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Abstract

This work presents a structural topology optimizatinethodology for a cantilever beam, which inchide
optimal control design for reducing vibrations. Tiogology optimization in this paper uses homogaton

design method, based on the concept of optimiZiegnaterial distribution, through a density disition. A

Continuum finite elements modeling is applied touiate the dynamic characteristics of the structihe modal
basis is used to derive an optimal control. The fioectional is the strain energy of the structanel the control
energy. The location for the actuator in the beaas whosen based in a known fact that the best fdacme
actuator is as close as possible to the fixedafizbe structure, which bears the maximum stredadad by the
first and most significant mode. Results of nunaragmulations for a cantilever beam model are gated and
discussed.
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1. Introduction

Structural topology optimization and structuvération control have called attention both meoretical
research and practical applications in engineerBiguctural vibration control is a particularly ionpant
consideration in the design of dynamic systems. ian idea of the structural optimization is to abtan
optimal material layout of a load-bearing structudsually, continuum topology optimization problerase
formulated to minimize the structural material vok or to optimize the structural performance. Aidgp
example is to raise the first fundamental frequen€ya structure while obeying a volume constraibt [
Meanwhile, structural dynamics control is used toimize or suppress vibration effects.

There are always fundamental interest in dessigith efficient structural control system fromtibatructural
and control engineers. However, these groups haea lworking independently. Traditionally, the stuval
designer develops his design based on strengtistiffriess requirements, and the control designeates the
control algorithm to reduce the dynamic responsesifucture [3]. In this work we are designingstrecture and
controls simultaneously, meaning that the costtionancludes not only the strain energy, but als® control
energy.

The reason why topology optimization is beawgra very important research field is the necessisfficient
methodologies to design structures, thus savingmahtnd time. The main objective of the topologyimization
problem is to find a material distribution that mmizes a given objective functional, subjected tsed of
constraints, achieved by a consistent parametenizaf the material properties in each part ofdhsign domain.
A natural question is whether there exists or natemal in a given point, which leads to a discy@igblem. It is
well-known that this integer parameterization leamaumerical difficulties, associated with theeigér problem
convergence [2, 6, 7]. Minimizing the vibration exdffs of the dynamic response is an important gmattHe
structural vibration control, and the effectivititbhe control depends on the weighting matrices.

The objective of this paper is to presentracttiral design methodology considering the corgffdcts, the
change of the topology by a control force actiard design modal control for suitable fixed actudtmations.
The structural optimization design is completecbtigh a density design method, while the controtdois
obtained by the optimal control design for transiesponse and performed in the modal space.

The efficient structural control design neadsreful selection of actuator positions [3]. Huemr in this work
the actuators locations are chosen arbitrarilyrpaothe structural design. In fact, it is well kmo that a good
location for an actuator in a cantilever structigrelose the fixed size of the structure, sinagcts upon the first
and most significant mode. The lower fundamentatiesoare responsible for the most of the tip disptant of
the beam; therefore, the first two eigenfunctios@mputed and considered in this work.



The additional dynamics and control designenacluded in a topology optimization code [10Jm8lations
were conducted to assess the effectiveness andtorddel efficiency.

2. Formulation of Structural Topology Optimization Considering Control Action

In this work the homogenization design meth8Hi$ the tool for the topology optimization consithg a
control action. This method is based on the conoémiptimizing the material distribution, throughdeansity
distribution. A finite element mesh is defined &rform the structural modal analysis [4]. As a difigation, we
assume that the density is constant in each #tei@ment. An optimality criteria (OC) is derivedifinahe necessary
minimization conditions, and it is solved to upd#te density distribution. A number of simplificatis are
introduced to the implementation, as a regular mesh

We now consider that the objective functiothis sum of the strain energy and the control gnéren, the
topologic optimization problem in steady state thesform

minJd, J(x) =f"Rf +U'QU

V(X _
VR , (1)
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whereU is annx1 displacement vectoH is annxm location matrix for the control forceis the number of action
control forces ané is annx1 applied external force vectdris anmx1 control force vector. The magnitudes of the
matricesQ andR are assigned according to the relative importaricke state variables and the control force in
the minimization procedure. The matfxcan be adjusted b9=K, whereK is the finite element global stiffness
matrix. X is the vector of design variables,, is a vector of minimum relative densiti&§x) andV, is the material

volume and design domain volume, respectively ¥pd is the prescribed volume function. Considering the
discretization,

UTKU :ZN:(xe)pu:k u., (2)
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whereN is the number of elementg,is the penalization exponent, andk, are the element displacement vector
and stiffness matrix, respectively.

