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Abstract Cruciform specimen design, for biaxial fatigue loading applications, requires a 

large number of variables in order to be fully defined. Two of the most important variables 

are the base material thickness and the minimum center thickness that can be machined in 

order to reduce the specimen thickness on the gauge area. While the first one is constrained 

by the commercially available material sheet thickness, the second one is limited by the 

ability to machine the material to a minimum thickness, which is a function of the 

manufacturing process and the material itself. Combining this fact with the use of a new 

generation of biaxial fatigue testing machines, that uses quite efficient electrical motors but 

with limited load capacity, the cruciform specimen geometry needs to be optimized, in order 

to achieve the higher stress levels possible on the specimen center, while making sure the 

geometry is possible to manufacture. Using a cruciform geometry, with an elliptical fillet 

between the specimen arms and a revolved spline to reduce the specimen center thickness, 

a multi-objective optimization was used to achieve the optimal values for the design 

variables. The first objective function was defined to achieve the maximum stress level on 

the specimen center, which leads to fatigue crack initiation without the need for a notch. 

The second objective function was defined to achieve the center thickness itself, in order to 

avoid manufacturing problems, being necessary to have the higher value possible. Using 

the Direct Multi-Search algorithm, which is a derivate-free optimization method, a Pareto 

Front was obtained for each one of the base material thickness, ranging from 1 to 10 mm, 

defined in the Renard series of preferred numbers. In this Pareto front different optimal 

configurations exist and the end user can choose the applicable one for the used material 

and manufacturing process. Finally a full map of optimal design configurations was 

produced, in order to serve as a standard design procedure for cruciform specimens. 
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1. INTRODUCTION 

The biaxial fatigue behavior of several alloys and their main applications on industry, has been 

previously reported by Shanyavskiy [1], Sunder et al. [2] and Cláudio et al. [3]. Recently 

different types of specimens and biaxial fatigue testing machines have been developed by the 

scientific community and therefore new challenges must be solved in order to assess the 

mechanical properties. Using the latest generation of in-plane biaxial fatigue testing machines, 

like the one developed by Cláudio et al. [4], using smaller and more efficient electrical motors, 

requires new specimens, with an optimal geometry, allowing to attain higher stress levels using 

lower loads. The cruciform specimen is used for in-plane testing but unlike other specimens 

there is still no design standardization procedure, Baptista et al. [5]. 

The two major challenges presented when developing a cruciform geometry for fatigue testing, 

either for metal alloys or composite materials, are how to reduce the stress concentration at the 

specimen arms and how to guaranty that the maximum stress level occurs on the specimen 

center and not at the specimen arms. Hanabusa et al. [6], have used slits on the specimen arms, 

in order to reduce the stress concentration and also to create a more uniform stress and strain 

distribution in the specimen center, which is also necessary to accurately determine the fatigue 

initiation life and the crack propagation life. Müller et al. [7] and Lamkanfi et al. [8], on the 

other hand have developed and tested different types of notches on the specimen arms corners 

in order to reduce the stress concentration and to transfer the maximum stress level to the 

specimen center. The solution for the second challenge is normally achieved by reducing the 

specimen thickness on the specimen center. Łagoda et al. [9] have successfully used a revolved 

arc, with a large radius, to achieve a higher stress level on the specimen center, and Bonnand et 

al. [10] used a revolved spline on the specimen center in order to also reduce the stress 

concentration on the geometry change area. 

In order to reduce the specimen thickness one must machine or use a metal forming process. 

These processes are limited by the material behavior and by other process parameters, before 

machining defects are introduced on the specimen or local necking or fracture appears and the 

final fatigue behavior is altered. Therefore there will be a minimum thickness that is possible 

for any combination of material and manufacturing process. Zadpoor et al. in [11] have studied 

the limits of aluminum alloys machinability, in terms of the minimum thickness of the reduced 

area. While in [12] the specimen reduced thickness and specimen thickness ratio r has been 

used to characterize the material machinability. On the other hand Leotoing et al. [13], have 

studied the material formability limits by designing and optimizing cruciform specimens. 

