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Abstract. In this paper, a method based on the reciprocity functional approach is used
to estimate a space-dependent thermal contact resistance between two three-dimensional
bodies without using intrusive measurements. A three-dimensional steady state heat con-
duction problem is considered, where different two-dimensional thermal contact conductan-
ce profiles are tested. The method consists of two stages: initially, two auxiliary problems
that do not depend on the thermal contact conductance are solved and, after this step, it is
possible to obtain both the temperature jump and the heat flux at the inaccessible interface,
through the reciprocity functional, which takes into account only measurements taken at
an external boundary.

1 INTRODUCTION

In the study of heat conduction between two or more solid surfaces, one must consider
the heat transfer at the contact interface. This heat transfer is strongly dependent on
the roughness of the contacting surfaces, which generate gaps where the contact is not
perfect. Therefore, the junction of two or more solids will present valleys resulting from
imperfections of these materials, as can be seen in figure (1). These gaps are filled by an
environment fluid where heat transfer occurs mainly by conduction.
When the thermal conductivity of this fluid is lower than the ones for the contacting
solids, these valleys will function as a thermal insulation, causing a temperature drop at
the interface. This resistance to heat transfer is known as Thermal Contact Resistance
[1][2]. Another quantity of interest is the thermal contact conductance, defined as the
reciprocal of the thermal contact resistance.
The thermal contact conductance is used in different areas of the knowledge. Its detec-
tion is important in various real problems such as nuclear reactors [3], biomedicine [4],
and others. There are different studies regarding the estimation of the thermal contact
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Figure 1: Contact between two materials.

resistance. Gill et al. [5] estimated the spatial variation of the thermal contact resistance
between two materials and showed the need for regularization since the results were sensi-
tive to noise in measurements. Furthermore, the temperature measurements used for this
analysis were taken near the interface in an intrusive way. Milosević et al. [3] estimated
a constant thermal contact resistance between two solids together with other parame-
ters of the mathematical model using the laser flash method with the Gauss method, i.e.
using non-intrusive measurements. Also, an analysis of the sensitivity coefficients was
performed and three combinations of materials were tested.
In addition to the difficulties on estimating the thermal contact resistance, many works
in this area required temperature measurements close to the contacting interface, i.e.
intrusive measurements, which is avoided in the proposed methodology. In this work, we
intend to estimate a two-dimensional thermal contact conductance in a three-dimensional
body by means of the reciprocity functional approach [6]. For this task, two auxiliary
problems are used and, subsequently, through the developed methodology, we can obtain
different thermal contact conductance profiles. This technique is considered fast, since
the auxiliary problems are not dependent on the thermal contact conductance and can be
solved only once. Thus, it is possible to estimate different thermal contact conductance
profiles simply calculating different integrals, as will be shown.
Two important works of the authors Stéphane Andrieux and Amel Ben Abda [6][7] show
the concept and use of Reciprocity Functional. From these, other studies based on the
Reciprocity Functional began to emerge in different areas. Delbary et al.[8], developed
a qualitative method for breast cancer detection by combining the reciprocity functional
method with the linear sampling method. Colaço and Alves [9] estimated spatial variation
of the thermal contact conductance by using a reciprocity functional approach with the
method of fundamental solutions and non-intrusive temperature measurements. Shifrin
and Shushpannikov [10] developed a method for identifying small defects in an anisotropic
elastic body based on the reciprocity functional. Other studies, regarding the estimation
of the thermal contact conductance through reciprocity functional, using non-intrusive
measures, can be found in [9][11][12].
The proposed technique follows a line of study in inverse problems [13][14] that is of
interest in several current topics, mainly in industrial processes (non-destrutive testing)
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and biomedicine (tumors and fractures detection). The development of non-intrusive
techniques allows for the identification of properties, failures and internal heterogeneity
in materials in a non-destructively manner, becoming thus an extremely versatile tool for
tackling issues of interest.
The physical model presented in this work involves the steady-state heat transfer process
between two three-dimensional bodies in contact. The goal is to identify the spatial
variation of the thermal contact conductance, based on temperature measurements taken
at the top surface of the test body in a non-intrusive way, for example using infrared
measurements.

2 MATHEMATICAL FORMULATION

This work considers a three-dimensional steady-state heat conduction problem, with a
two-dimensional thermal contact conductance. Two bodies are in non-perfect contact,
where the first domain, Ω1, has thermal conductivity κ1 and the second domain, Ω2, has
thermal conductivity κ2 with a contact surface Γ between them. Therefore, it is considered
one domain Ω, divided in three parts Ω = Ω1 ∪ Γ ∪ Ω2.
The lateral surfaces of both domains (Γ1 and Γ2), are assumed to be thermally insulated.
On the upper surface Γ0, a prescribed heat flux q is imposed and the lower surface Γ∞ is
subjected to a prescribed temperature. Figure (2) shows the geometry of the problem.

