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Abstract  
This work presents a structural topology optimization methodology for a cantilever beam, which includes an 
optimal control design for reducing vibrations. The topology optimization in this paper uses homogenization 
design method, based on the concept of optimizing the material distribution, through a density distribution. A 
Continuum finite elements modeling is applied to simulate the dynamic characteristics of the structure. The modal 
basis is used to derive an optimal control. The cost functional is the strain energy of the structure and the control 
energy. The location for the actuator in the beam was chosen based in a known fact that the best place for one 
actuator is as close as possible to the fixed size of the structure, which bears the maximum stress induced by the 
first and most significant mode. Results of numerical simulations for a cantilever beam model are presented and 
discussed. 
Keywords: Topologic optimization, optimal control, vibrations, dynamics. 
 
1. Introduction 
     Structural topology optimization and structural vibration control have called attention both in theoretical 
research and practical applications in engineering. Structural vibration control is a particularly important 
consideration in the design of dynamic systems. The main idea of the structural optimization is to obtain an 
optimal material layout of a load-bearing structure. Usually, continuum topology optimization problems are 
formulated to minimize the structural material volume or to optimize the structural performance. A typical 
example is to raise the first fundamental frequency of a structure while obeying a volume constraint [5]. 
Meanwhile, structural dynamics control is used to minimize or suppress vibration effects.  
     There are always fundamental interest in designs with efficient structural control system from both structural 
and control engineers. However, these groups have been working independently. Traditionally, the structural 
designer develops his design based on strength and stiffness requirements, and the control designer creates the 
control algorithm to reduce the dynamic response of a structure [3]. In this work we are designing the structure and 
controls simultaneously, meaning that the cost function includes not only the strain energy, but also the control 
energy.  
     The reason why topology optimization is becoming a very important research field is the necessity of efficient 
methodologies to design structures, thus saving material and time. The main objective of the topology optimization 
problem is to find a material distribution that minimizes a given objective functional, subjected to a set of 
constraints, achieved by a consistent parameterization of the material properties in each part of the design domain. 
A natural question is whether there exists or not material in a given point, which leads to a discrete problem. It is 
well-known that this integer parameterization leads to numerical difficulties, associated with the integer problem 
convergence [2, 6, 7]. Minimizing the vibration effects of the dynamic response is an important goal for the 
structural vibration control, and the effectivity of the control depends on the weighting matrices. 
     The objective of this paper is to present a structural design methodology considering the control effects, the 
change of the topology by a control force action, and design modal control for suitable fixed actuator locations. 
The structural optimization design is completed through a density design method, while the control force is 
obtained by the optimal control design for transient response and performed in the modal space.  
     The efficient structural control design needs a careful selection of actuator positions [3]. However, in this work 
the actuators locations are chosen arbitrarily prior to the structural design. In fact, it is well known that a good 
location for an actuator in a cantilever structure is close the fixed size of the structure, since it acts upon the first 
and most significant mode. The lower fundamental modes are responsible for the most of the tip displacement of 
the beam; therefore, the first two eigenfunctions are computed and considered in this work. 
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     The additional dynamics and control design were included in a topology optimization code [10]. Simulations 
were conducted to assess the effectiveness and control model efficiency. 
 
2. Formulation of Structural Topology Optimization Considering Control Action 
    In this work the homogenization design method [8] is the tool for the topology optimization considering a 
control action. This method is based on the concept of optimizing the material distribution, through a density 
distribution. A finite element mesh is defined to perform the structural modal analysis [4]. As a simplification, we 
assume that the density is constant in each finite element. An optimality criteria (OC) is derived from the necessary 
minimization conditions, and it is solved to update the density distribution. A number of simplifications are 
introduced to the implementation, as a regular mesh.     
     We now consider that the objective function is the sum of the strain energy and the control energy. Then, the 
topologic optimization problem in steady state has the form   
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where U is an nx1 displacement vector, H is an nxm location matrix for the control force, m is the number of action 
control forces and F is an nx1 applied external force vector, f is an mx1 control force vector. The magnitudes of the 
matrices Q and R are assigned according to the relative importance of the state variables and the control force in 
the minimization procedure. The matrix Q can be adjusted by Q=K , where K  is the finite element global stiffness 
matrix. x is the vector of design variables, xmin is a vector of minimum relative densities. V(x) and V0 is the material 
volume and design domain volume, respectively and Vmin is the prescribed volume function. Considering the 
discretization, 
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where N is the number of elements,  p is the penalization exponent, ue and ke are the element displacement vector 
and stiffness matrix, respectively. 
     The optimization problem is solved using the Optimality criterion (OC), and this criterion is derived from the 
Karush-Kuhn-Tucker conditions [6]. The Lagrangian function of the minimization problem is 