In the current paper a cruciform specimen geometry design is optimized for the use with low 

capacity test machine [4], using the Direct Multi-Search (DMS) methodology to obtain several 

Pareto Fronts relating to two objective functions: a) maximizing the stress level on the specimen 

center; b) maximizing the specimen center reduced thickness. Therefore for each specimen 

thickness, defined by the Renard Series of preferred numbers, a list of optimal specimens will 

be produced as a function of the specimen center reduced thickness. All the cruciform 

specimens has a shape with reduced center thickness and elliptical fillet on the arms corners in 

order to drive the optimization process. 
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2. MATERIAL AND METHODS 

2.1. Cruciform Specimen Design 

The cruciform specimen geometry used, on Figure 1, has been previously developed by the 

authors [5]. This geometry is used for fatigue life initiation tests, and therefore the main 

goal of the specimen’s features is to guarantee that the maximum stress level on the 

specimen occurs on the specimen center. It is also very important to achieve a uniform strain 

distribution on the specimen center, in order to provide the necessary conditions for fatigue 

initiation. As a non-uniform strain distribution will influence the fatigue life initiation, 

reducing this period, [14], [15] and [16]. 

 

 

Figure 1. Specimen geometry, dimensions in mm. 

This shape is based on a cruciform geometry, where the center thickness is reduced using a 

revolved spline, and uses an elliptical fillet in order to reduce the stress concentration in the 

arms corners. Using an elliptical fillet has been shown by the present authors, [5] and [17], 

that reduces the stress concentration on the specimen arms corners, therefore reducing the 

maximum stress level in this area of the specimen. Using a revolved spline, with a zero 

degree of tangency at the specimen center, has also been proven by the authors, [5], that 

increases the stress level on the specimen center, while guaranteeing a smooth and uniform 

strain distribution on the specimen center. The spline is also characterized by an exit angle 

which can be used to reduce the stress concentrations outside of the specimen center. 

Therefore both these features contribute to achieve the higher stress level possible on the 

specimen center, while maintain the strain distribution uniform under reasonable limits, at 

least in a radius of 1 mm, [5]. 

In this paper the present authors have further developed the specimen model, adding more 
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control over the spline definition and of course the final result. As shown in Figure 2, the 

spline was defined in ABAQUS using two exit angles (the angle at the center is always 

constant) and two dimensions (the reduced center thickness and the spline radius). Still the 

final form of the spline can be controlled. The authors used a tangent axis to fully define 

the spline form, as seen on Figure 2. 

 

Figure 2. Close detail of the revolved spline definition. 

While the spline must be tangent to this axis, the axis position can be controlled by two 

points, allowing to change the area were the specimen thickness is reduced. These two 

points are defined by two parameters and are functions of the line segments lengths, which 

result from the specimen geometry definition. 

This geometry is defined by a total of eleven dimensions (Figs. 1 and 2). Two of them were 

considered constant, the specimen arm length with a value of 200 mm and the specimen 

arm width with a value of 30 mm for finite element modelling purposes. The main variable 

is the specimen thickness (t), this variable represents the chosen material sheet thickness by 

the end user, and is available from predefined tables accordingly to the manufacture. In the 

industry it is common to use the Renard Series of Preferred Numbers, [18], to define the 

available sheet thickness. Using this series, Table 1, presents the used values for the t 

variable on the present work. They follow one of the mostly used simplified forms of Renard 

series of preferred numbers. 

 

R10″ 1 4 6 7 8 10 

Specimen thickness (t) [mm] 1.00 2.00 3.00 4.00 5.00 8.00 

Table 1. Values used for the material thickness variable t. 

Table 2 shows the design variables used in the optimization and the intervals used to define 

the optimization problem. The center thickness (tt) is the minimum thickness of the 

specimen, it can be considered as a function of the material and machinability capabilities, 

as it may be impossible to reduce the specimen thickness beyond certain values. The 

authors’ previous works always considered this variable to be constant, but in the present 
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paper it is also considered to be one design variable and also one of the optimizations goals. 

