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Summary: Composite materials with their intrinsic tailor-made capabilities can be strong
candidates to improve the mechanical performance of structures, either by partially or totally
replacing other traditional materials. These easily tailored features can be thought not only
in terms of the more often used fibre reinforced laminated composites but also in the context of
particulate composites. In general, the mechanical performance of composite structures can be,
intentionally or not, influenced through the manipulation of geometric properties, the selection
of material’s phases and its disposition in the composite, as well as, the spatial distribution of
reinforcement agents, such as fibres or particles. The uncertainty associated to all these differ-
ent aspects can be considered as the main source of variability to the mechanical behaviour of
a given structure. It is therefore important to characterize the relations between the geometric
and material parameters and a set of some relevant structural responses. The quantification of
uncertainty is often related to the experimental behaviour of a given structure, although it can
also be assessed within the design perspective, where it is useful to understand and identify the
parameters with a greater influence on the uncertainty associated to the model simulations.
In the present work, one considers functionally graded plates, where different material and geo-
metric characteristics are assumed to be uncertain. The mechanical behaviour of such plates is
modelled using Lagrange- and Kriging-based finite element models, developed according to the
assumptions of the first order shear deformation theory. A set of numerical results is presented
and discussed in order to identify the most significant modelling parameters for the description
of the output variability, in this case the maximum deflection.
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1. INTRODUCTION

The uncertainty associated to real physical quantities, that characterize a functionally graded
material (FGM), can be, among others, a crucial issue on the assessment of an eventual failure
in a FGM structure. This uncertainty can be thought at the microscale of the composite, for
instance if one thinks about the real geometry of the inclusions or the adhesion conditions to
the agglomerating phase, or at the macroscale if one considers the average values assigned to
these characteristics/properties, where one assumes a variability based on the manufacturer’s
technical sheets. This latter case is the focus of the present work.

There is a significant number of published works carried out based on the assumption of
deterministic geometric and material characteristics, that provide predictions on the expected
behaviour of a given structure. This is also the case of structures made of FGMs.

The term FGM has only appeared by the mid 1980s [1] and characterize the continuous
variation of the materials’ properties in a 3D structure domain. These materials are known
to provide superior thermal and mechanical performance, because of their properties varia-
tion characteristic [2, 3]. Many approaches on FGM structures design have been introduced.
Meshless method and third-order shear deformation combined with different homogenization
schemes, such as, the rule of mixtures or the Mori-Tanaka approach have been used in [4]. Lee
et al. [5] used a higher-order shear deformation theory (HSDT) considering different nature of
volume fraction distributions, as the ones based on exponential, power-law and sigmoid func-
tions. Nguyen et al. [6] present a study about the requirement of a shear correction factor when
the first-order shear deformation theory (FSDT) is used and how this factor can affect the model
and its results. Those authors quantify the influence of a unique correction factor on the model
outputs. Note that one of the major difficulties of modelling a composite structure is the accu-
rate determination of the material properties [7]. According to [2], it is necessary to understand
the effects of varying the relative proportion of the material phases involved in the FGM consti-
tution, if one intends to obtain an optimized material, which may correspond to a set of specific
operation needs. The comprehension of these effects enable a better prediction of the responses
of a given structure when submitted to external loads. Thus, knowing that both extrinsic and
intrinsic characteristics and factors can affect the mechanical behaviour of a structure, namely
a FGM one, the main question is to quantify how much the uncertainty related to these param-
eters affects the outputs of a FGM model and which ones are more important relevant on the
description of the variability on the results.

The present work is focused on a stochastic approach that assumes that one can describe
the relation between the variability of inputs and outputs based on a sample of model responses
obtained by finite elements analysis. This approach has the purpose of identify the most sig-
nificant parameters in the description of the variability of the model results, by the use of a
multi-variable regression model, validating all its assumptions. It is here performed a compar-
ative analysis between the input-output correlation of a model based on Lagrange interpolation
and a Kriging-based one, since different models were created and their results compared.
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2. SHEAR DEFORMATION THEORY AND FINITE ELEMENT MODELS

In the present work, one uses the FSDT to model the behaviour of the plates that will be
studied. This theory is adequate considering not only the geometric characteristics of the FGM
plates, but also taking into account the reasonable computational cost associated to the signifi-
cant number of finite element analysis that will be required. The displacement field is described
as:

u(x, y, z) = u0(x, y) + zθ0x(x, y)

v(x, y, z) = v0(x, y) + zθ0y(x, y)

w(x, y) = w0(x, y)

(1)

where u0, v0, w0, θ0x and θ0y are the generalized displacements associated to the plane mid-
surface [8, 9]. A shear correction factor of 5/6 is used.

