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Abstract  
In order to achieve high performance, the geometry of radial turbines in turbochargers by ABB Turbo Systems Ltd 
is being optimized in an iterative way through the use of both in-house and commercial CFD codes. To 
accommodate the lower turbine mass flow rate requirements of new applications, an existing high-performing 
turbine stage is modified by trimming the blade geometry to smaller outlet diameters. The new meridional contour 
of the blade tip must lead to the highest possible turbine stage efficiency. In this paper, an optimization system for 
the design of such meridional curves is presented, which applies the Particle Swarm algorithm on a radial turbine 
design parameterized by Bezier curve control points. The objective function is a linear combination of bounded 
sigmoid functions and favors designs for which the mass flow rate is achieved within a certain tolerance, the 
maximum Mach number of the relative velocity along the blade tip and an estimate for the energy dissipation are 
minimized, and various empirical geometrical constraints are fulfilled. Multiple runs, each differently initialized, 
show that within the time limit of the practically allowed number of design evaluations (15000), the chosen 
optimization scheme delivers similar variants with a maximum percent error of 0.45% for the parameter positions 
and a percent error of 0.05% for the mass flow rate. The optimization system is implemented in Python and calls 
shell scripts to handle pre- and post-processing. In-house FORTRAN software is used for the turbine geometry 
generation and the flow calculation. On contemporary hardware the quasi-3D flow calculation is fast enough to 
facilitate serial evaluation of designs at a rate of approximately 900 variants per hour and optimized design can be 
obtained in a daily workflow. The resulting high performance is verified computationally by fully-3D calculations 
using the commercial CFD code Numeca FINE/Turbo. 
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1. Introduction 
High Performance Computing (HPC) has been a mainstay of engineering design for the past 30 years. Detailed 
CFD models (multilevel grids, turbulence modeling) allow the turbine designer to estimate the real-world 
performance of a turbine stage in terms of total-static efficiency with satisfactory accuracy (±0.02 points) in 
comparison to test rig measurements. However, the use of those code packages on the ever-increasing hardware 
resources is both technologically and economically constrained. The large number of parameters to be determined 
after the 1D design of the turbine stage in conjunction with the long calculation times arising from the complexity 
of simulating steady state operation of turbomachinery pose technological constraints. The use of detailed 
commercial CFD code packages also poses an economic constraint due to the still unresolved discrepancy between 
traditional “per CPU” licensing schemes and the mass adoption of multi-core processors in HPC clusters and even 
workstations in the past decade. 
The result of these constraints is that a radial turbine stage is not being designed from the ground up using detailed, 
fully-3D CFD simulations. Rather, the turbine designer is called upon to apply his engineering experience and 
intuition on determining and evaluating a multitude of initial design variants based on simplified and much faster 
quasi-3D simulations in an iterative manner. Having attained a turbine design which looks promising in terms of 
the estimated flow conditions, a computationally more expensive and thus longer validation phase is then initiated 
using commercial CFD code packages. With more detailed models, the expected total-static efficiency of the 
turbine stage can be predicted. It is also possible to investigate those flow effects which cannot be accounted for by 
the simpler quasi-3D calculations and which will eventually cause a different evaluation of the efficiency in test rig 
measurements and ultimately in field applications. 
Thanks to the immense computational power available even to workstation computers, quasi-3D CFD calculations 
can nowadays be executed faster than the time it takes to derive and input new design parameters. Consequently, it 
makes sense to automate the design process and in a second phase, to implement an optimization scheme around it. 
In this manner, multiple design candidates can be evaluated effectively in a non-interactive way, avoiding small 
errors occurring during the manual labor of inputting data and allowing greater accuracy of the attained designs. 
 
 



 
 

2 

2. Application 
In order to achieve high performance, the geometry of the radial turbines in turbochargers by ABB Turbo Systems 
Ltd is being optimized in an iterative way through the use of both in-house and commercial CFD codes. The 
resulting turbine stages are both thermodynamically highly efficient, as well as satisfy mechanical reliability 
criteria such as HCF durability, creep resistance and burst containment. 
To accommodate the lower turbine mass flow rate requirements of new applications while retaining the 
experimentally proven mechanical reliability, an existing high-performance, reference turbine stage is modified by 
“trimming” the blades down to smaller outlet diameters in post-production. A new “trim” is defined by 
determining a new meridional contour of the blade tip for the given 3D blade and hub geometry, so that the mass 
flow rate of the resulting turbine stage is equal to a certain percentage of the reference design. The new trim must 
satisfy the mass flow rate requirements at the highest possible turbine stage efficiency. 
 