The spline exit angle (theta) is a very important variable ensuring a smooth geometrical 

transition to avoid stress concentration in the critical region. The center spline radius (rr) 

defines the area where the specimen thickness is reduced, using the above referenced 

revolved spline, that has a tangency of 0º at the center. The elliptical fillet  is centered 

between the specimen arms and is defined by three variables, the major ellipse radius (RM), 

the minor ellipse radius (Rm) and the ellipse center (dd). Finally two new parameters were 

used to fully define the spline, a parameter k and a parameter h that place the tangent axis 

to the spline on the optimal position. These parameters are able to change the stress level 

on the specimen center, but also to increase or decrease the area where the strain distribution 

is uniform. They act by changing the spline geometry, increasing or decreasing the area 

where the spline is tangent to the center and exit line segments. 

 

 

Center 

thickness 

(tt) 

Spline 

exit 

angle 

(theta) 

Center 

spline 

radius 

(rr) 

Major 

ellipse 

radius 

(RM) 

Minor 

ellipse 

radius 

(Rm) 

Ellipse 

center 

(dd) 

Spline 

Parameter 

k (k) 

Spline 

Parameter 

h (h) 

Min 10% of t 10º 5 mm 56 mm 16 mm 46 mm 0.3 0.7 

Max 20% of t 90º 10 mm 70 mm 30 mm 60 mm 0.7 0.8 

Table 2. Design variables used in the specimen design geometry optimization. 

2.2. Multi-Objective Optimization 

A constrained nonlinear multio-bjective optimization MOO can be mathematically 

formulated as, [19]: 

Regarding n design variables: 

𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛)𝑇     (1) 

which minimizes: 

𝑚𝑖𝑛𝑠,𝑡,𝑥∈Ω𝐹(𝑥) ≡ (𝑓1(𝑥), 𝑓2(𝑥), … 𝑓𝑘 (𝑥))
𝑇
   (2) 

involving k objective functions 𝑓𝑗: Ω ⊆ ℝ𝑛 → ℝ ∪ {+∞}, 𝑗 = 1, … , 𝑘 to minimize. 

Recall that to maximize fj is equivalent to minimize -fj. 

Ω ⊆ ℝ𝑛(Ω ≠ ∅) represents the feasible region. 

Any or all functions fj,j=1,…,k can hold a nonlinear nature. In general, since in MOO there 

are often conflicting objectives for each objective function, the concept of Pareto dominance 

is used to characterize global and local optimality, [19].A feasible solution of x is called a 

Pareto optimal if there exists no other feasible solution y such that fi(y)≤fi(x) for all 

i={1,2,…,k} with fj(y) < fj(x) for at least one j, j ∈ {1,2,…,k}. 

The Direct MultiSearch (DMS) algorithm [19] is a derivative-free method for 

multiobjective optimization problems. This algorithm does not aggregate or scalarize any 

components of the objective function and it is inspired by the search-poll paradigm of direct-

search methods of directional type from single to multiobjective optimization. Through the 
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use of the concept of Pareto dominance, this algorithm generates and maintains a list of 

feasible nondominated points from which it iterates and chooses new poll centers. The DMS 

algorithm tries, however, to capture the whole Pareto dominance front from the polling 

procedure and at each iteration, if improvement is found, the new feasible evaluated points 

are added to the list (approximating the Pareto front) and the dominated ones are removed. 

Successful iterations then correspond to changes in the approximation of the Pareto front 

meaning that a new feasible nondominated point was found, otherwise, the iteration is 

declared as unsuccessful. The search step is optional and set as to best fit to the optimization 

problem characteristics in order to improve the numerical performance. 

3. CALCULATION 

3.1. Optimization Procedure 

In order to perform the necessary optimization three different programs were used. 

Considering a single specimen thickness (t), initially MATLAB creates an input file with 

the values of the design variables, Table 2, for the first optimization iteration. With this file 

a PYTHON script creates an ABAQUS input file containing all the necessary information 

to run the two load cases considered. After ABAQUS has finished running the simulation 

the same PYTHON script extracts all the necessary information to calculate the two 

objective functions, using equations (3) and (4): 

𝑓1(𝑥) = −𝜎𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑜𝑛 𝑀𝑖𝑠𝑒𝑠 𝑆𝑡𝑟𝑒𝑠𝑠 𝑜𝑛 𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝐶𝑒𝑛𝑡𝑒𝑟    (3) 

𝑓2(𝑥) = −𝑡𝑡      (4) 

The first objective function is the negative value of the maximum Von Mises stress on the 

specimen center, and the second objective function is the negative value of the specimen 

reduced center thickness (tt). Finally MATLAB uses the DMS algorithm described above, to 

calculate a new set of design variables, and by repeating this procedure the Pareto Front is 

generated. When an adequate number of points on the Pareto Front is obtained, the procedure 

is restarted for a new specimen thickness (t). 