To enable the characterization of the mechanical behaviour of functionally graded plates,
whose geometric and material parameters can be affected by uncertainty, two types of quadratic
quadrilateral plate finite elements were implemented. These elements have both nine nodes,
differing in the nature of the interpolation functions, which can be the often used Lagrange
functions or Kriging-based functions [10]. These latter ones can be observed in Figure 1, as-
sociated to each node considering the usual numbering counter-clockwise numbering scheme.

To obtain the Kriging-based shape functions, it is assumed that for a generic function q(x, y),
say a degree of freedom, one can approximate it by a linear combination of interpolation func-
tions φ(x, y) and the values assumed by each function in the nodal points are given by

q̄(x, y) = φ(x, y)q(x, y) (2)

as also happens in other type of approximations. In this particular case, the derivation of these
interpolation functions can be summarized as

φ(x, y) = sT (x, y)A + rT (x, y)B (3)

where matrices A and B are given by:

A =
(
STR−1S

)−1
STR−1 (4)

B = R−1 (I− SA) (5)

with s(x, y) being a vector that contains the different monomials that constitutes the polynomial
basis used, r(x, y) is the Euclidean distances vector, and R and S are respectively a covariance
matrix and a rectangular matrix where each monomial coefficient assumes a value associated to
a point position.

The finite element analyses are carried out by using the usual equilibrium equations, widely
disseminated in the literature [8, 9].
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Figure 1: Kriging-based interpolating functions.

2.1 Functionally graded materials

FGMs are usually particulate composite materials which composition may vary in a 3D
space according to a specified phase mixture distribution law, possessing a continuous profile.

Figure 2a illustrates a mixture distribution with a single variation in the z (thickness) di-
rection for a dual-phase particulate composite, where in its surface on the left end side one has
only phase A, whereas in the surface on the right end side there is only phase B. The profile
distribution can be expressed in different ways, being however the more common, the one used
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z
(a) Schematic representation. (b) Volume fraction distribution profiles for different ex-

ponent values.

Figure 2: FGM mixture through the composite thickness.

in [11, 12, 13] known as the power exponent law,

Vr =

(
z

h
+

1

2

)p

(6)

where the volume fraction of the reinforcement particles is denoted by Vr, and h and p are,
respectively, the thickness of the composite plate and the exponent that dictates a faster or
slower incorporation of the reinforcement particles, nearer its outer surfaces. In Figure 2b one
can observe this volume fraction evolution within the composite thickness for the cases, p = 0.2,
p = 0.5, p = 1.0, p = 2.0 and p = 5.0, being possible to have a qualitative appreciation on the
distribution of the elastic properties through thickness.

The volume fraction distribution gives the phase’s mixture composition at each point and it
varies through thickness, so the corresponding average material properties (Pave) will be also
influenced by this variation. Although there are many other homogenization schemes to predict
the average properties of a composite, the Voigt’s rule of mixtures [14] is used in the present
work. For a dual-phase composite, this rule is written as

Pave = VrPr + (1 − Vr)Pm (7)

where Pr and Pm are generic material properties of the reinforcement particle (r subscript) and
of the matrix (m subscript), respectively.

In the following two sections, one presents a study on the variability of the FGM’s proper-
ties, followed by the basics on multiple linear regression models.

3. FGM’S PROPERTIES VARIABILITY SIMULATION

By considering now a power-law exponent p = 1, one obtains a linear approximation of
the volume fraction distribution, as presented in Figure 2b, for a plate with a thickness denoted
by h. Instead of assuming that these parameters possess exact values, in the present work one
starts by admitting that the volume fraction distribution is affected by uncertainty associated
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Figure 3: Volume fraction through thickness, considering variability.

(a) (b)

Figure 4: Elastic properties distributions through thickness, considering variability.

to its exponent p and also to the thickness h of the plate. For instance, one may consider
that the exponent p has a mean value µ equal to 1, representing the linear volume fraction
(Figure 3). It seems reasonable, from the engineering point of view, to simulate p according to a
normal distribution with the mentioned mean value and a coefficient of variation of 7.5%. The
simulated spread of p is shown in Figure 3. Note that if this spread is propagated to the average
material properties through equation 7, it results on the spread shown in Figure 4.

This uncertainty applied to the exponent, which dictates the inclusion rate through thickness
of the reinforcement particles (ceramic particles), and to the thickness, along with the uncer-
tainly of the mechanical properties of each material reflects the global variability expected in a
real condition. Each one of these variables will take a fundamental role on the characterization
of the deflection variability. Thus, in order to simulate the variability on the FGM’s proper-
ties, both geometric and mechanical ones, one has simulated them using a random multivariate
normal distribution X ∼ N(µ,Σ), with the mean values given in Table 1 and a diagonal
covariance matrix (ensuring the independence between modelling parameters) with standard
deviations computed using a 7.5% coefficient of variation.

