Higher-order acceleration center of rigid body motion

Daniel Condurache
Department. of Theoretical Mechanics, Technical University of Iasi, daniel.condurache @tuiasi.ro

Let be the rigid motion given by the below parametic equation:

$$
\left\{\begin{array}{rl}
\boldsymbol{\rho}_{\mathrm{Q}} & =\boldsymbol{\rho}_{\mathrm{Q}}(t) \tag{1}\\
\boldsymbol{R} & =\boldsymbol{R}(t)
\end{array}, t \in \underline{\mathbf{I}} \subseteq \mathbb{R}\right.
$$

where $\boldsymbol{\rho}_{\mathrm{Q}}=\boldsymbol{\rho}_{\mathrm{Q}}(t) \in \mathbf{V}_{3}$ and $\mathbf{R}=\mathbf{R}(t) \in S \mathbb{O}_{3}$. The spatial twist of the rigid body is defined by the pair of vectors $(\boldsymbol{\omega}, \mathbf{v})$, where:

$$
\begin{gather*}
\boldsymbol{\omega}=\operatorname{vect} \dot{\boldsymbol{R}} \boldsymbol{R}^{\mathrm{T}} \\
\mathbf{v}=\dot{\boldsymbol{\rho}}_{\mathrm{Q}}-\boldsymbol{\omega} \times \boldsymbol{\rho}_{\mathrm{Q}} \tag{2}
\end{gather*}
$$

The n-th order acceleration of that point of the rigid body, located by the position vector $\boldsymbol{\rho}$ and denoted by $\mathbf{a}_{\boldsymbol{\rho}}^{[\boldsymbol{n}]}, n \in \mathbb{N}^{*}$, is

$$
\begin{equation*}
\mathbf{a}_{\boldsymbol{\rho}}^{[\boldsymbol{n}]} \stackrel{\text { def }}{=} \frac{\mathrm{d}^{n} \boldsymbol{\rho}}{\mathrm{~d} t^{n}}=\boldsymbol{\rho}^{(\boldsymbol{n})}=\mathbf{a}_{Q}^{[n]}+\boldsymbol{\Phi}_{\boldsymbol{n}}\left[\boldsymbol{\rho}-\boldsymbol{\rho}_{\mathrm{Q}}\right], n \in \mathbb{N}^{*} \tag{3}
\end{equation*}
$$

where $\mathbf{a}_{Q}^{[n]}$ is the n-order acceleration of the body-fixed point Q and $\boldsymbol{\Phi}_{\boldsymbol{n}}=\boldsymbol{R}^{(\boldsymbol{n})} \boldsymbol{R}^{T}$ represents the n-th order acceleration tensor.

The equation (3) may be written as

$$
\begin{equation*}
\mathbf{a}_{\boldsymbol{\rho}}^{[n]}-\boldsymbol{\phi}_{\boldsymbol{n}} \boldsymbol{\rho}=\mathbf{a}_{Q}^{[n]}-\boldsymbol{\Phi}_{\boldsymbol{n}} \boldsymbol{\rho}_{\mathrm{Q}}, n \in \mathbb{N}^{*} \tag{4}
\end{equation*}
$$

This shows us that the vector function

$$
\begin{equation*}
\mathbf{I}_{n}=\mathbf{a}_{\boldsymbol{\rho}}^{[\boldsymbol{n}]}-\boldsymbol{\Phi}_{\boldsymbol{n}} \boldsymbol{\rho}, n \in \mathbb{N}^{*} \tag{5}
\end{equation*}
$$

has the same value in every point of the rigid body under the general spatial motion, at a given moment of time t. It represents a vector invariant of the n-th order acceleration field.

