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Abstract. The objective of this work is to improve the accuracy of the classical Proper
Orthogonal Decomposition (POD) snapshots-based reduction model in the context of PDEs
by coupling the POD with a new and appropriately built basis system. This will be done
without contradicting the POD optimality theorem. The new basis-building criterion is
discussed and mathematically expressed. This is based on the idea that the ideal scenario
would be to have the snapshots already orthogonal so that the PDE solution is directly pro-
jected on the snapshots spanned space, the proposed criterion therefore aims to minimize
the necessary transformation of the snapshots to turn them into orthonormal basis in a
sense that will be defined. An algorithm to build such a basis is proposed. The efficiency
of the proposed methods by comparison to the classical one is demonstrated on analytical
solutions of steady convection equations.

1 INTRODUCTION

Solving large-scale problems is one of the biggest challenges in computational science in
general andin PDEs based problems in particular. Due to the limitation of the exist-
ing computational capacity comparing to the requirements to solve such problems and
despite the huge progress in computers capability and parallel architectures, solving the
original problems still unaffordable in almost complex cases. One of the most attracting
methods to handle these problems is the so-called model reduction methods that reduces
the original problem to a much low dimension one, which is much easy to solve. The
Proper Orthogonal Decomposition [1, 2, 5, 11], know as well as Karhunen-Loeve’s expan-
sion (KLE) [6], is one of the methods that received a lot of attention due to its success in
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solving many problems in a wide range of fields. The principle of the technique is to rep-
resent a parametric family of functions, that could be solutions of PDEs, belonging to a
given functional space, by their projections on a subspace of reduced dimension spanned
by a reduced number of orthogonal basis functions called in some areas like in PDEs
as modes. This reduces for instance solving Navier-Stokes equations by finite elements
that requires a finite element subspace spanned by a basis of size in the order of millions
to solve a small dynamical system of size smaller than hundred using the POD basis
[3, 4, 7, 10]. The POD basis in PDEs is built from a set of solutions obtained with any
classical numerical method like FE of FV, corresponding to a selected parameters, it is
referred to these solutions by shots. It is clear that the accuracy of the projected solution
for any parameters value depend on this selected set used to build the basis, many search
works are dedicated to define a process of selecting the parameters or equivalently the
shots in order to improve the accuracy of the method, see for instance [5]. In the context
of PDEs, research oriented to improve the accuracy of the method is essentially focused
on this aspect along with the impact of the scalar product of the considered functional
space. This is due to a theorem based on Mercer theory [8] that proves the optimality of
the POD basis [9] in a sense that we will recall later in the paper. In this paper we are
proposing an improvement of the POD by a coupling with a new introduce basis without
contradicting the optimality theorem. The new system is built based on a criterion that
minimizes the transformation process, in a sense that will be defined later, of the origi-
nal shots. The new method validated with comparison to exact solution of a convective
equations and the result of POD technique.

2 THE POD TECHNIQUE

Let’s summarize the POD method in the context of PDEs.
Let

∂u

∂t
+ L(u) = f (1)

be an evolutionary PDE, where L any space differential operator and f a source term.
Let Λ be a space of parameters (design parameters, flying conditions, etc...) to be used
for instance in the optimization process. For simplicity let’s consider that of dimension
1. Then u = u(t, x, γ) γ ∈ Λ. Let Ui, 1 ≤ i ≤ N be a set of solutions (shots) of equation
(1) for parameters i respectively. The goal of POD method is to reconstruct the solution
of (1) for any parameter value (within certain range), without solving problem (1). To
achieve this objective a discrete vector space with low dimension (as low as possible) is
built from the shots, then the solution of (1) is projected into this space where and as
a result, rather than solving (1), the approached POD solution is obtained by solving a
simple ODE system.
To build the POD space we need to build a basis that spans the space. Let K be the
correlation matrix given by Ki,j = (Ui, Uj) where (, ) is any dot product, generally the
one is used, then the basis functions are given by:
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Ψi =
N∑
j=1

λi,j Ui (2)

Where λi,j are the components of the i-th eigenvector of K
Now by multiplying (1) by Ψi we obtain

(
∂u

∂t
,Ψi) + (L(u),Ψi) = (f,Ψi) (3)

The projection of problem (1) solution on the POD space gives

u(x, t) ≈
N∑
j=1

Yj(t)Ψj(x) (4)

Finally, building the POD solution reduces to solve for Yj(t).
Using equation (3) and the fact that Ψj are orthogonal (which is the case if the eigenvectors
of K are so), we obtain a quadratic dynamical system of the form:

Y ′ = A+ (BY ) + (CiY, Y ) = 0 0 ≤ i ≤ N (5)

3 MOTIVATION AND MAIN IDEA

Let’s first recall the optimality theorem,

Theorem 1 Let VN = Span{Ψ1, ...,ΨN} ⊂ H = L2(Ω), then for a subspace SN =
Span{W1, ...,WN} ⊂ H we have:∫

Λ

dH(u(., ., γ), VN)dγ ≤
∫
Λ

dH(u(., ., γ),WN)dγ (6)

where dH(u(., ., γ), VN) is a distance from u(., ., γ) to the subspace VN

The POD optimality is guaranteed in the sense of average over the parameters space as it
is shown in the theorem. This optimality is not satisfied pointwise as we will demonstrate
later. The idea then is to build another basis under some criterion such that the POD
results could be improved for some parts of the parameter space Λ without contradicting
the optimality theorem and then couple both basis to get the best results. To illustrate
the idea in a very sample example, let’s consider 3 vectors in the R3, where two of them are
orthogonal and span the horizontal plan as in Figure 1. The third one makes an angle of
degrees with horizontal plan. Assume that these vectors are selected over a parametrized
family of vectors and we want to build a reduction model of two dimensions (a plan) from
the given vectors to approximate the parametrized family. Applying the POD method
we will get two orthogonal vectors spanning the plan passing between the horizontal one
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and the third vector as in Figure 2. Now for vectors close or belonging to the horizontal
plan the best approximations is to use this plan. The idea then is to build another basis
that spans the horizontal plan and find a mechanism to choose this plan to approximate
the vectors that are closer to it (and only those) rather than using the POD plan.