While the goal of the first objective function, equation (3), is to maximize the stress level on 

the specimen for the available design loading capacity. The goal of the second objective 

function, equation (4), is to maximize the used specimen reduced center thickness (tt). In 

previous works, R. Baptista et al. [5], have concluded that this design variable dominates the 

stress optimization problem. If one considers tt as a normal design variable, it will always 

assume the lowest value possible. Therefore by also considering tt as an objective function, and 

by maximizing its value, it is possible to obtain in a single optimization problem a Pareto Front 

where optimal solutions for different specimen reduced center thickness exists. 

3.2. Optimization Constraints 

In DMS, constraints are handled using an extreme barrier function, equation (5): 
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𝐹Ω(𝑥) = {
𝐹(𝑥) 𝑖𝑓 𝑥 ∈ Ω

(+∞, … , +∞) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (5) 

Which means that if a point is infeasible (not belonging to the predetermined feasible points 

universe or compromised by the problem constraints), the components of the objective function 

F are not evaluated and the values of F are set to +∞. This approach allows us to deal with 

black-box type constraints where only a yes/no answer is returned. 

In the present work, the following constraints were considered, equations (6) to (9): 

𝐹Ω1(𝑥) =
𝜎𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑛 𝐶𝑒𝑛𝑡𝑒𝑟−𝜎𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑛 𝐶𝑒𝑛𝑡𝑒𝑟

𝜎𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑛 𝐶𝑒𝑛𝑡𝑒𝑟
> 10%   (6) 

𝐹Ω2(𝑥) =
𝜎𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑛 𝐶𝑒𝑛𝑡𝑒𝑟−𝜎𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑛 𝐼𝑛𝑛𝑒𝑟 𝐴𝑟𝑚

𝜎𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑛 𝐶𝑒𝑛𝑡𝑒𝑟
> 20%   (7) 

𝐹Ω3(𝑥) =
𝜎𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑛 𝐶𝑒𝑛𝑡𝑒𝑟−𝜎𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑛 𝑜𝑢𝑡𝑒𝑟 𝑎𝑟𝑚

𝜎𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑛 𝐶𝑒𝑛𝑡𝑒𝑟
> 20%   (8) 

𝐹Ω4(𝑥) =
𝜀𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑛 𝐶𝑒𝑛𝑡𝑒𝑟 (1𝑚𝑚)−𝜀𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑛 𝐶𝑒𝑛𝑡𝑒𝑟 (1𝑚𝑚)

𝜀𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑛 𝐶𝑒𝑛𝑡𝑒𝑟 (1𝑚𝑚)
< 2%  (9) 

Equation (6) force the solution to have a difference between the maximum and minimum stress 

level on the center of the specimen to be higher than 10%, while equations (7) and (8) force the 

solution to have a difference between the maximum stress level on the specimen center and the 

maximum stress level on the inner and outer portions of the specimen arms to be higher than 

20%. Finally equation (9) force the solution to have a uniform strain distribution in a 1 mm 

radius of the specimen center, with a maximum and minimum strain difference lower than 2%. 

Therefore the conditions to guaranty that the fatigue initiation will occur on the specimen center 

and that the fatigue initiation life is not influence by any stress concentration, are satisfied. 

3.3. Load Cases and Boundary Conditions 

The optimization process used a simplified version of the cruciform specimen for FEM 

calculations. Due to symmetry, 1/8 of the geometry was modeled and symmetry boundary 

conditions were applied to all three symmetry planes. In a total 32315 tridimensional linear 

elements were used, with 40548 nodes per simulation. Also two different load cases were 

studied, the first load case is an in-phase (δ=0º) loading, with a 1 kN load applied in both 

directions. The second load case is an out-of-phase (δ=180º) loading, with a 1 kN load applied 

on one direction and a – 1 kN load applied to the second direction. The load is unitary in the 

order of magnitude of the load capacity of the actual electrical driven fatigue test machines. 