2.1. Formulation of the problem 
The geometric problem to be solved is the identification of the two-dimensional meridional curve which optimally 
satisfies the criteria for the mass flow rate at the highest possible estimated efficiency, while being constrained by 
empirical shape factors such as waviness, curvature changes, as well as inlet and outlet angles. 
Determining an optimal contour is a challenging task, as the turbine inlet shape can influence the incident flow 
negatively, which might lead to blade excitation and high cycle fatigue damage in operation. Additionally, the 
curve shape downstream of the inlet influences not only the mass flow rate, but also the Mach number of the 
relative velocity along the blade tip, a key contributor in energy dissipation. The iterative process of accounting for 
the sensitive interactions in the design can be greatly accelerated by employing an automated system.  
 
2.2. Choice of optimization algorithm 
According to [1], the mass flow rate through the nozzle-equivalent area ST,eff of the turbine is equal to 
 332 ρψ pSm maxT,effT =�   (1) 

The maximum value of mass flow function �max depends only on the turbine pressure ratio and the upstream gas 
conditions, whereas p3 and �3 are the pressure and density of the exhaust gas at the turbine inlet, respectively. Since 
ST,eff is an “effective” flow surface area and correlated, yet not equal to the geometric turbine outlet surface area, 
trimming the blade tip radius to reduce the outlet surface area by a certain percentage leads, according to Eq.(1), to 
a reduction of the turbine mass flow rate by approximately the same percentage. 
Implicitly, this means that optimizing only for the target mass flow rate is insufficient, as there is more than one 
acceptable – from a turbine engineering point of view – meridional curve that can be drawn between the inlet and 
outlet tip points to satisfy the mass flow rate within a specified tolerance and deliver satisfactory thermodynamic 
performance. Therefore, the application of an optimization meta-heuristic such as the Particle Swarm 
Optimization (“PSO”) algorithm seems appropriate in order to automatically locate the globally optimal curve 
according to at least one additional engineering criterion, e.g. an estimate for the energy dissipation. 
 
3. Implementation 
The proposed optimization scheme using PSO has been implemented in Python 2.6, due to the accessibility of 
Python code to non-professional programmers, the fact that (Python being an interpreted language) no 
recompilation of the program is required after the numerous changes and adjustments undertaken during 
development and thanks to the plethora of available modules for performing common tasks such as reading and 
writing CSV files (module “csvwriter”), executing shell scripts and fetching their output (module “commands”) 
for pre- and post-processing, generating plots (module “matplotlib”), as well as providing functionality (module 
“numpy”) for numerical tasks, such as array operations and manipulation. 
 
3.1. In-house turbine design and evaluation chain 
The in-house software “RATIO” is used for generation of the 3D geometry of the trimmed radial turbine stage. The 
input to RATIO consists of a text file containing lists of control points of Bezier curves describing the rotor 
geometry (blade sections, blade tip contour, rotor hub contour, rotor backwall shape, blade thickness). The input 
also contains the thermodynamic and fluid-mechanical boundary conditions for the subsequent quasi-3D CFD 
calculation, for which an input file is generated. 
The in-house software “HT017” is implemented in FORTRAN and calculates six blade-to-blade solutions of the 
quasi-3D flow through several stages of a turbomachine [2]. Polytropic efficiency or the boundary layer thickness 
and shape parameter at the casing surface may be prescribed to account for the viscosity influence. Flows with 
Mach numbers of 1.5 before or after the grid can be calculated, as long as good compatibility between local and 
boundary conditions of the cascade is provided. The continuity, the primary vortex systems (including the trailing 
edge vorticity) and the secondary vorticity of the casing boundary layers are determined iteratively. The calculated 
results are deemed reliable when the solution converges to less than one percent. 