Figure 1: The three vectors

Figure 2: POD plan and horizontal plan

4 THE NEW BASIS SYSTEM

To build the basis described in the previous section, we need to put a criterion based on
some observations. The first one is that the best scenario is to have the shots already
orthogonal, we assume of course that the corresponding parameters location is optimal,
and then there is nothing to do. The second observation is that we need to keep in mind
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that the shots are solutions of the PDE we want to solve with the model reduction, and
then each shots contain valuable information. Combing these two observations we propose
the following criterion that that requires building a basis with a minimum change of the
original shots system. Mathematically we can express this criterion as:

{W1, ...,Wd} = Arg

(
max
U,σ

d∑
k=1

|〈Uk, ϕσ(k)〉H |
‖Uk‖H‖ϕσ(k)‖H

)
(7)

Where H is a functional space, in general H = L2, and σ are all possible one to one
functions from a natural numbers set of dimension d (the desirable dimension) onto a
natural numbers set of dimension N (the initial shots set size).
It is very difficult to solve exactly the optimization problem (7), instead we will give an
algorithm that reproduce the spirit of this criterion and do some validation.

4.1 The Sorted Gram Schmidt (SGS) algorithm

We propose to build the targeted basis using the classical Gram Schmidt process but after
sorting the shots in the sense of problem (7). We refer to this procedure by sorted Gram
Schmidt (SGS) algorithm. The algorithm is summarized as folow.

1. Find the less correlated two shots among the set of shots.

2. Do GS orthogonalization

3. Find the less correlated shot to the previous subspace spanned by the basis elements
built so far.

4. Complete GS orthogonalization with the selected shot in 3.

5. Use the correlation computed in 3 as a test criterion. If it is bigger than a threshold
stop, otherwise repeat from step 3.

5 APLICATION AND VALIDATION

To demonstrate the validity of the proposed idea and algorithm, we will apply the method
to sample case of incompressible, steady state flow given by the following governing equa-
tions:

v
(∂u
∂y
− ∂v

∂x

)
= 0

u
(∂v
∂x
− ∂u

∂y

)
= 0

(8)

Defined first on the whole plan R2
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In this validation we will not focus of on physics but on the mathematical aspect, therefore
and for the sake of comparison we built ”artificial” exact solutions of problem (8). To do
so, let?s consider the following functions

u = exp−α[(a−a0)2+(b−b0)2)][x2+y2+β]

v = exp−α[(a−a0)2+(b−b0)2)][xy+β]
(9)

Where α and β are given values, and a and b are the parameters on which depend the
solutions. To force the two functions to be solution of (8) with appropriate source term,
we replace their expression in (8) and then we get the corresponding new equations:

v
(∂u
∂y
− ∂v

∂x

)
= S1

u
(∂v
∂x
− ∂u

∂y

)
= S2

(10)

where

S1 = exp−α[(a−a0)2+(b−b0)2)][x2+y2+β](−2αy[(a− a0)2 + (b− b0)2]

exp−α[(a−a0)2+(b−b0)2)][x2+y2+β] +

αy[(a− a0)2 + (b− b0)2] exp−α[(a−a0)2+(b−b0)2)][xy+β])

S2 = exp−α[(a−a0)2+(b−b0)2)][x2+y2+β](−αy[(a− a0)2 + (b− b0)2]

exp−α[(a−a0)2+(b−b0)2)][xy+β] +

2αy[(a− a0)2 + (b− b0)2] exp−α[(a−a0)2+(b−b0)2)][x2+y2+β])

(11)

We consider know the problem (10) in a rectangular domain and add boundary conditions
extracted from the exact solution. The classical POD and the proposed SGS model
reduction process are applied to solve problem (10). The Figure 3 below shows the
error distribution of the approximated solutions by comparison to the exact one for both
methods. First we can see that SGS results are competitive compared to the classical
POD. Second the result demonstrates our statement that the POD optimality is not
satisfied pointwise. Finally we can see that SGS is better than POD for some parameter
intervals while keeping reasonable accuracy elsewhere. This answers the main objective
of this work. The next step is to set up a mechanism allowing switching to SGS in the
intervals where SGS provide better results within a POD process.

6 CONCLUSIONS

We presented in this paper a new method to build a basis for the reduction model ap-
proach in the context of PDEs. The basis is built based on an optimality criterion that
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Figure 3: Error of POD and SGS results by comparison to exact solution.

minimizes the transformation of the initial set of shots. The method is applied to a 2D
Euler type problem with a source term added in order to get an exact solution. The results
of both POD and the new method are compared to the exact solution. As a conclusion the
new method demonstrate it effectiveness, and the fact that the POD optimality theorem
is not satisfied pointwise only in the average sense. Indeed, the new method shows better
results for parts of the parameters space. This bring as and as a future work to build a
hybrid method and set up a mechanism to select the new method where results are better
than those of POD.
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