The optimization problem is solved using th@i@ality criterion (OC), and this criterion is dexd from the
Karush-Kuhn-Tucker conditions [6]. The Lagrangiandtion of the minimization problem is

L() = 3(x)+ A,V (X) =V, Vo) + AT (KU = (HE )+ 3 A (6 =x) + DA, (X, ~ %)
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To locate a stationary point, it is necesshay oL / 0x, =0, then
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where A, A,,4,. andd_ are Lagrangian multipliers.
Assume that constrains of the design variablesnot activeA,, = A, =0, and that the loaé is design

independent. With some expanding of the terms, sifaplification of the equations and heuristicsesol for the
design variables [10] we can obtain the ng¥or each iteration. More details about the expagdif the terms can
be seen in the follow subsection, Sensitivity Asay The mesh-independent filter is the same &igmund
(2001) [10].

The feedback requires a full knowledge ofestaBy using the displacement closed-loop feedbaokrol we
can assume

f=-R'™HU, (5)

then the equilibrium constraint from Eqg. (1) beceme



KU =F, (6)

where
K, =K +HR H . 7

We can note that thK , is the modified matrix under control effect ané thodification appears where the
force control is applied, which affects also thgegivalues and displacement of the stucture. Thiglgmocan be
solved as the conventional static finite elementhme in standard forrK U =F .

The influence of the weighting matiikis an important aspect to consider. To have st effect on the
topology of the structure, the matix* need an equivalent magnitude compatible with tiffaess matrix. Since
the stiffness is modified on each iteration, tiers chosen (R = diag(w/k), where are the eigenvalues (the

smallest to the largest) amdare weighting constants with the same order ofmtade of the stiffness terms.

2.1. Sensitivity Analysis

Sensitivities are defined as the derivativeshe objective function and the constraints wigisgect to the
design variables, and is often the major computatioost of the optimization. In this work the atijee function
sensitivity requires differentiating displaceme(ghich implies stiffness differentiation) and eigeiues. The

objective function can be simplified using Eqg. i@p Eqg. (1), therd = f'Rf +U" (Hf + ) .Using Eq. (5), this
yieldsJ = F'U. Taking the derivative of the objective function, @ech element, one can obtain

2 o
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into (8), we have
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The sensitivity of the each eigenvalue can be gaaiaftkaet al. (1990) [9], and is computed by

041 oK oM ok om
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where ¢ is the mass-normalized eigenvector dhds the mass matrix, on each elem ¢, tandme.

3. Control Effects on Strucural Topology
It is clear that control forces acting in difént locations on the structure should influeheedptimized design.
To exemplify this fact, we assume a design domaia eantilever beam shows in Fig. 1.
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Figure 1. Design domain.



For a structural only design of this domai®, use the compliance as the objective function,aindin the
topology shown in Fig. 2a. Then we try to introdaceontrol force on this design layout. It is pbssthat on the
desired location for the actuator there is no niltelf the optimization is performed without codering the
control force, then we need either to change theatar location or to redesign the structure. Ig. Ba we
indicated with a point (small circle) the actudtmration and designed the structure again, thie tionsidering the
control force. The new topology for this problensi®wn in Fig. 2b. The mesh domain in the simuraisd 6x40
finite elements.
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Figure 2. a-Topology optimization without control¢e action. b-Topology optimization with controtée
action.

In this simulation it can be noted that theictiure design change completely with the contotiba effects.
Additionally some attention for the actuator looatis required to assure the controllability of fystem.