 
 

3 

In 1991, the calculation time with HT017 for one blade row was about 100 seconds. In contemporary workstations 
equipped with multi-core x86-64 processors the total calculation time to convergence utilizing a single CPU core 
is typically lower than 2.5 seconds. 
The in-house tool “GOPOST” is used to calculate the turbine stage mass flow rate by integrating the velocity 
profile over the outlet flow surface of the turbine. 
 
3.2. Parameterization scheme and input 
The input to the optimization program consists of the HT017 input file template containing the 3D geometry of the 
reference turbine. The reference meridional blade tip contour is input in cylindrical z-r coordinates, with z 
denoting the turbine axis, according to Fig. 1. 
 

 
 

Figure 1: Radial turbine geometry nomenclature and parameterization scheme 
 
Part of the reference contour must be defined as the “unchanged” part, since it describes the meridional contour of 
the chosen nozzle ring. The rest of the contour comprises the “changeable” part of the curve. This part is used as an 
array of parameters describing the meridional radii ri of the k Bezier curve control points for the blade tip contour 
at specified axial positions zi. The control points are distributed unevenly in the axial direction; there is an 
“expansion” of their positions from the inlet to the outlet by the factor � according to the recursive Eq.(2). 
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Setting � = 1.3 results in more fine-grained control of the Bezier curve in the region closer to the turbine inlet, 
where the slope is greater.  The larger spacing between control points close to the turbine outlet implicitly helps 
avoid “wavy” contours, which are technically not realizable and fluid-mechanically undesirable due to boundary 
layer separation and the accompanying reduction of total-static efficiency. To enhance the diversity of the 
generated curves over multiple runs however, a random perturbation of the expanded positions by as much as 
±�zmax=±(z2-z1)/2 takes place at the beginning of each run. 
 
3.3. Particle Swarm Optimization parameters 
The standard PSO algorithm described in [3] is used, and all particles communicate with each other. The position 
of each particle is an array of k floats, representing the radial positions of the Bezier control points. 
Minor changes have been implemented in the initialization of the particle swarm parameters. The coefficients c1 
and c2 of the particle velocity components and the inertia coefficient � of each particle are initialized randomly 
(uniformly) at the beginning of the PSO loop (c1, c2 ∈  [1.4, 2.2], � ∈  [0.5, 0.9]). 
In order to improve convergence at later iterations while allowing exploration of the parameter space in the 
beginning of the loop, the inertia coefficient of each particle is decreased linearly over the total number of 
iterations, so that by the time the maximum number of iterations is reached, all particles have reached the 
minimum � value, as shown in Fig. 2. 
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Figure 2: Linear reduction of the inertia coefficient � to the minimum value over relative iteration number � 
(number of iterations to maximum number of allowed iteration before stopping) for 5 randomly initialized 

particles 
 
3.4. Curve generation and validation  
The maximum change of the radius of a control point in each iteration is fixed at an order of magnitude higher than 
�zmax. This affects the particle velocities during the random initialization, as well as during the position updates in 
the PSO loop. 
The initial curve population should be as diverse, and simultaneously as computable as possible. The 
computability of a variant depends on the fluid-mechanical plausibility of the generated geometry, since the 
quasi-3D CFD calculation of tip contours with abrupt changes in curvature usually does not converge. 
 

 
 

Figure 3: Parameter space of the curve generator and its subset, constrained by the curve validation function 
 
