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The formulation with floating frame of reference has been widely used in the flexible multibody analysis.  

In this formulation, deformation of a flexible body is represented, relative to the floating reference frame.  Thus 

this leads to the coupled equations of motion between the references coordinates which describe the gloss 

motion of the reference frame of the flexible body and the deformation coordinates [1].  The main advantage of 

this floating reference frame formulation is to apply various MOR (Model Order Reduction) techniques in order 

to transform the nodal coordinates into the modal coordinates for efficient analysis [2].  The most widely used 

MOR technique in the industry is either the technique with vibration normal modes or the technique with the 

combination of vibration normal modes with static correction modes such as Craig-Bampton modes.  The main 

issue on MOR is how to select the best suited deformation modes to approximate the deformation field of the 

flexible body.  Recently, dynamic correction of the Craig-Bampton method, called as an enhanced Craig-

Bampton (ECB) method, has been developed to improve the accuracy of the approximated deformation field of 

a flexible body [3, 4], which is mathematically regarded as the dynamic modal condensation.    

In this paper, we developed a two-step dynamic condensation method in the analysis of the flexible 

multibody dynamics for accurate mode selection and for efficient computation.  In the first dynamics 

condensation, the coordinates associated with residual vibration normal modes are condensed into the 

coordinates associated with the selected Craig-Bampton static modes and the kept vibration normal modes for 

better approximation of the deformation field for the flexible body analysis.  In the second dynamic 

condensation, the deformation modal coordinates, which are obtained from the first condensation, are again 

condensed into the reference coordinates which represent the gloss motion of the float reference frame of the 

flexible body.  This leads to the reduced system equations of motion of which dimensions are 6 by the number of 

flexible bodies.    The Eq. (1) shows the matrix and vector form of the reduced equations of motion and the 

associated constraint equations for the n-body flexible multibody system.  
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 Here, yy

iM indicates the mass and inertia matrix associated with the reference coordinate of the body i, 
aa

iM  represents the modal mass matrix associated with deformation modal coordinates of the body i and ya

iM  

denotes the mass and inertia coupling terms between the reference coordinates and the deformation modal 



coordinates of the body i. iy  is the acceleration vector associated with the reference coordinate of the body i.  i
f  

is the condensed force vector associated with the reference coordinate of the body I, y

if indicates the force vector 

associated with the reference coordinate of the body i, and a

if  denotes the force vector associated with the 

deformation modal coordinates of the body i. 
zΦ denotes the system Jacobian matrix of the condensed system 

model,  N is the coefficient matrix of the Lagrange multiplier λ generated during the condensed process, and γ  

indicates the right hand side vector of the constraint acceleration equations for the condensed system model. 

  After obtaining the acceleration of the floating reference frame and the Lagrange multipliers by solving 

Eq. (1), the acceleration of deformation modal coordinates can be determined using the following Eq. (2) for 

each flexible body. 

 

    
1

T
, ( 1, , )

i

aa a yaT

i i i i i a i n


   a M f M y Φ λ   (2) 

 

It is noted that the aa

iM  can be an identity matrix, if the eigenvalue analysis is applied in the preprocessing stage 

to the modal mass matrix and the modal stiffness matrix obtained from the first dynamic condensation.  Thus, 

the computational cost does not increase much for the modal acceleration of each flexible body.  

   To verify the efficiency of the proposed formulation, we analyzed a ten-body pendulum model.  Each body is 

considered as a flexible body with 20 beam elements.  The simulation results show that the tip positions are the 

same from the conventional method and the proposed method as shown in Fig. 1. The computational complexity 

is also compared to evaluate the efficiency of the proposed method, as shown in Fig. 2.  It is clearly shown that 

the more number of modal coordinates are used, the better efficiency is obtained using the proposed dynamic 

condensation method.  
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Fig. 1: Tip position (y) of 10th pendulum                                      Fig. 2: Computational complecity  

 

References 

[1] S. C. Wu, E. J. Haug and S-S. Kim, “A Variational Approach to Dynamics of Flexible Multibody Systems”, 

Journal of Structural Mechanics, vol. 17, no. 1, pp. 3-32, 1989. 

[2] J. Fehr and P. Eberhard, “Improving the Simulation Process in Flexible Multibody Dynamics by Enhanced 

Model Order Reduction Technique.” in Proceedings of ECCOMAS Thematic Conference, June 29 - July 2, 

Warsaw, Poland, 2009. 

[3] J. G. Kim, P. S. Lee, “An Enhanced Craig-Bampton Method”, International Journal for Numerical Methods 

in Engineering, vol. 103, no. 213, pp. 79-93, 2015. 

[4] J. G. Kim, J-B. Han, H. Lee and S-S. Kim, “Flexible Multibody Dynamics using Coordinate Reduction 

Improved by Dynamic Correction”, Multibody Syst. Dyn, DOI 10.1007/s11044-017-9607-2, 2017. 