For sampling purposes, one used a Latin Hypercube Sampling (LHS), often considered to
perform experiment simulations emulating physical systems. Note that the LHS used has the
ability to ensure the independence between variables [15].

Table 1: Parameters used in the simulation (according to [6]).
Parameters Ec Em νc νm h p

µ 696 GPa 70 GPa 0.3 0.3 0.05 m 1
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4. MULTIPLE LINEAR REGRESSION

A simple linear regression model aims at build a probabilistic model that relates a dependent
variable Y to a single predictor X . As the uncertainty on FGM plates may be due to several
parameters, the use of a multiple linear regression model is more appropriated and it is given by

Y = β0 + β1X1 + . . .+ βkXk + ε (8)

where k is the number of independent variables used to explain the dependent variable Y , βi are
the regression coefficients and ε is the residual or error term. Note that in the case of multiple
linear regression the predictor is a vectorX .

The coefficient β0 is the intercept, which corresponds to the value predicted when the inde-
pendent variables are zero, whereas βi are the partial slopes, representing the influence of the
variable Xi on the response Y . The term ε is assumed to have a normal distribution with zero
mean and constant variance σ2. Additionally, the independent variables used to predict Y should
be uncorrelated. This means that, if the assumptions of the model are validated, a response value
ŷ can be estimated from the sampled values xi with a random residual ε ∼ N(0, σ). So, the
residuals ε = y− ŷ can be used to estimate the regression coefficients and to validate the model
assumptions. The regression coefficients are estimated using the least squares method [16].

Based on a specific sample, one can find estimates for each βi as well as for the coefficient
of multiple determination, R2, which gives the proportion of variability of the response that
is explained by the model (usually, this is an output of the linear model, as well as the R2-
adjusted). Using inferential statistics, the sample results can be generalize for the population.
The ANOVA (analysis of variance) gives the significance of the model, based on the p-value
of the F -test. If the model is significant, it means that at least one of the slopes is not zero,
meaning that those predictors are useful. In that situation, the t-test gives the significance of
each individual independent variable. Moreover, it is possible to construct confidence intervals
for the slopes. Once a model is chosen, one must validate the Gauss-Markov assumptions made
for the residuals [16].

5. RESULTS

Based on the methodology presented in section 3, the FGM’s properties were simulated
using a sampled of n = 30, which is a a sufficiently large sample size to support the significance
of the results, keeping the problem at a reasonable size to deal with experimental tests.

Figure 5 is the matrixplot of the sampled FGM properties. As expected, the individual
histograms show a Gaussian behaviour according to the values presented in Table 1. As it can
be observed, the variables (material and geometric properties) are uncorrelated, as shown by the
scatterplots and corresponding correlation coefficients in the same Figure.

With the sampled modelling parameters, one has proceeded to the finite element analysis
aiming at characterize the maximum transverse displacement of the FGM plate. These anal-
yses were carried out using both the Lagrange- and Kriging-based plate finite elements. The
frequency histograms corresponding to each one of these models are presented in Figure 6, in
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Figure 5: Characterization of the sampled modelling parameters.

both cases the shape of the histogram resembles a normal distribution. Although the p-values
of the goodness-of-fit tests are not very high, this distribution was not rejected. Another impor-
tant result is that there is no evidence to reject the hypothesis that both methods yield the same
output (Figure 6).
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Figure 6: Frequency histograms of the deformation obtained for both methods.

In order to identify the most significant modelling parameters for the description of the
output variability, in this case the maximum deflection, a linear regression model was built
using all the inputs. However, the built model is considered to be significant, the assumptions
on its residuals are violated, being therefore the model invalid.
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Thus, analysing the contribution of each variable, the maximum deflection variability is
mostly explained by the thickness h. In fact, with just two input parameters, h and p, one is able
to construct a valid model with a high value of explanation. As there is an interaction between
these two variables, an extra input was added to cope with this effect. So, the proposed model
is given by

Y = β0 + β1h+ β2p+ γ12 (h p) + ε (9)

where the coefficient γ12 is related to the interaction effect.
As it can be observed by the model outputs of Table 2, the considered parameters are all

significant, as well as the model of equation 9 is, with an explanation of 90% of the maximum
deflection variability. The significance of the model is confirmed by a p-value < 0.0001 in the
F -test and its fitting as an adjusted R2 ≈ 90%. Regarding each parameter, individually, their
significances are given in Table 2. As expected, regarding the result with all the modelling
parameters, h is the most significant parameter in the description of the variability of the maxi-
mum deflection. To validate this model, the assumptions on its residuals are verified, as shown
in Figure 7 and Table 4.