The implemented curve generation schema is summarized in Eq.(3). The radii of the control points are determined 
recursively and are randomly perturbed by up to �rmax = 0.5·�zmax. The radius of the control point at the turbine 
outlet is randomly selected from a value range [routlet,min, routlet,max] that results in a reduction of the reference turbine 
outlet surface area by the requested percentage (cf. Eq.(1)) with a tolerance of ±5%. 
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The radius of the inlet control point is constrained in a specified value range [rinlet,min, rinlet,max], as excessive inlet 
narrowing results in an acute angle between the leading edge and the blade tip, which causes the blade to be 
sensitive to excitation by the flow past the nozzle ring. The parameter rinlet,min can either be determined heuristically 
by hand before the optimization, or be left to influence the initial population. The first measure leads to fewer 
discarded curve variants, and the second method usually leads to useful designs, as the designs with a narrowed 
inlet feature disadvantageous flow conditions and are eventually abandoned during optimization anyhow. In the 
former case, a maximum reduction of the nominal rinlet of the reference design by half the percentage of the mass 
flow rate reduction leads to a good compromise between the number of regenerated (during initialization) and 
abandoned (during optimization) variants. A weakly weighted component of the objective function also penalizes 
variants with rinlet outside the initially allowed range.  
The proposed curve generation schema, although effective, does not guarantee acceptable (computable) curves. 
Thus, the generated curves are checked by a “curve validation” function. This function applies the same geometry 
checks (inlet and outlet narrowing, saddle points, maximum axial divergence at outlet) which are applied as 
component objective functions during the evaluation phase of the PSO loop, but with a binary “accept/regenerate” 
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behavior instead of a sigmoid function. The validation process also forces the trimmed curve to lie beneath the 
blade tip curve of the reference turbine. 
The validated curve population is diverse and computable. An example initialization for a run with 15 particles and 
8 control points with imposed axial outlet flow (r7 = r8) is presented in Fig. 4. 
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Figure 4: Sample of 15 generated and validated control point radius sets after the particle initialization 
 
3.5. Transitional designs 
During optimization, the change of the radial coordinates of the Bezier control points sometimes leads to designs 
which are infeasible according to fluid mechanics and established experience in turbomachinery design. Although 
these designs would be rejected by the curve validation process, they are accepted for three reasons. 
Firstly, through them the exploration of diverse solutions is facilitated by not forcing the variants to strictly adhere 
to rules about the contour shape during optimization; rather, those variants will eventually be abandoned due to 
penalties imposed through weakly weighted components in the component fshape of the composite fitness function 
concerning the curve geometry. 
Secondly, it enables relatively rapid transitions between “solution clusters” by not “waiting” for all parameters to 
be improbably changed in the same “sensible” way between iterations. 
Thirdly, strong penalties are imposed on estimated performance characteristics of the turbine stage by fed, which 
means that those designs which look drastically unconventional based on engineering knowledge and experience 
are only transitional and have few chances of “survival” as the swarm abandons them and converges to the global 
optimum. 
 
4. Evaluation and convergence 
 
4.1. Non-convergent CFD calculations 
Depending on the initial particle population, and mostly during the first iterations, some of the transitional variants 
are infeasible enough to pose convergence difficulties to the quasi-3D flow calculation. Since the variants are 
evaluated serially this represents a significant bottleneck in the optimization loop, which is overcome by 
employing a “CFD convergence watchdog” shell script running in the background, parallel to the optimization 
Python script. 
The watchdog parses the file-redirected standard output (stdout) stream of the quasi-3D calculation for the string 
“NaN” (“Not a Number”) with a period comparable to the duration of a normal HT017 run (2.0 seconds). Presence 
of “NaN” indicates convergence difficulties; as soon as this is detected, the watchdog terminates the HT017 
process and creates a dummy file. As soon as the Python script regains control from the last HT017 execution in 
the shell it immediately checks for the presence of the dummy file; in which case it deletes it, forgoes evaluation of 
the current variant and overrides the value of the composite objective function by setting it to a predetermined 
maximum value. 
The large change in particle velocity and subsequent position caused by the large differences between the current 
non-convergent position and the personal best and global best positions is avoided by imposing the velocity 
bounds on the particle between iterations. Despite that measure, it is possible for a particle to move into a 
completely unfit part of the parameter space, where its calculation will not converge for many consecutive 
iterations. For that reason, a “non-convergence list” of all particles is maintained. As soon as a “problematic” 
particle crosses the limit of 5 consecutive non-convergent iterations, it is reset by being newly initialized using the 
parameter generator and the curve validation functions. 
 
