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In engineering applications, one can often assume that the deformations within flexible bodies of a multibody
system remain small, but the overall motion of the system, which is typically described by a co-rotated floating
frame, is highly non-linear. The application of domain decomposition methods to this problem class seems natural,
since each body can be considered as a subdomain. The challenge is then to solve the global non-linear system
efficiently during time integration.

To decompose the global system, one has mainly three possible choices to impose the boundary conditions
or interface transmission: via prescribing the boundary degrees of freedom (dof) leading to a primal formulation
(primal Schur complement methods), or prescribing the interface forces, which leads to a dual formulation (dual
Schur complement methods such as the Finite Element Tearing and Interconnecting (FETI) method[1]). A third
possible formulation is achieved via a combination of the two former approaches, leading to mixed or so called
Robin interface conditions and thus to mixed Schur complement methods, on which we want to concentrate in this
contribution.

In the context of multibody dynamics, this means we need to formulate Robin interface condtions to ensure
the nonlinear kinematic constraints of the mechanical system. Hence, we have to find a linear combination of
compatibility conditions, in which an additional optimizable interface parameter appears which is of the magnitude
of a stiffness matrix and holds information from the neighbouring subdomains. With this, we are able to introduce
additional information about the overall system behaviour into the local subdomain problems. Especially when
solving the subdomain problems in parallel with a nonlinear system solver (i.e. independant of each other) we aim
to accelerate convergence significantly via additional information about the neighbouring subdomains.

In this contribution, we introduce a new variant of our locally nonlinear FETI integrator where we formulate
the mechanical problem with Robin interface conditions resulting in a mixed dual Schur complement method for
the solution of the Newton problems in each timestep. We use an academical test model to compare the new mixed
formulation with the dual one and validate our results numerically.

We consider mechanical systems with equations of motion represented by a system of differential-algebraic
equations (DAE) in index-3-formulation

M(q)q̈+ f(q, q̇)+B(q)Tλ= 0 (1)

g(q, t) = 0 (2)

with dynamic equations (1) and kinematic constraints (2). The vector q collects the generalized coordinates of the
system and the vector of Lagrange multipliers λ represents the constraint forces to enforce the nonlinear constraint
equations (2). B(q) := ∂ g(q)

∂q denotes the non-constant Jacobian matrix and M denotes the symmetric but not
necessarily constant mass matrix.

Applying the generalized-α time integration scheme [2] leads to the following linear system, where iteration
indices n and k correspond to the time and Newton increments, respectively[
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with scaled time stepping matrix Ãk
n+1, tangent stiffness matrix Kk

n+1 and tangent damping matrix Ck
n+1. For the

choice of parameters β̃ , γ̃ see [3].



A decomposition of the global system (1),(2) into Ns substructures is achieved by partitioning the submatrices
of system(3) as follows

Ã := diag(A(1), . . . ,A(Ns)), B := (B(1)| . . . |B(Ns)), ∆q := (q(1), . . . ,q(Ns))T , req := (r(1)eq , . . . ,r
(Ns)
eq )T . (4)

Using a dual formualtion, here the FETI method, leads to the following condensed interface problem on the Newton
updates of the reaction forces ∆λ, which is solved iteratively via a preconditioned Conjugate Gradient method

FI∆λ= d with FI := BÃ−1BT , d :=−BÃ−1req + rcons. (5)

Once a new ∆λ is found, the Newton corrections ∆q are computed locally i.e. independently on subdomain level.
To formulate the problem with Robin interface conditions, define new interface variables µ(s)
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Condensation on the interface gives an explicit equation for the local boundary dof ∆q(s)
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To achieve global consistency, the two constraint equations of equilibrium of constraint forces and interface com-
patibility have to be fulfilled, for simplicity Ns = 2
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Reformulating equations (8),(9) gives together with equation (7) for ∆q(s)
Γ

a new interface problem in mixed form,
which only depends on the new interface variables µ(s)
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The challenge is now to choose the interface impedance QΓΓ appropriately in order to optimize and accelerate con-
vergence of the local iterations in each subdomain. This is not a straightforward task, since it should approximate
the Schur complements of the neighbouring subdomains good enough without beeing too costly to compute (the
Schur complement of the remainder of the whole system would give the solution immediately). A simple approxi-
mation is achieved via a lumped approach, that is taking only into account the parts of the stepping matrices which
correspond to the boundary dof of the neighbouring subdomains.
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