The invariant value of vector \mathbf{I}_{n} is obtained for $\boldsymbol{\rho}=\mathbf{0}$ and it is the n-th order acceleration of the point of the rigid body that passes the origin of the fixed reference frame at a given moment of time: $\mathbf{I}_{n}=\mathbf{a}_{0}^{[n]} \stackrel{\text { def }}{=} \mathbf{a}_{\mathrm{n}}$. The Eq. (5) becomes:

$$
\begin{equation*}
\mathbf{a}_{\boldsymbol{\rho}}^{[\boldsymbol{n}]}=\mathbf{a}_{\mathrm{n}}+\boldsymbol{\phi}_{\boldsymbol{n}} \boldsymbol{\rho} \tag{6}
\end{equation*}
$$

Let $\boldsymbol{\Phi}_{\boldsymbol{n}}^{*}$ be the adjugate tensor of $\boldsymbol{\Phi}_{\boldsymbol{n}}$ uniquely defined by: $\boldsymbol{\Phi}_{\boldsymbol{n}} \boldsymbol{\Phi}_{\boldsymbol{n}}^{*}=\left(\operatorname{det} \boldsymbol{\Phi}_{\boldsymbol{n}}\right) \boldsymbol{I}$.
From Eq. (5), results another invariant

$$
\begin{equation*}
\boldsymbol{J}_{n}=\boldsymbol{\Phi}_{\boldsymbol{n}}^{*} \mathbf{a}_{\boldsymbol{\rho}}^{[\boldsymbol{n}]}-\left(\operatorname{det} \boldsymbol{\Phi}_{\boldsymbol{n}}\right) \boldsymbol{\rho}, n \in \mathbb{N}^{*} \tag{7}
\end{equation*}
$$

The value of this invariant is $\boldsymbol{J}_{n}=\boldsymbol{\Phi}_{\boldsymbol{n}}^{*} \mathbf{a}_{\mathrm{n}}$.
In the specific case when tensor $\boldsymbol{\Phi}_{\boldsymbol{n}}$ is non-singular ($\operatorname{det} \boldsymbol{\Phi}_{\boldsymbol{n}} \neq 0$), from (6) results the position vector having an imposed n-th order acceleration \mathbf{a}^{*} :

$$
\begin{equation*}
\boldsymbol{\rho}^{*}=\boldsymbol{\Phi}_{n}^{-1}\left(\mathbf{a}^{*}-\mathbf{a}_{\mathrm{n}}\right), n \in \mathbb{N}^{*} \tag{8}
\end{equation*}
$$

In a particular case of the \mathbf{n}-th order acceleration centre G_{n} (i.e. the point that have $\mathbf{a}^{*}=\mathbf{0}$) on obtain:

$$
\begin{equation*}
\boldsymbol{\rho}_{G_{n}}=-\boldsymbol{\Phi}_{n}^{-1} \mathbf{a}_{\mathrm{n}} \tag{9}
\end{equation*}
$$

Assuming that the tensor $\boldsymbol{\Phi}_{\boldsymbol{n}}$ is non-singular, the previous relations lead to a new vector invariant that characterise the accelerations of n-th and m-th order $\left(n, m \in \mathbb{N}^{*}\right)$:

$$
\begin{equation*}
\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}=\mathbf{a}_{\boldsymbol{\rho}}^{[\boldsymbol{m}]}-\boldsymbol{\Phi}_{\boldsymbol{m}} \boldsymbol{\Phi}_{n}^{-1} \mathbf{a}_{\boldsymbol{\rho}}^{[\boldsymbol{n}]}, m, n \in \mathbb{N}^{*} \tag{10}
\end{equation*}
$$

The value of this invariant is $\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}=\mathbf{a}_{\mathrm{m}}-\boldsymbol{\Phi}_{\boldsymbol{m}} \boldsymbol{\Phi}_{n}^{-1} \mathbf{a}_{\mathrm{n}}$.
The problem of the determination the adjugate tensor of the n-th acceleration tensor and the conditions in which these tensors are inversable is, as the autor knows, still an open problem in theoretical kinematics field. We will propose a method based on the tensors algebra that will give a closed form, free of coordinate solution, dependendent to the time derivative of spatial twist.

Let $\boldsymbol{\Phi} \in \mathbf{L}\left(\boldsymbol{V}_{\mathbf{3}}, \boldsymbol{V}_{\mathbf{3}}\right)$ a tensor and we note $\mathbf{t}=\operatorname{vect} \boldsymbol{\Phi}$ and $\mathbf{S}=\operatorname{sym} \boldsymbol{\Phi}$. The below theorem takes place.
Theorem 1. The adjugate tensor and determinant of the tensor $\boldsymbol{\Phi}$ is:

$$
\begin{gather*}
\boldsymbol{\Phi}^{*}=\mathbf{S}^{*}-\widetilde{\mathbf{S t}}+\mathbf{t} \otimes \mathbf{t} \tag{11}\\
\operatorname{det} \boldsymbol{\Phi}=\operatorname{det} \mathbf{S}+\mathbf{t S t}
\end{gather*}
$$