4.2. Stopping criteria 
“Soft”, as well as “hard” stopping criteria of the optimization loop are used. The hard stopping criterion terminates 
the PSO loop after a predefined number of design variants. The soft stopping criterion is implemented on two 
levels: a particle activity check and an overall activity check. A particle is considered active and participates in the 
swarm as long as its parameters (r-coordinates) rounded to 3 decimal places are different than the similarly 
rounded parameters of the currently known global best position. The particle that found the last global best 
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position is excluded from this check. If that condition is not satisfied, it is assumed that the rest of the swarm is on 
its way to convergence and that this particle has practically “landed”; it is marked inactive and does not contribute 
to the swarm in subsequent iterations. The overall activity check is also implemented on two levels: if all particles 
have become inactive, the PSO loop stops. The loop also stops if the accumulated difference of parameter values 
between all active particles and the global best position falls below a certain threshold value, e.g. 1 mm. 
 
4.3 Composite objective function 
The variants are evaluated using a composite objective function, comprised of a weighted sum of three main 
components. The components themselves are comprised of sums of criteria, and correspond to evaluation of the 
mass flow rate (fmfr), the energy dissipation (fed), and the curve geometry (fshape). Of those, fshape has the weakest 
contribution, as the estimated energy dissipation is coupled to the Mach number profile at the blade edge, which is 
strongly connected to the geometry. The geometry component is thus implemented as a weak selection 
mechanism, primarily to discard infeasible variants. The component objective functions have been adapted from 
[4], where they are described as “bounded constraint mapping functions”. 
 
4.4. Target value component objective function 
Eq.(6) describes the target value constraint mapping function, bounded in [0,1]. The function parameters �2 and � 
are determined using Eq.(4) and Eq.(5) and the chosen location and shape parameters Ctarget, Dfeas, Cfeas,tol and 
Cadm,tol. 
The value of parameter C must attain the target value Ctarget in the “admissible interval” Ctarget ±Cadm,tol. The value 
of Dfeas corresponds to the requested penalty function value at the boundaries of the “feasible interval” Ctarget 
±Cfeas,tol. It determines how feasible parameter values are penalized in comparison to unacceptable values, 
influences the slope of the function on either side of the interval, and defines the point of curvature change. 
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Figure 5: Description of the parameters of the target value component objective function 
 
4.5. Upper limit component objective function 
The target value constraint mapping function fupper can be derived by ftarget , so that only values above the parameter 
value limit Climit=Ctarget+Cadm,tol are penalized. This is achieved by “deleting” the left of the two sigmoids of which 
ftarget consists by multiplication, as in Eq.(7). This function is also bounded in [0,1]. Feasible values of parameter C 
lie in the range [Climit, Ctarget+Cfeas,tol].  
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Correspondingly, for a lower limit component objective function the right sigmoid of ftarget can be “deleted” 
through multiplication by 0.5·(1-sgn(C-Ctarget)). However, no such criteria are applied in the herein described 
application.  
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Figure 6: Description of the parameters of the upper limit component objective function 
 
4.6. Energy dissipation evaluation 
As a first step, the mass flow rate of the reference turbine is calculated. The target mass flow rate for the trimmed 
turbine is given as a percentage of the reference. Additionally, the maximum Mach number along the meridional 
blade edge of the reference design serves as an indirect performance requirement by being accounted for in the 
composite objective function. 
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Figure 7: Example cases for the relative Mach number profile across the blade tip (suction side) 
 
The quasi-3D flow calculation returns data for the profile of the Mach number of the relative velocity along 6 paths 
(blade “cuts”) across the height of the blade, on the suction side. Energy dissipation due to viscous effects scales 
with the third power of the relative velocity of the free stream [5]. To obtain an estimate for the largest part of 
energy dissipation over the blade surface, and at the same time penalize designs with positive incidence, the profile 
of the absolute value of the relative Mach number along the tip “cut” to the third power is integrated over the 
normalized tip length. A more accurate measure would be the integral of this quantity over the whole blade 
surface. For a radial turbine however, the maximum relative velocity close to the hub is much lower (approx. 50%) 
than at the blade tip. Combining this property of the radial turbine with the third-power scaling of the relative 
velocity means that optimizing the design with the partial goal of reducing the value of the |Ma|3 integral results in 
improving on the most significant factor contributing to loss of efficiency. 
 