Figure 2: Geometry of the problem.

The mathematical formulation of this three-dimensional heat transfer problem with cons-
tant thermal conductivities (κ1 and κ2), can be written as follows:

∇2T1 = 0 in Ω1 (1)

∂T1

∂n
= 0 on Γ1 (2)

3



Camila R. de Lacerda and Marcelo J. Colaço

−k1
∂T1

∂n
= h(T1 − T2) on Γ (3)

−k1
∂T1

∂n
= q on Γ0 (4)

∇2T2 = 0 in Ω2 (5)

∂T2

∂n
= 0 on Γ2 (6)

T2 = 0 on Γ∞ (7)

k2
∂T2

∂n
= −k1

∂T1

∂n
on Γ (8)

To estimate the thermal contact conductance on the surface Γ, we will use the methodo-
logy developed in [9, 11, 12] based on the reciprocity functional approach [6] where the
solution of two auxiliary problems are required. The first auxiliary problem will determine
the temperature jump and the second auxiliary problem will determine the heat flux, both
on the contact surface Γ. By solving these two problems it is possible to obtain the thermal
contact resistance by dividing these two quantities, as can be seen in equation (9).

R =
∆T

q
(9)

The thermal contact conductance can be defined as

h =
1

R
(10)

Auxiliary Problem 1

Considering a auxiliary problem for harmonic test functions F1 ∈ C2(Ω1) and F2 ∈
C2(Ω2), the first auxiliary problem is defined by equations (11-18) [9][11][12].

∇2F1,j = 0 in Ω1 (11)

∂F1,j

∂n
= 0 on Γ1 (12)

F1,j = F2,j on Γ (13)

F1,j = ψj on Γ0 (14)
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∇2F2,j = 0 in Ω2 (15)

∂F2,j

∂n
= 0 on Γ2 (16)

F2,j = 0 on Γ∞ (17)

k2
∂F2,j

∂n
= −k1

∂F1,j

∂n
on Γ (18)

The function ψj appearing in the equation (14) is a L2(Γ) orthonormal basis. In this
work, we used a combination of sine and cosine functions. From this auxiliary problem,
described by equations (11-18), we may develop the reciprocity functional methodology
[9].
Considering the identity (19) for the domain Ω1,

0 =
∫

Ω1

[F1,j(∇2T1)− T1(∇2F1,j)] dΩ1 (19)

and using the Green’s second identity, we may obtain,

∫
Ω1

[F1,j(∇2T1)− T1(∇2F1,j)] dΩ1 =
∫
∂Ω1

[
F1,j

∂T1

∂n
− T1

∂F1,j

∂n

]
d(∂Ω1) (20)

Then,

0 =
∫

Γ0∪Γ1∪Γ

[
F1,j

∂T1

∂n
− T1

∂F1,j

∂n

]
d(∂Ω1) (21)

Using the boundary conditions (2) and (12), the following expression is obtained

0 =
∫

Γ0∪Γ

[
F1,j

∂T1

∂n
− T1

∂F1,j

∂n

]
d(∂Ω1) (22)

Using now the boundary condition (4) and the fact that some temperature measurements
Y are available on the boundary Γ0, we have

0 =
∫

Γ0

[
F1,j

(
− q

κ1

)
− Y ∂F1,j

∂n

]
dΓ0 +

∫
Γ

[
F1,j

∂T1

∂n
− T1

∂F1,j

∂n

]
dΓ (23)

Using another identity, now for the domain Ω2, we can write

0 =
∫

Ω2

[F2,j(∇2T2)− T2(∇2F2,j)] dΩ2 (24)
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Using again the Green’s second identity, and equations (6),(7),(16) and (17) we can obtain

0 =
∫

Γ

[
F2,j

∂T2

∂n
− T2

∂F2,j

∂n

]
dΓ (25)

As κ1 and κ2 are constants, summing equations (23) and (25) we obtain

0 =
∫

Γ0

κ1

[
F1,j

(
− q

κ1

)
− Y ∂F1,j

∂n

]
dΓ0 +

∫
Γ
κ1

[
F1,j

∂T1

∂n
− T1

∂F1,j

∂n

]
dΓ+

+
∫

Γ
κ2

[
F2,j

∂T2

∂n
− T2

∂F2,j

∂n

]
dΓ (26)

or

∫
Γ0

κ1

[
F1,j

(
− q

κ1

)
− Y ∂F1,j

∂n

]
dΓ0 =

∫
Γ

[
−κ2F2,j

∂T2

∂n
− κ1F1,j

∂T1

∂n

]
dΓ+

+
∫

Γ

[
κ2T2

∂F2,j

∂n
+ κ1T1

∂F1,j

∂n

]
dΓ (27)

