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Abstract The seepage flow under concrete dams, besides its dependence on soil permeability 
and the different total head upstream and downstream, is strongly determined by the 
geometry of the scenario. However, there are limits in the length and depth of the ground for 
which the quantity of seepage converges to a maximum value. These limits values, which are 
not independent, separate two types of scenarios: those that determine an infiltration flow 
that depends on the geometrical parameters (finite scenarios), and those that determine a 
discharge flow independent of these parameters (infinite scenarios). In order to reduce the 
computing times required for the simulation, the last scenarios could be shortened 
accordingly to their limit values. In this work, the curve that separates the finite and infinite 
scenarios is determined as a function of the dimensionless groups that characterize the 
anisotropic medium problem. The points of this curve have been chosen for a quantity of 
seepage that is a high percentage of its convergence value. For a given data of a current 
scenario, the obtained curve allows the user to set these groups, to check if the scenario under 
study is finite or infinite, and hence to reduce it in the second case to the limit values of the 
domain, so optimizing the computing time. Numerical simulation is carried out by network 
method.  
 

 
1. INTRODUCTION 
 
Steady state groundwater flow under concrete dams, weirs founded and cofferdams in non-
homogeneous, anisotropic and permeable soils, is governed by Laplace equation in terms of 
the total head (or piezometric level) variable. The relation between the soil and the percolated 
water (seepage) is important in the design of foundations and failures due to piping caused by 
the excess pressure of water. Therefore, understanding the hydraulic conditions is important 
to design structures correctly [1,2]. In these scenarios, water flows and pore pressure changes 
adjust very rapidly reaching steady state conditions nearly instantaneously. 
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In most cases, the geometry of the typical scenarios may be approximated by a 2-D domain, 
whose upper layer is separated in two lateral sides by the dam, with impermeable vertical wall 
at the foot of the dam. Although the boundary conditions are generally of the first (Dirichlet) 
or second (homogeneous Neumann) type, the complex semianalytical solution is formed by 
mathematical series of slow convergence. Flow of water through earth masses is in most of 
cases three dimensional, but it is too complicated and flow problems are usually solved on 
acceptance that the seepage flow is two-dimensional. Thus, flow lines are parallel to the plane 
of the structure. 
Only a small number of seepage problems have been solved analytically. They have a lot of 
difficulties due to the boundary conditions of the flow equation that cannot be satisfied in all 
cases. Harr [3] has solved some simple hydraulic structures and Mandel [4] developed a 
conformal mapping technique to solve analytically seepage related to excavations and 
cofferdams. 
As an alternative, civil engineers make used of graphical solutions based on the so called flow 
net construction. The flow net represents two orthogonal families of curves, the flow lines (a 
line along which particle travel from upstream to downstream) and the equipotential lines (a 
line along that join points have the same potential head). The equipotential lines intersect flow 
lines at right angles. Calculation of seepage from a flow net can be tedious and require a lot of 
time. The main unknowns of interest reached are the steady state seepage loss, the upthrust on 
the base of the dam and the maximum exit hydraulic gradient. Standard commercial codes can 
also be used for the numerical solution. 
The present work investigates a model, based on network method [5] and seepage theory, 
capable of solving these problems with sufficient accuracy and negligible computing time, 
using a standard circuit simulation code such as Pspice [6]. Network simulation method is a 
numerical tool widely used for the solution of non-lineal, coupled or uncoupled problems, in 
many engineering fields such as heat transfer, tribology, corrosion, elastostatic and vibrations 
[7-9]. The method goes beyond the scope of classical electric analogy that is currently used in 
many text books of different engineering fields, particularly in heat transfer, since it is capable 
of working with non-lineal and coupled problems type. For the first time, it is applied in the 
field of geosciences in this work; particularly to groundwater. 
The proposed model uses as dependent variable the piezometric head (h), related to the 
saturated water flow through the Darcy´s equation. This lineal relation allows of deriving the 
value of the four resistors that form the network model of the elementary cell or volume 
element. Flow conservation is directly assumed by the Kirchhoff´s theorem referred to the 
conservation of electric current in the network. Once solved the state steady field h(x,y), 
programming routines of MATLAB [10] provides the flow lines or the field of values of the 
streamfunction, ψ(x,y). The representation of suitable flow nets from the solution, with an 
arbitrary number of iso-lines for each variable, provides a clear vision of the flow and 
piezometric head distribution through the domain. Applications to isotropic and anisotropic 
soils are presented. 