Table 2: Linear model summary - Lagrange.
Coefficients Estimate Std. Error t value p-value

β0 -1.150e-04 3.360e-05 -3.424 0.00206 **
β1 2.176e-03 6.713e-04 3.241 0.00326 **
β2 6.291e-05 3.340e-05 1.884 0.07083 .
γ12 -1.379e-03 6.671e-04 -2.068 0.04873 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

Standarized Residuals

P
ro

ba
bi

lit
y

(a) Probability plot.

−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6

x 10
−5

−3

−2

−1

0

1

2
x 10

−6

R
es

id
ua

ls

Fitted values

(b) Residuals distribution.

Figure 7: Diagnostic plots - Lagrange.

The results for the Kriging-based finite elements are very similar (see Table 3 and Figure 8),
leading to an analysis analogous to the one presented for the Lagrange interpolation. This
observation supports the already mentioned resemblance between the responses obtained by
both methods. Moreover, there is no evidence to reject the hypothesis that both methods yield
the same output.
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Table 3: Linear model summary - Kriging-based.
Coefficients Estimate Std. Error t value p-value

β0 -1.139e-04 3.363e-05 -3.387 0.00226 **
β1 2.155e-03 6.721e-04 3.206 0.00355 **
β2 6.174e-05 3.344e-05 1.847 0.07623 .
γ12 -1.358e-03 6.678e-04 -2.033 0.05237 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Figure 8: Diagnostic plots - Kriging-based.

As expected, due to resemblance between the outputs obtained by the two methods (Fig-
ure 6), the multiple regression model is the same for both cases and it is given by eq. 9, being
the estimated coefficients quite similar, as shown in Tables 2 and 3. The normality test results
for the residuals are given in Table 4 and the 95% confidence intervals are presented in Table 5.

Table 4: Normality test results.

Normality test p-value
Lagrange Kriging

Anderson-Darling 0.7761 0.7217
Cramer-von Mises 0.7614 0.6985

Lilliefors (Kolmogorov-Smirnov) 0.6471 0.5459
Pearson chi-square 0.3920 0.5304

Shapiro-Francia 0.8385 0.8127

Table 5: Confidence intervals on the regression coefficients.

Coefficients Lagrange Kriging
2.5% 97.5% 2.5% 97.5%

β0 -1.8409e-04 -4.5969e-05 -1.8305e-04 -4.4775e-05
β1 7.9573e-04 3.5556e-03 7.7326e-04 3.5362e-03
β2 -5.7374e-06 1.3157e-04 -6.9873e-06 1.3047e-04
γ12 -2.7506e-03 -8.2901e-06 -2.7304e-03 1.4992e-05
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6. CONCLUSIONS

The uncertainty associated to geometric and material properties of a FGM structure can be
responsible for the spread of its mechanical responses. These uncertainties can be considered
at different levels, namely from the composite micro to macro scale. With the present work,
focused at the macroscopic average properties/characteristics, it is intended to understand which
properties are the ones with a predominant influence on the response variability. In this work,
the analysis was limited to the maximum transverse deflection of a FGM plate. The evaluation
of this physical quantity is carried out through finite element analyses, which consider quadratic
quadrilateral plate elements based on Lagrange and Kriging interpolation functions.

To enable the identification of the most significant parameters on the description at a great
extent of the static response of the FGM plate, one uses a multiple linear regression model. This
approach yields statistical evidence that it could not be rejected the hypothesis that the formu-
lation of the finite elements based on both Lagrange and Kriging interpolation produce quite
similar results. It has demonstrated that the variability of the maximum transverse deflection
can be described by only two parameters, if their interaction is considered, with an explanation
around 90%, without violating any model assumption. These parameters are the thickness and
the exponent of the rule of mixtures that describe the incorporation of the reinforcement par-
ticles in the FGM structure. Indeed, given these results, one may conclude that the maximum
transverse deflection of a FGM plate is more sensitive to changes on geometric properties than
on mechanical properties, regarding the considered variables. In this sense, preliminary stud-
ies show that, if the geometric properties are not randomised, the variability on the predicted
deflection is due to the variability on the mechanical properties of the involved materials.

The presented approach can be applied to any structure, allowing to identify the contribution
of each modelling parameters to the variability of the predicted responses. This study can be
extended by including the analysis of the predicted natural frequencies. Note that one possible
application of this approach is related to the parameter selection, regarding stochastic finite
element analysis.
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