The chosen material is an aluminum alloy with Young modus of 69 GPa and Poisson ratio of 

0.3. 

4. RESULTS 

4.1. Pareto Fronts 

With this innovative optimization procedure, several Pareto Fronts were obtained, Figure 

3a). Each Pareto Front represent all the optimal solutions obtained for each of the specimen 
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thickness (t) considered. The first objective function maximizes the stress level on the 

specimen center, while the second objective function maximizes the used specimen reduced 

center thickness (tt). Therefore for each value of t, different solutions were obtained as a 

function of tt. Organizing the solutions by value of t, one can see on Figure 3b) that the 

range of optimal solutions increases with t. For t equals to 1 mm, the solutions ranges from 

0.14 mm to 0.16 mm of specimen reduced center thickness. As t increases to 2 mm the 

solutions range increases to 0.20 – 0.30 mm, for t = 3 mm the solution range is 0.30 – 0.51 

mm, for t = 4 mm the solution range is 0.41 – 0.65 mm, for t = 5 mm the solution range is 

0.50 – 0.77 mm and for t = 8 mm the solution range is 1.02 – 1.25 mm. The previous ranges 

are very important because some materials have manufacturing constraints that will limit 

the ability to produce a specimen with the lowest value of tt. The present results enable the 

specimen designer to choose a higher value of tt, which matches the required constraints, 

but still enables the specimen to achieve an optimal value of maximum stress. 

Figure 3a) also shows that a clear relationship between the specimen reduced center 

thickness (tt) and the maximum stress level on the specimen center. It is clear that the stress 

level increases as the tt value decreases. This relation is almost independent of the specimen 

thickness value. 

 

  
a) b) 

Figure 3. a) Pareto Fronts for the different specimen thickness, b) Distribution of the obtained optimal 

center reduced specimen thickness. 

4.2. Specimen Optimization Results 

From the Pareto Front on Figure 3a) a full map of optimal design configurations was produced, 

Table 3, in order to serve as a standard design procedure for cruciform specimen design. This 

table is organized by the specimen reduced center thickness and specimen thickness ratio (r). 

On the optimizations problems solved r ranges from 0.1 to 0.2, and different solutions were 

obtained in order to satisfy different material manufacturing limitations. 

In previous works [5], the authors were able to obtain only one solution for each value of t, now 

several solution were obtained, and it is possible to choose between them as a function of the 

desired value of tt. As mentioned above the solution range increases with the values of t. 
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Specimen 

thickness 

(t) [mm] 

Major 

ellipse 

radius 

(RM) 

Minor 

ellipse 

radius 

(Rm) 

Spline 

exit 

angle 

(theta) 

Center 

spline 

radius 

(rr) 

Ellipse 

center 

(dd) 

Spline 

Parameter 

k (k) 

Spline 

Parameter 

h (h) 

Center 

thickness 

(tt) 

Maximum 

Stress 

[MPa/kN] 