4.7. Curve shape evaluation 
Initially, the inlet and outlet radii of the tip contour were the only constraints imposed on the curve form. However, 
the resulting optimal designs were of the shape depicted in Fig. 8, featuring an artificial narrowing of the outlet, 
usually preceded by a saddle point. This form still satisfies the curve validation criteria. In that case, the 
optimization scheme has exploited the fact that, by enlarging the available surface area between the blades at a 
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specified axial coordinate the mean velocity of the flow can be locally reduced, and the usually observed Mach 
number jump to values higher than 1.0 can be weakened, or altogether avoided, depending on the rest of the turbine 
geometry. At the same time, the required mass flow rate will be attained by reducing the outlet diameter. Extreme 
cases of this exploit can be observed by loosening the criteria of the curve generation/validation, so that the curve 
is not forcedly convergent from inlet to outlet. Indeed, a reduction of the Mach number across the tip can be 
observed when the curve features divergent/convergent “bumps”. However, using a turbine with such a tip shape is 
prevented by a) the mounting concept of axially sliding the gas outlet flange over the turbine, and b) by the 
resulting great variability of the tolerated tip gap between the turbine blade edges and the gas outlet flange due to 
thermal expansion of the parts in operation. 
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Figure 8: Example of a convergent/divergent meridional curve 
 

In order to suppress the consideration of such variants during optimization, two additional criteria for the curve 
shape are formulated: the radius must be monotonically decreasing from inlet to outlet, and the first derivative of 
the radius must be monotonically increasing from negative values towards zero. An example of a curve that does 
not satisfy these criteria is shown in Fig. 8. 
The monotony criteria are checked by counting the number of sign changes. The expected number of sign changes 
for an acceptable curve shape is zero for both derivatives. The component objective function applied on this 
criterion is a binary step, with which curves with sign changes of the derivatives are penalized with the value 1.  
 
4.8. Applied criteria 
 

Table 1: Summary of the applied criteria and the corresponding component objective functions 
 

Code Objective Type C Ctarget 
Relative 
weight 

S1 Penalize artificial outlet narrowing Target min(r) rk 0.025 

S2 Reward axial outflow Target rk-1 1.05·rk 0.025 

S3 Penalize artificial inlet narrowing Target r1 rnozzle ring 0.05 

S4 Reward convergent curve Binary # of 1st derivative sign 
changes  0 0.05 

S5 Penalize convergent/divergent curve Binary # of 2nd derivative sign 
changes 0 0.05 

M1 Reward mass flow rate Target reqTT mm ,��  1 0.5 

E1 Penalize high Ma peak Upper 
limit max(Ma(�)) 1.0 0.1 

E2 Reward low |Ma|3 integral Upper 
limit �

1

0

3
)( �dxMa  0.78 0.1 

E3 Reward monotonically increasing 
Ma 

Upper 
limit 

# of 1st derivative sign 
changes of Ma(x) 0 0.1 
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The 9 component mini-objectives applied during the evaluation of a design are listed in Table 1. The relative 
weights correspond to a weighing of the three components according to Eq.(8): 
 

shapeedmfrtotal ffff ⋅+⋅+⋅= 2.03.05.0 .  (8) 

 
5. Results 
 
5.1. Run time 
Prediction of the wallclock run time is straightforward, as the time required for the evaluation chain, the 
“housekeeping” shell commands and the Python script run time of each variant is normally shorter than 3.5 
seconds. Experience gathered with the optimization program over more than 15 trims and multiple runs using 
different turbine geometries, target mass flow rates, initialization constraints and weightings of the component 
objective functions shows that a swarm of 15 particles evaluated by Eq.(8) consistently delivers plausible and 
“good enough” solutions within the first 2 hours and “exceptionally good and accurate enough” solutions usually 
at least 4 hours before the hard stopping criterion of 15000 design variants has to be enforced. 
 