 2 



P. Ortiz1*, I. Alhama2 and F. Alhama2 

2. EQUATIONS AND BOUNDARY CONDITIONS 
The basic problem-scheme presents in Figure 1, while physical representation shows in 

Figure 2. A concrete structure is confined between two finite regions with of different 
piezometric head that causes water flows underground from the larger water level (left) to the 
lower level (right).    

 
Figure 1: Scheme representation of the problem 

 
 

 
Figure 2: Physical representation of the problem 

 
Under the hypothesis of incompressible fluid and no volume changes in the soil, the 

governing equation is given by that of Laplace; assuming an anisotropic hydraulic 
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conductivity (permeability), this is written as  
 

kx
∂2h
∂x2 + ky

∂2h
∂y2 = 0        (1) 
        

l1 (mx):  dam length 
l0 (mx):  upstream and downstream length 
l*

y (my): length that define  
Kx (mx

2): Horizontal permeability 
Ky (my

2): Vertical permeability  
ha:             Total head upstream 
hb:  Total head downstream 
∆h: ha- hb  Difference of total head upstream and downstream 
 
while the boundary conditions are described by the equations: 
 
(y=H, 0<x<l0)  h=ha        (2) 
(y=H, l0≤x≤l1)  ∂h

∂y
= 0 

(y=H, l0+ l1≤x≤L)  h=hb 
(x=0, y)   and   (x=L, y) ∂h

∂x
= 0 

(y=0, x)   ∂h
∂y

= 0 

where kx and ky are the horizontal and vertical permeability, respectively, and h the 
piezometric level; ha and hb denote the values of Dirichlet conditions applied to the left and 
right sides of the dam.  
 

3. DIMENSIONLESS NUMBERS 

In dimensional analysis theory [11] –or π theorem– it is shown that every complete equation 
in physics, i.e. every equation, which subsists if an arbitrary change is made in the 
fundamental units, can be written in the form 

F(π1, π2, …) = 0  

where the πI are all the dimensionless monomials, independent of one another, which occur in 
the problem [12]. According to the physical and geometrical characteristics and making use of 
the discrimination –an extension of the classical dimensional analysis [13]–, it is immediate to 
define the two dimensionless numbers that rule the seepage problem under dams. These are: 

π1 =  l0
l1

,   π2 =  �Kx
Ky

� �ly
∗2

l1
2 �        (3) 

where ly
* denote the characteristic vertical length of the scenario in which seepage is not 
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negligible (the unknown of the problem), and Kx and Ky the intrinsic anisotropic permeability 
of the soil. Hence, we can get through the relation between the two dimensionless group π2 = 
f (π1), the order of magnitude of the unknown: 

ly
∗  ∼ 𝑙𝑙1��Ky

Kx
�  f �l0

l1
�            (4) 

The dependence π2 = f (π1) is obtained numerically by simulating the mathematical model of 
the problem, equations (1) and (2), by network method [5]. To ensure that the numerical 
results are reliable a grid of 50×50 has been used (this provides errors less than 1% in this 
kind of problems. Network model runs in the standard code of circuit simulation Ppice [6]. 
The dependence that separates the region finite from the region infinite is given by the curve 
shown in Figure 3. The use of this curve starts from the actual data of a given scenario from 
which we determine the monomials  

π1 =  l0
l1

,   π2 =  �Kx
Ky

� �H
l1
2� 

Locating these values in Figure 3 a point is marked. If this point is above the curve, lo may be 
diminished until the point of the curve located at the same value of π2. If the point is below 
the curve, the depth of the scenario, H, may be diminish until the value pointes out by the 
curve for the same value of π1. So that, the curve marks the lowest limit geometrical values of 
the scenario that provide the same solution of the actual scenario. The simplification of the 
scenario to other of small dimension short the total computing times and provides a more 
depth physical understanding of this kind of problem.  
         

 
Figure 3. Relation between the two dimensionless groups  
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CONCLUSIONS 
Dimensional analysis has been used to define the dependence between monomials that rule 
the problem of seepage under dams, Based on this dependence the actual scenarios can be 
simplified to other with small geometrical dimensions, so reducing the computing time. A 
standard (universal) curve is obtained base on the former dependence.  
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