r=tt/t 

1 63.9 22.8 90 6.5 51.3 0.50 0.71 0.137 225 0.14 

1 63.4 23.0 55 6.7 51.3 0.47 0.73 0.147 201 0.15 

1 63.1 23.0 32 6.5 51.3 0.49 0.72 0.159 181 0.16 

2 63.4 23.0 90 9.7 53.0 0.35 0.70 0.209 104 0.10 

2 63.4 23.0 87 9.7 53.0 0.35 0.70 0.213 103 0.11 

2 63.4 23.0 90 7.5 51.6 0.33 0.71 0.284 101 0.14 

2 63.2 23.0 90 7.5 51.6 0.33 0.71 0.291 97 0.15 

3 63.0 23.0 86 10.0 53.0 0.33 0.71 0.314 66 0.10 

3 63.0 23.0 83 10.0 53.0 0.33 0.71 0.316 66 0.11 

3 63.4 23.0 27 10.0 53.0 0.40 0.71 0.373 62 0.12 

3 63.4 23.0 26 10.0 53.0 0.40 0.71 0.375 61 0.13 

3 63.0 23.0 21 8.1 51.4 0.50 0.73 0.488 61 0.16 

3 63.0 23.0 21 8.1 51.7 0.50 0.73 0.497 57 0.17 

4 63.0 17.8 27 8.1 51.3 0.50 0.80 0.409 58 0.10 

4 63.0 18.0 26 8.1 51.3 0.50 0.80 0.428 57 0.11 

4 63.0 18.9 26 8.1 51.3 0.50 0.80 0.463 55 0.12 

4 63.0 19.9 26 8.1 51.3 0.50 0.80 0.500 53 0.13 

4 63.0 21.3 26 8.1 51.3 0.51 0.80 0.541 51 0.14 

4 63.0 22.2 26 8.1 51.3 0.51 0.80 0.581 49 0.15 

4 63.2 22.5 26 7.8 51.3 0.53 0.80 0.620 48 0.16 

5 63.0 22.7 90 9.9 53.0 0.34 0.70 0.502 40 0.10 

5 63.0 22.7 45 9.7 52.6 0.42 0.70 0.572 39 0.11 

5 63.0 22.8 45 9.7 52.6 0.42 0.70 0.576 39 0.12 

5 63.0 23.0 43 9.9 53.0 0.41 0.70 0.625 34 0.13 

5 63.7 23.0 34 8.6 52.8 0.46 0.73 0.742 33 0.15 

8 69.5 26.7 88 9.8 58.5 0.30 0.70 1.023 18 0.13 

8 69.5 26.7 88 9.8 58.6 0.30 0.70 1.081 18 0.14 

8 69.1 28.1 85 9.5 58.5 0.30 0.70 1.213 16 0.15 

8 69.1 28.5 85 9.5 58.6 0.30 0.70 1.241 15 0.16 

Table 3. Optimal specimen geometry for different specimen thickness and specimen reduced center 

thickness. 

 



R. Batista1,2, R. A. Claudio1,2, L. Reis2, J. F. A. Madeira2,3, I. Guelho2, M. Freitas2 

 10 

5. DISCUSSION 

5.1. Influence of the Specimen Thickness 

If one uses the specimen thickness (t) to organize the results, one can establish a clear 

relationship between the design variables and the value of t for all the values of the ratio r. 

In Figure 4a) one can see that the value of the major ellipse radius ranges from 63 to 64 mm 

for values of t lower than 5 mm and then increases to around 69 mm when t is 8 mm. On 

Figure 4b) one can also see that the minor ellipse radius also increases with t, except for t 

= 4mm when the value of r is low. The value of the ellipse center, also increases when t is 

higher than 4 mm, Figure 4c). Therefore as t increases the elliptical fillet will increase in 

size and will be further away from the specimen center. 

While one can see on Figure 4e) that the spline center radius increases with t for values of 

r higher than 0.14, there is no clear relation between the spline exit  angle and the value of 

t, Figure 4d). R. Baptista et al. [5] have previously justified this behavior. In the present 

work the spline parameters h and k were used in order to try to achieve a better behavior 

for the spline exit angle, but as one can see on Table 3, the results were not satisfactory.  

Finally on Figure 4f) one can see that the maximum stress levels are independent of the 

ratio r value. This is very important, as it means that the material manufacturing constraints, 

can be overcome by choosing a different optimal solution on Table 3, without sacrificing 

the maximum stress level on the specimen. 

5.2. Influence of the Specimen Center Reduced Thickness and the Specimen Thickness 

Ratio 

If one organizes the results using the value of the ratio r, the relationship between the design 

variables and r becomes even clearer. Figure 5a) shows the relationships between the major 

ellipse radius and the value of r. One can see that the general tendency is for the value of 

RM to be constant or to decrease with r. On Figure 5b) one can see that the values of the 

minor ellipse radius are constant with r, or increase with r, for the 4 mm and 8 mm thickness 

specimens. The ellipse center is also almost independent of the value of r, Figure 5c), so the 

elliptical fillet is expected to be almost constant or to increase in size for some of the 

specimen thickness values. 