 
  
          (3) 

 
     To locate a stationary point, it is necessary that / 0eL x∂ ∂ = , then 
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where 0 1 2 3, , ande eλ λ λ λ are Lagrangian multipliers. 

     Assume that constrains of the design variables are not active, 2 3 0e eλ λ= = , and that the load F is design 

independent. With some expanding of the terms, also simplification of the equations and heuristics scheme for the 
design variables [10] we can obtain the new xe for each iteration. More details about the expanding of the terms can 
be seen in the follow subsection, Sensitivity Analysis. The mesh-independent filter is the same as in Sigmund 
(2001) [10]. 
     The feedback requires a full knowledge of states. By using the displacement closed-loop feedback control we 
can assume      

 −= − 1 Tf R H U ,  (5) 
 
then the equilibrium constraint from Eq. (1) becomes 
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where 
 −= + 1 T

cK K HR H . (7) 

 
     We can note that this cK  is the modified matrix under control effect and the modification appears where the 

force control is applied, which affects also the eigenvalues and displacement of the stucture. The problem can be 
solved as the conventional static finite element method in standard form =cK U F . 

     The influence of the weighting matrix R is an important aspect to consider. To have significant effect on the 
topology of the structure, the matrix R-1 need an equivalent magnitude compatible with the stiffness matrix. Since 
the stiffness is modified on each iteration, then R is chosen as ( )w/λR diag= , where λ are the eigenvalues (the 

smallest to the largest) and w are weighting constants with the same order of magnitude of the stiffness terms. 
 
2.1. Sensitivity Analysis 
     Sensitivities are defined as the derivatives of the objective function and the constraints with respect to the 
design variables, and is often the major computational cost of the optimization. In this work the objective function 
sensitivity requires differentiating displacements (which implies stiffness differentiation) and eigenvalues. The 
objective function can be simplified using Eq. (2) into Eq. (1), then ( )  J = + +T Tf Rf U Hf F .Using Eq. (5), this 

yields J = FTU. Taking the derivative of the objective function, on each element, one can obtain  
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The sensitivity of the each eigenvalue can be seeing in Haftka et al. (1990) [9], and is computed by 
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where φ  is the mass-normalized eigenvector and M  is the mass matrix, on each element eφ  and me.  

 
3. Control Effects on Strucural Topology 
     It is clear that control forces acting in different locations on the structure should influence the optimized design. 
To exemplify this fact, we assume a design domain as a cantilever beam shows in Fig. 1.   
 
 
 
 
 
 

 
Figure 1.  Design domain. 
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     For a structural only design of this domain, we use the compliance as the objective function, and obtain the 
topology shown in Fig. 2a. Then we try to introduce a control force on this design layout. It is possible that on the 
desired location for the actuator there is no material. If the optimization is performed without considering the 
control force, then we need either to change the actuator location or to redesign the structure. In Fig. 2a we 
indicated with a point (small circle) the actuator location and designed the structure again, this time considering the 
control force. The new topology for this problem is shown in Fig. 2b. The mesh domain in the simulation is 16x40 
finite elements. 
      

 
    (a)           (b)    
 

Figure 2. a-Topology optimization without control force action. b-Topology optimization with control force 
action. 

 
     In this simulation it can be noted that the structure design change completely with the control action effects. 
Additionally some attention for the actuator location is required to assure the controllability of the system. 
 
