SFRH/BD/75478/2010. It was also partially funded by
Xunta de Galicia under project Programa de Consolidacin e Estructuracin de Unidades
de Investigacin Competitivas (Grupos de Referencia Competitiva), financed by European
Regional Development Fund (FEDER) and by Ministerio de Economa y Competitividad
under de Project BIA2012-38676-C03-03.

REFERENCES

[1] Altomare, C., A. Crespo, B. Rogers, J. Domı́nguez, G. X., and M. Gómez-Gesteira
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