Now Figures 5d) and 5e) show a clear relation between the revolved spline geometry and 

the value of r. For the majority of the configurations the spline geometry will be constant, 

but for a specimen thickness of 3 mm and 5 mm, both the spline exit angle and the center 

spline radius will decrease with r. 

Finally Figure 5f) shows that the final maximum stress level on the specimen is not 

dependent on the value of r, as only for the lowest value of the specimen thickness (t) the 

stress level decreases with the value of r. 
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a) b) 

  
c) d) 

  
e) f) 

Figure 4. Design variables and maximum stress variation as a function of the specimen thickness, a) 

Major ellipse radius, b) Minor ellipse radius, c) Ellipse center, d) Spline exit angle, e) Center spline radius, 

f) Maximum Stress. 

 



R. Batista1,2, R. A. Claudio1,2, L. Reis2, J. F. A. Madeira2,3, I. Guelho2, M. Freitas2 

 12 

  
a) b) 

  
c) d) 

  
e) f) 

Figure 5. Design variables and maximum stress variation as a function of the specimen center reduced 
thickness and specimen thickness ratio, a) Major ellipse radius, b) Minor ellipse radius, c) Ellipse center, d) 

Spline exit angle, e) Center spline radius, f) Maximum Stress.  

5.3. Strain Distribution on the Specimen Center 

Previously, [5], the strain distribution on the specimen center has been target of the optimization 

procedure. In the present work this has not been the case, therefore the final distribution 

uniformity must be analyzed. Figure 6a) shows the strain distribution on a 4 mm radius around 

the specimen center, for different values of t. One can see that the value of t has almost no 

influence on the strain distribution evolution, except for the 4 mm thickness specimen. For all 

the other configurations the maximum strain difference on a 1 mm radius around the specimen 

center was 0.21%. While for t = 4 mm the maximum strain difference is 1.35%. All the values 
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are of course lower than the 2% imposed limit. 

On the other hand, Figure 6b), shows that the ratio r has a clear influence on the strain 

distribution on the specimen center. It is possible to calculate that the maximum strain 

difference on a 1 mm radius increases from 0.37% to 1.31%, as the ratio r increases from 0.10 

to 0.17. This behavior is justified by the final revolved spline geometry, which has been 

demonstrated to be very important on the strain distribution, [5]. 

 

  
a) b) 

Figure 6. Normal strain distributions on the specimen center: a) ratio r = 0.15 1, b) Specimen thickness t 

= 3 mm. 

6. CONCLUSIONS 

The Direct Multisearch algorithm was able to produce the Pareto Fronts for all of the 

analyzed specimen thickness. In a very complicated Finite Element problem the specimen 

geometries defined by eight active design variables were optimized using a DMS algorithm. 

Results were organized using both objective functions used, the maximum stress on the 

specimen center and the specimen reduced center thickness. Within the Pareto Front all the 

specimen geometries configurations are mathematically equal, therefore a full map for a 

specimen design recommendation was produced, based on the Renard Series of preferred 

number for the specimen thickness. It was possible to conclude that both the specimen 

elliptical arms fillet and center revolved spline are related with the specimen thickness and 

the specimen reduced center thickness and the specimen thickness ratio r. In fact the design 

variables that define the elliptical fillet are directly related with the specimen ratio, while 

the design variables that define the revolved spline are directly related with the ratio r. One 

can also see that the elliptical fillet will increase in size and become further away from the 

specimen center with the increase of the specimen center, while the revolved spline center 

radius will decrease with the increase of the ratio r. It was also possible to conclude that the 

maximum stress on the specimen center does not depends on the ratio r, and therefore the 

material manufacturing limitations can be overcome by choosing a higher specimen reduced 

center value without sacrificing the maximum stress level. As expected the maximum stress 

level decreases as the specimen thickness increases. Comparing the strain distribution on 

the specimen center, for different values of the ratio r, it is possible to conclude that the 

maximum strain difference on a radius of 1 mm around the specimen center will increase 
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with r, as the revolved spline geometry is changed. 
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