4. Optimal Control Design in Modal Space 
     After computing the optimal structure we search for the vibration suppression for a transient response of the 
system. It is possible to design the control for the displacement of a particular point of the structure, but in this 
work we derive the control in independent modal space. 
     The formulation of independent modal space control, derived by the classical optimal theory [1], associated 
with the distributed-parameter system can be written briefly as follows. The modal formulation for the system is 
 

 Hfηωη T2 φ=+ɺɺ , (13) 

 
where ω  are the angular frequencies. 
     The dynamic system defined by Eq. (13) can be parameterized in first order equations and written in the state- 
coefficient form  
 BfAyy +=ɺ , (14) 

 

where y is a state, time dependent variable, n2ℜ∈yɺ  is the vector of the first order time derivates of the states in 

modal space, mS ℜ∈∈f  is the control vector, S is the control constraint set. This system represents the constrains 

from the nonlinear regulator problem, together with ( ) ( ) 0yyty 00 =∞= , , respectively the initial and final 

conditions. 
     The coefficient matrices, in modal space, without considering damping, are given by 
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where nnx22ℜ∈A  and nxm2ℜ∈B . It is assumed that f(0)=0, which imply that the origin is an equilibrium point. 
      A state feedback rather than output feedback is adopted to enhance the control performance. The quadratic cost 
function for the regulator problem is given by 
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matrices on the state and control inputs, respectively.   
     Assuming full state feedback, the control law is given by 
 

 PyBRf T1
c
−−= . (17) 

 
     The state-dependent Riccati equation to obtain P, is given by 
 
 −+ − + =T 1 T

c cA P PA PBR B P Q 0. (18) 

 
     The computational cost is high if all modes are considered. But it can be dramatically reduced if only a few 
modes are dominant and their control is sufficient for the whole structure. 
 
5. Results 
     The physical system considered in this work is composed by cantilevered steel beam shown in Fig. 1. The 
resulting topology for this problem is show in Fig. 3, where the locations of the horizontal control forces are 
indicate by points (small circles). This location for the actuator was chosen because it is a known fact that the best 
place for one actuator is as close as possible to the fixed size of the structure, which bears the maximum stress 
induced by the first and most significant mode.   
 

 
         (c)                                                 (d) 
 

Figure 3. c-Topology optimization without control force action. d-Topology optimization with control force 
action. 

    
     Some simplifications are introduced to the problem and its response analysis. We assume that the two control 
points can have different forces. This fact means that there are two external actuators. Embedded actuators 
(piezoelectric materials or hydraulic mechanisms), would generate equal magnitude opposing forces and need to 
be explicitly included in the model. 
     The convergence of the objective function is plotted in Fig.4. 
 

  
     (a)                    (b)                            (c) 

Figure 4. Objective function convergence a- without control; b- with one control force; c- with two control forces 
 
     We can observe in Fig. 4 that the convergence is faster in the initial 30 iterations, after there is a smaller change 
of the objective function value at each iteration.  
     The structure shown in Fig. 1 subject to transient forces produces initial deformation and so active the natural 
vibrations. The two free vibration modes of the model in Fig. 1, which finite element discretization are shown in 
the figures 5a and 5b, 
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      (e)         (f) 

Figure 5. Deflections of first and second modes of the beam. 
 
     The results of the optimal control simulation in Matlab are shown in Fig. 6. The weighting matrices are 

{ } { }5.0,1 diagdiag == cc RQ . Here are considered the two first modes of the optimized structure. The position 1 

is on the left point (small circle) and position 2 on the right, shown in Fig. 3. The fourth-order Runge-Kutta method 
was used to integrate the equations for a twenty seconds simulation. 
 

 
Figure 6. Deflections of first and second modes without independent modal control (blue and red) and with 

independent modal control (black). 
 

          It is possible observe that the modal displacement go quickly to zero, even without natural damping.   
 

 
6. Conclusions and Considerations 
     In this work we introduced an integrated design procedure for a topology optimization and structural control 
system. This technique uses optimal design of a controlled structure and steady state control forces was achieved 
through the homogenization method and displacement feedback law. Optimal controls were applied to reduce the 
structural vibration within a reasonable few cycles. Active control can remove the vibration suppression from the 
structure effectively if it is carried out appropriately. 
     The simulations for the control system confirmed the effectiveness of this control technique. The numerical 
results indicate that combined structural topology design and optimal control can become an efficient 
methodology.  
     The present methodologies can be easily extended to other applications.  
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