4. Optimal Control Design in Modal Space

After computing the optimal structure we sédiar the vibration suppression for a transienpoese of the
system. It is possible to design the control far displacement of a particular point of the strestiout in this
work we derive the control in independent modakspa

The formulation of independent modal spacerobnderived by the classical optimal theory [a§sociated
with the distributed-parameter system can be writieéefly as follows. The modal formulation for thgstem is

f+e’n=¢ Hf (13)

where . are the angular frequencies.
The dynamic system defined by Eq. (13) capdrameterized in first order equations and wriitethe state-
coefficient form
y = Ay +Bf, (14)

wherey is a state, time dependent varialy 002" is the vector of the first order time derivateshs states in

modal spacef OSOO™ is the control vectoSis the control constraint set. This system reprissihe constrains

from the nonlinear regulator problem, together vy(t0)=yo, y(oo)=0, respectively the initial and final

conditions.
The coefficient matrices, in modal space, aithconsidering damping, are given by

A= , B= :
~0? 0 ¢'H (15)

where A 002™" and BOO?™™. It is assumed th#¢0)=0, which imply that the origin is an equilibrium pai
A state feedback rather than output feedizaaklopted to enhance the control performanceqtibdratic cost
function for the regulator problem is given by

100 T T
J°:5£[y Qy+f'Rf]dt, (16)

Dmxm

where Q. 002™® is semi-positive-definite matriand R, O positive definite. There are weighting



matrices on the state and control inputs, respelgtiv
Assuming full state feedback, the control lawgiven by

f =-R;'B"Py. (17)
The state-dependent Riccati equation to olRtaia given by
A'P+PA-PBR'B'P+Q, = 0. (18)

The computational cost is high if all modes eonsidered. But it can be dramatically reducezhly a few
modes are dominant and their control is sufficfenthe whole structure.

5. Results

The physical system considered in this workdmposed by cantilevered steel beam shown inFighe
resulting topology for this problem is show in FR). where the locations of the horizontal contimicés are
indicate by points (small circles). This locatiam the actuator was chosen because it is a knostriat the best
place for one actuator is as close as possiblbedited size of the structure, which bears theimam stress
induced by the first and most significant mode.
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Figure 3. c-Topology optimization without controk€e action. d-Topology optimization with controtée
action.

Some simplifications are introduced to thebyem and its response analysis. We assume thawtheontrol
points can have different forces. This fact medra there are two external actuators. Embeddedhiacsl
(piezoelectric materials or hydraulic mechanism®uld generate equal magnitude opposing forcesnaad to
be explicitly included in the model.

The convergence of the objective functionlagtpd in Fig.4.
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Figure 4. Objective function convergence a- withoantrol; b- with one control force; c- with twordool forces

We can observe in Fig. 4 that the converg@taster in the initial 30 iterations, after thése smaller change
of the objective function value at each iteration.

The structure shown in Fig. 1 subject to tiamsforces produces initial deformation and savacthe natural
vibrations. The two free vibration modes of the ®ldd Fig. 1, which finite element discretizatioreahown in
the figures 5a and 5b,
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Figure 5. Deflections of first and second modethefbeam.

The results of the optimal control simulatisnMatlab are shown in Fig. 6. The weighting masicare
Q.= diag{]}, R, = diag{O.S}. Here are considered the two first modes of theriped structure. The position 1

is on the left point (small circle) and position2 the right, shown in Fig. 3. The fourth-order BerKutta method
was used to integrate the equations for a twertyrsis simulation.
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Figure 6. Deflections of first and second mode$euit independent modal control (blue and red) aitld w
independent modal control (black).

It is possible observe that the modgpldisement go quickly to zero, even without natdeahping.

6. Conclusions and Considerations

In this work we introduced an integrated degigocedure for a topology optimization and streadtgontrol
system. This technique uses optimal design of &alted structure and steady state control forcas achieved
through the homogenization method and displaceffeedback law. Optimal controls were applied to cedthe
structural vibration within a reasonable few cycl&stive control can remove the vibration supprasgiom the
structure effectively if it is carried out approgely.

The simulations for the control system conéiththe effectiveness of this control technique. mbmerical
results indicate that combined structural topoladgsign and optimal control can become an efficient
methodology.

The present methodologies can be easily egtktalother applications.
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