Abstract ID-175

LOCKING AND STABILITY OF 3D TEXTILE COMPOSITE REINFORCEMENTS DURING FORMING

Philippe Boisse, Nahiene Hamila, Sylvain Mathieu
INSA Lyon, France
philippe.boisse@insa-lyon.fr, nahiene.hamila@insa-lyon.fr, sylvain.mathieu@insa-lyon.fr

Keywords: Locking, Stability, 3d Textile Composite, Forming, Hyperelasticity.

Summary: A hyperelastic constitutive law for 3D layer to layer angle interlock preforms is proposed. This model is macroscopic and aims to determine the strains and stresses of the whole 3D preform. The strain energy potential is defined for elementary deformation modes. The dependence of the strain energy potential on the material privileged directions can be introduced explicitly. Structural tensors representative of the anisotropy of the material are introduced. 3D interlock fabrics are made of warp and weft yarns which are perpendicular to each other in the initial configuration. The 3D material has three privileged directions: the warp direction, the weft direction and a third direction through the preform thickness. The constitutive law has proven to be effective but the finite element formulation into which it is implemented may be spurious in some cases. Enhancements in order to avoid these problems will be presented.

References: