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Abstract Computational material design has gained considerable interest, along the last 
years, in the computational mechanics community. Although most of the current 
approaches focus on one-scale structural optimization, this work is settled in a multi-scale 
framework. In this sense, the goal consists of designing the micro-structure material and 
the macro-structure topology such that some cost function is minimized. In this case, the 
structural compliance is the considered cost function, so that the structural stiffness is 
maximized for a given weight.  

As a cost-reduction tool, an online-offline strategy, based on the off-line construction of a 
computational Vademecum, for the microstructural optimization problem, and the on-line 
resolution of the structural equilibrium, is introduced.  

The topological derivative concept is used as a tool for designing the topology at both, the 
macro and micro, scales. A fixed-point method, based on an alternate-directions strategy, 
is used as numerical technique for resolution of the non-linear problem. 

The presented numerical results show the availability of the proposed approach to 
computational material design and structural optimization in a high-performance 
framework.  

1. INTRODUCTION 
 
The computational mechanics community has recently showed a significant interest on 
macro-structure topology design, and many recent studies have been developed [1,3,6]. On 
the other hand, material design is still one of the cornerstones of the engineering oriented to 
industrial applications.  
However, both fields have been often studied separately because of their complexity. Not long 
ago, some authors [5,7] have tried to solve them coupled through parallelism techniques but 
still only small meshes are able to be used.  
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Thanks to the computational homogenization approach, topology material design and 
macrostructure topology design could be thought as the same process in different levels, being 
the homogenized constitutive tensor of the first one used as the material property for the 
second one. 
Both, material in the micro and the macro-structures will be defined by the characteristic 
functions χ  and µχ  . In this sense, the multi-scale problem will be solved by knowing the 
topology in both scales ( , µχ χ ) and the mechanical variables in such a way that they 
minimize some cost function. 
For convexity issues, the equilibrium problem is preferred to be written in terms of the 
stresses (dual formulation) as in [1,6]. 
One of the most common and interesting industrial application is maximizing the structural 
stiffness (or compliance in dual formulation) such that its volume is below a certain value. 
Whereupon the formulation could be written as the following minimization problem: 
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In this terms, the problem seems to be computational unaffordable, mainly because of the 
number of design variables and the non-linear relationship. 
With this in mind, a computational Vademecum is introduced as a reduction model technique 
as done in [4]. 
Taking advantage of separability, the first idea is to solve offline the local micro-structure 
problem for each stress value. 
This local problem is then written as: 
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where the micro-structure topology  is solved through the topology derivative tool using a 
level-set algorithm, as done in [2,3]. 
Some modifications on Amstutz algorithm has been done in order to improve its robustness. 
Fundamentally, the selection of a new value of the step in the line search process is set using a 
discretization of the interval where it lives and selecting the one that has better (less) objective 
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function value independently if it is bigger than the last iteration. Thus, no remeshing is 
needed. In addition, a mixed augmented Lagrangian is scheme is used in order to fulfill the 
constraint with a low computational cost. 
The modulus of the stress is not playing any role in the minimization problem because the 
solution of the design variable is not dependent on the intensity of the objective function. 
In this manner, the problem can be studied only with unitary stresses (unity ball) which can be 
parametrized by two (spherical) coordinates (θ  y ϕ  ).  So for each value of ,Vµ θ  y ϕ  a 

micro-structure topology and its homogenized constitutive tensor hχ is computed. 
That process must be computed once forever, so it has been decided to do it accurately, 
solving around two thousands micro-structural optimization problems. Using symmetries and 
some periodicities it has been obtain at the end around eight thousands optimal micro-
structures for a specific value of Vµ .  In the numerical results a few of them has been shown. 
 
For a given macro-structure a fix point iteration scheme is used in order to find the best 
micro-structure for its Gauss point. In fact, the algorithm is first solving for a fixed micro-
structure distribution an equilibrium iteration and then for each Gauss point is selecting the 
optimal micro-structure from the Vademecum, depending on its stress value until 
convergence. 
 
On the other hand, the macrostructure topology is changing on the same terms as the micro-
structure optimization problem, i.e, a topology derivative using a level set approach with a 
mixed augmented Lagrangian formulation. 
 
Thus, the global algorithm could be thought as an alternate direction as in [1]. Fixed macro, 
alternating equilibrium and stresses until convergence, then an iteration of the macro, and a 
new internal loop of stresses and micro-structure topologies, and this until global 
convergence. 
 
Finally, the goal of this theory is to see, for a fixed micro and macro fixed fraction volume, 
the improvement of the stiffness of the structure selecting optimal micro-structure instead of 
taking a fixed one. These differences are also illustrated in the numerical results. 
 

2. NUMERICAL RESULTS 
 

- Computational Vademecum 
 

All the micro-structures computed in the Vademecum, and then used in the macro-
structure, have the same elastic material properties, i.e. a Young modulus 1Eµ =  and a 
Poisson’s ratio 0.3µν = . In addition, all of them have the specified volume value 0.6Vµ = . 
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Some of them are shown in the Fig. 5. More information on initial values of the level-set 
and other parameters are detailed in [3]. 

 

 
- Macro-structure and material design 

 
The theoretical development and its algorithm has been tested with the widely used cantilever 
problem [1,3,5,6]. The domain is of the size 2 x 1 box, with homogenous Dirichlet conditions 
in the left hand side and a vertical, pointwise, unitary force on the center of the right hand side 
as shown in the Fig .1.   More details of the level-set initialization parameters could be found 
in [3]. 

Fig.5 Different optimized micro-structures topologies of the 
Vademecum with fraction volume   
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An 8000 triangular elements mesh, at the upper half of the domain due to its symmetry, has 
been used for the whole optimization process (no remeshing needed). 
 
Fig. 2 shows some macroscopic topologies in different stages revealing how the algorithm 
tries to decrease the compliance and satisfy the volume constraint at the same time. 
 
 
 
  

Fig.1 Cantilever beam boundary conditions 

Fig.2 Iteration 3, 38 and 181 of the macroscopic topology 
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Moreover, the evolution of the objective function ( , , )J µχ χ s  (compliance) and the 

macroscopic volume Ω  is shown in Fig 3. Their behavior is similar highlighting its 
strong dependency. 

 
 
The variation of the microstructures has been decided to show in Fig 4 through its 11

hC  
field. For a better understanding, some representative micro-structures are also 
represented. 
 
 

Fig.3 Compliance and volume iterations of the macro-structure 

Fig.4  distribution and some optimized micro-structure topologies 
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The algorithm has been initiated  with full material ( (x) 1 xχ = ∀ ) on the macroscopic 
domain and a prefixed micro-structure topology shown in Fig 5. The radius of the circle is 
such that the prescribed 0.6Vµ = is fulfilled. 

 
 
A fixed micro-structure topology (circle) on the macro-structure has been also computed, 
in order to measure the improvement of using different optimal micro-structures. 
Compliance and volume are illustrated in Fig. 6. 

 
A considerable gain (around 30%) in the objective function has reached strengthening the 
importance of the idea of designing the optimal micro-structure material and selecting it 
properly. 
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Fig.6 Compliance and volume iterations of the macro-structure 

Fig.5 Initial microstructure with a fraction volume  
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