Using equations (8), (13) and (18), we can obtain

∫
Γ0

κ1

[
F1,j

(
− q

κ1

)
− Y ∂F1,j

∂n

]
dΓ0 =

∫
Γ
κ1
∂F1,j

∂n
[T1 − T2] dΓ (28)

Then, through of the methodology developed by Andrieux and Abda [6], we can define
the Reciprocity Functional in terms of the function F1, given as

<(F1,j) =
∫

Γ0

κ1

[
F1,j

(
− q

κ1

)
− Y ∂F1,j

∂n

]
dΓ0 (29)

Using equations (28) and (29), we obtain

<(F1,j)κ1 =

〈
T1 − T2, κ1

∂F1,j

∂n

〉
L2(Γ)

(30)

We can now define
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k1
∂F1,j

∂n
= βj (31)

and write equation (30) as follows

<(F1,j)κ1 = 〈T1 − T2, βj〉L2(Γ) (32)

Considering that the temperature jump in the interface can be written as [12]

[T1 − T2]Γ =
∑
i

αiβi (33)

and using equations (32) and (33) we can write [12]

<(F1,j)κ1 = 〈βi, βj〉L2(Γ) αj (34)

where the unknown coefficients (αj) can be obtained from the solution of equation (34)
and thereby, through of the equation (33), we can obtain the temperature jump in the
interface [T1 − T2]Γ.

Auxiliary Problem 2

Considering now another auxiliary problem for harmonic test functions G1 ∈ C2(Ω1), the
second auxiliary problem is defined by equations (35-38) [9][11][12].

∇2G1,j = 0 in Ω1 (35)

G1,j = ψj on Γ0 (36)

∂G1,j

∂n
= 0 on Γ1 (37)

∂G1,j

∂n
= 0 on Γ (38)

The function ψj again, appearing in equation (36), is a L2(Γ) orthonormal basis. Using
the same process described in the auxiliary problem 1, we obtain

∫
Γ0

κ1

[
G1,j

(
− q

κ1

)
− Y ∂G1,j

∂n

]
dΓ0 =

∫
Γ
−κ1G1,j

∂T1

∂n
dΓ (39)
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Defining the Reciprocity Functional in terms of the function G1 as

<(G1,j) =
∫

Γ0

[
G1,j

(
− q

κ1

)
− Y ∂G1,j

∂n

]
dΓ0 (40)

and using equations (39) and (40), results in

<(G1,j)κ1 = −
〈
G1,j, κ1

∂T1

∂n

〉
L2(Γ)

(41)

Now, defining

G1,j = φj (42)

it is possible to write equation (41) as follows,

<(G1,j)κ1 = −
〈
φj, κ1

∂T1

∂n

〉
L2(Γ)

(43)

Considering that the heat flux at the inaccessible interface Γ can be written as [12]

[
κ1
∂T1

∂n

]
Γ

=
∑
i

γiφi (44)

and using the equations (43) and (44), we can write [12]

<(G1,j)κ1 = 〈φi, φj〉L2(Γ) γj (45)

where the unknown coefficients (γj) can be obtained through solution of equation (45) and,
thereby, through equation (44), we can obtain the heat flux at the inaccessible interface Γ.

Thermal contact conductance

After solving the two auxiliary problems defined previously, it is possible to obtain the
thermal contact conductance at the inaccessible interface Γ as [12]

h =

∑
i

γiφi∑
i

αiβi
(46)
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The auxiliary problems and the calculation of the reciprocity functional only depends on
the geometry and the thermal conductivity of the direct problem, i.e. they do not depend
on the direct problem itself.
Another important fact is that, because the thermal contact conductance is two-dimensio-
nal, we must use the function ψj(x, y) as an orthonormal basis in the x and y direction.
Therefore, the number of functions used is the product of the number of functions in the
x and y directions.

3 RESULTS

In this paper we considered a three-dimensional heat conduction problem with a two-
dimensional thermal conductance profile. As previously mentioned, the lateral surfaces of
both domains (Γ1 and Γ2) were assumed thermally insulated. On the upper surface Γ0, a
prescribed heat flux of −10W/m2 was imposed and the lower surface Γ∞ was subjected
to a prescribed temperature of 0oC, as shown in figure (2). The geometry had 0.04 m of
width, 0.04 m of length and 0.01 m of height for each domain. The thermal conductivity
was considered equal for both domains (Ω1 and Ω2) with a value of 54 W(m/oC). A grid
convergence analysis was performed and a grid with 120 × 120 × 30 points was used in
each domain.
Measurements with and without noise, taken on the upper surface Γ0, were considered to
verify the stability of the solution. Measurements with experimental noise were modeled
according to