5.2. Convergence behavior 
For the purpose of determining the most effective PSO parameter combination in terms of achieved results over a 
specified time period, batches of 7 differently initialized runs with the same limits on the parameters c1, c2 and �, 
as well as the same number of particles have been investigated. For all batch runs, the soft limit was deactivated 
and the hard limit was set as the evaluation of 15000 design variants, which corresponds to a development time 
which can sensibly be integrated in a daily work cycle (i.e. “overnight” optimization). 
In the empirically determined best setup, each of the 15 particles is initialized with a uniformly random c2. The 
value of c1 is drawn randomly from the same interval and then scaled with the factor 0.75, so that the particle 
swarm demonstrates more social than cognitive behavior. A comparison of the evolution of the average global best 
objective function over the 7 runs of each batch over the normalized runtime is shown in Fig. 9. Doubling the 
number of particles potentially delivers similar results in less than half the time; however, no significant 
improvement is observed from that point on. Almost halving the number of particles brings no advantage 
whatsoever. With 15 particles, setting one of both c1 and c2 parameters as 1/3 of the other one leads to worse 
results. 
Among the 7 runs of the best setup batch, the average percent error for the mass flow rate is equal to 0.05%, and the 
maximum and average percent errors among the control point radii are equal to 0.45% and 0.27%, respectively, 
demonstrating very good convergence to a final design. 
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Figure 9: Average convergence (PSO “global best”) of 5 batches with 7 runs each, with different number of 
particles and initialization of the cognitive and social parameters 

 
5.3. Result validation with CFD 
The commercial fully-3D CFD code Numeca FINE/Turbo has been used to verify the good thermodynamic 
performance of the optimally trimmed turbines which is expected according to the quasi-3D calculations and the 
applied evaluation criteria. An example of the validated results of the optimization scheme is shown in Fig. 10. 
Despite modifying an already optimized 3D geometry to attain a 20% lower mass flow rate, instead of an expected 
decrease of the total-static turbine efficiency due to the new, potentially suboptimal blade shape, an increase by 1% 
relative to the reference is predicted computationally. 
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Figure 10: Comparison of the total-static turbine efficiencies calculated using fully-3D CFD between a reference 
turbine and an optimally trimmed turbine with 20% mass flow rate reduction 

 
6. Summary and outlook 
 
6.1. Possible improvements 
Improvements could be undertaken on the variant initialization scheme. The necessary geometry checks and 
evaluation arise from the fact that, although a monotonically decreasing radius is expected, the variant 
parameterization scheme allows – and is in fact based on – the absolute value of each control point radius, 
independently of the neighboring control points. This leads to partially diverging curves, whereas a recursive 
parameterization of the curve could inherently forbid implausible shapes. 
The current evaluation of variants in series means that massive reductions of the total run time could be achieved 
by object-wrapping the legacy CFD software as a Python module, multiple instances of which can be parallelized 
using the Python “multiprocessing” module. As such, all particles in a given iteration could be evaluated 
asynchronously on different processor cores of nowadays commonplace multi-core-equipped workstations. 
 
6.2. Conclusion 
An optimization scheme has been presented, which allows for efficient automated optimization of radial turbine 
meridional profiles using very fast quasi-3D turbomachine flow calculations as the evaluation part of a Python 
implementation of the standard PSO algorithm. 
Due to the high computational capacity available, simulation software written more than two decades ago can 
nowadays be applied on engineering development tasks with almost negligible computational cost. Additionally, 
such in-house tools have the additional benefit of incurring no software licensing costs. Correspondingly, trading 
model complexity for low run times means that even if the computational accuracy shortcomings of the simpler 
model are taken into account, legacy in-house simulation software can still be repurposed as a fast design 
evaluation tool in a modern, cost-effective optimization chain. 
Such an optimization chain can also be used to efficiently investigate different requirement scenarios, such as 
higher thermodynamic performance at different mass flow rates and/or pressure ratios, without the need to 
accompany the investigation with manual data input and output. 
The application of the PSO algorithm on this problem is very effective, with multiple runs reproducing similar 
optimal designs with percent errors in order of magnitude of 1%. The algorithm itself is computationally cheap, 
which makes the use of an interpreted and versatile programming language, such as Python, fitting. The run time 
necessary for convergence to “exceptionally good” variants is low enough to be usable as part of a daily workflow, 
even though the highly parallelizable variant evaluation of PSO has not yet been taken advantage of. 
The validation of the expected good thermodynamic performance and the requested mass flow rate reduction using 
fully-3D CFD indicates that the current optimization scheme could be applicable on the whole geometry of radial 
turbines and compressors. 
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