Y = T + εσ (47)

where ε is a random variable with a Gaussian distribution and unitary standard deviation,
and σ is the standard deviation of the measurements. To generate a Gaussian random
number with zero mean and unit variance, the following Box-Muller transformation was
used

ε =
√
−2 ln(u1) cos(2πu2) (48)

where u1 and u2 are two uniformly distributed random numbers.
The finite difference method was used to solve the auxiliary problems 1 and 2, with the
same mesh used in the direct problem. As these problems are not dependent on thermal
contact conductance, they can be solved only once. Changing only the calculation of
Functional Reciprocity (equations 29 and 40), and the calculation of the resulting systems
(equations 34 and 45) different thermal contact conductance profiles can be obtained in
short computational time.
As stated before, we used a orthonormal basis of sine and cosine functions. We can vary
the number of functions and thereby the number of times that the auxiliary problems are
be solved, since these problems depend on ψj.

9



Camila R. de Lacerda and Marcelo J. Colaço

First we present the solution of the direct problem by the finite difference method using
the boundary conditions and heat flux mentioned above. Figures (3) and (4) show the
temperature jump and the heat flux, respectively, on the inaccessible interface Γ.

Figure 3: Temperature jump on Γ.

Figure 4: Heat flux on Γ.

Figure (5) shows the profile of thermal contact conductance used in this test problem.
As stated previously, we are using orthonormal functions in the x and y directions, so the
number of functions required in each direction for a good estimate should be tested. For
this reason, we varied the number of functions in x and y from 1 to 30 and calculated the
error between the exact and estimated temperature jump, using equation (49). Figure
(6) shows the temperature jump error graph, in logarithmic scale.

error =

∑
(T1 − T2)exact − (T1 − T2)estimated∑

(T1 − T2)exact
(49)
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Figure 5: Thermal contact conductance on Γ.

Figure 6: Temperature jump error graph.

The same error calculation was made for the heat flux. Figure (7) shows the heat flux
error graph, in logarithmic scale.

We can see that the best estimates for both temperature jump and for heat flux are
located in the dark blue region of the figures (6) and (7), respectively. From these figures,
it is possible to see that errors decrease when more functions are used, up to a certain
limit. Starting from this limit, if more functions are used, errors raise very rapidly, due
to the ill-conditioned character of this inverse problem. Therefore a deep investigation of
the relationship between the accuracy of the solution, and the number of functions used
is needed.

For this estimate, we choose 15 functions in x and y, both for the temperature jump
and the heat flux estimation. Figures (8), (9) and (10), shows the estimated temperature
jump, the heat flux and the thermal contact conductance, respectively.

As we can see figures (8), (9) and (10) are in good agreement with (3), (4) and (5),
respectively. Thus, the proposed methodology is able to estimate the thermal contact
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Figure 7: Heat flux error graph.

Figure 8: Estimated temperature jump.

Figure 9: Estimated heat flux.
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Figure 10: Estimated thermal contact conductance.

conductance without intrusive measures.
The next step included the analysis of the influence of the measurement errors in the

estimate. Results are presented for a standard deviation σ equal to 0.1% of |Ymax|. As
in the previous case, 15 functions were used in the x direction and 15 functions in the
y direction. Figures (11), (12) and (13) show the estimated temperature jump, the heat
flux and the thermal contact conductance, respectively.

Figure 11: Estimated temperature jump.

As we can see, the estimates are worse than the ones obtained by using noiseless
measurements, but are still in good agreement with the exact results shown in figures
(3), (4) and (5). A further analysis, however, is necessary, in order to find the optimum
number of basis functions, as it was done for the case with errorless measurements.

The IMSL subroutine DLSARG was used to solve the linear system given by Eqs. (34)
and (45) for the case were noiseless measurements were used. When measurement noises
were included, a SVD solver was used, where the minimum singular value allowed was
1.5× 106 for the temperature jump and 5× 10−4 for heat flux. A further analysis of these
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Figure 12: Estimated heat flux.

Figure 13: Estimated thermal contact conductance.

values is also necessary.
Overall, the estimates were very good, and the estimated functions could be recovered

in a short computational time, showing that the method might be a good alternative to
some traditional techniques.

4 CONCLUSIONS

In this paper, we used the reciprocity functional approach to estimate an unknown two-
dimensional space-dependent thermal contact conductance in a three-dimensional body.
After solving two auxiliary problems and calculating different integrals, it was possible to
estimate the temperature jump and the heat flux and, consequently, the thermal contact
conductance at an inaccessible boundary, only using non-intrusive data. Results show
that the estimates are in good agreement with the exact values. However, test cases
where measurement noises were included show that a further analysis of the ortonormal
functions is required. The methodology is able to quickly identify contact failures between
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materials with good results.
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