Let $\boldsymbol{\Phi}_{n}$ the n-th order acceleration tensor, $\boldsymbol{\Phi}_{n}=\tilde{\mathbf{t}}_{n}+\mathbf{S}_{n}$.
The vectors \mathbf{t}_{n} and the symmetric tensors $\mathbf{S}_{n}, n \in \mathbb{N}^{*}$ can be obtained with the below recurrence relation:

$$
\begin{gather*}
\left\{\begin{array}{c}
\mathbf{t}_{n+1}=\dot{\mathbf{t}}_{n}+\frac{1}{2}\left[\left(\operatorname{trace} \boldsymbol{\Phi}_{n}\right) \mathbf{I}-\boldsymbol{\Phi}_{n}^{\mathrm{T}}\right] \boldsymbol{\omega} \\
\mathbf{t}_{1}=\boldsymbol{\omega}
\end{array}\right. \tag{12}\\
\left\{\begin{array}{c}
\mathbf{S}_{n+1}=\dot{\mathbf{S}}_{n}+\operatorname{sym}\left(\boldsymbol{\Phi}_{n} \widetilde{\boldsymbol{\omega}}\right) \\
\mathbf{S}_{\mathbf{1}}=\mathbf{0}
\end{array}\right. \tag{13}
\end{gather*}
$$

It follows that:

- Velocity field: $\boldsymbol{\Phi}_{1}=\widetilde{\boldsymbol{\omega}}, \mathbf{t}_{1}=\boldsymbol{\omega}, \mathbf{S}_{\mathbf{1}}=\mathbf{0}$

$$
\begin{gather*}
\boldsymbol{\Phi}_{1}^{*}=\boldsymbol{\omega} \otimes \boldsymbol{\omega} \tag{14}\\
\operatorname{det} \boldsymbol{\Phi}_{1}=0
\end{gather*}
$$

- Acceleration field: $\boldsymbol{\Phi}_{2}=\widetilde{\boldsymbol{\omega}}^{2}+\dot{\tilde{\boldsymbol{\omega}}}, \mathbf{t}_{2}=\dot{\boldsymbol{\omega}}, \mathbf{S}_{2}=\widetilde{\boldsymbol{\omega}}^{2}$

$$
\begin{align*}
\boldsymbol{\Phi}_{2}^{*}= & (\boldsymbol{\omega} \otimes \boldsymbol{\omega})^{2}-\overline{\widetilde{\boldsymbol{\omega}}^{2} \dot{\boldsymbol{\omega}}}+\dot{\boldsymbol{\omega}} \otimes \dot{\boldsymbol{\omega}} \\
& \operatorname{det} \boldsymbol{\Phi}_{2}=-(\boldsymbol{\omega} \times \dot{\boldsymbol{\omega}})^{2} \tag{15}
\end{align*}
$$

- Jerk field: $\boldsymbol{\Phi}_{3}=\ddot{\overrightarrow{\boldsymbol{\omega}}}+2 \dot{\tilde{\boldsymbol{\omega}}} \widetilde{\boldsymbol{\omega}}+\widetilde{\boldsymbol{\omega}} \dot{\overrightarrow{\boldsymbol{\omega}}}+\widetilde{\boldsymbol{\omega}}^{3}, \mathbf{t}_{3}=\ddot{\boldsymbol{\omega}}+\frac{1}{2} \dot{\boldsymbol{\omega}} \times \boldsymbol{\omega}-\boldsymbol{\omega}^{2} \boldsymbol{\omega}, \mathbf{S}_{3}=\frac{3}{2}[\widetilde{\boldsymbol{\omega}} \dot{\tilde{\boldsymbol{\omega}}}+\dot{\tilde{\boldsymbol{\omega}}} \tilde{\boldsymbol{\omega}}]$,

$$
\begin{gather*}
\boldsymbol{\Phi}_{3}^{*}=\frac{9}{4}\left[(\boldsymbol{\omega} \otimes \dot{\boldsymbol{\omega}})^{2}+(\dot{\boldsymbol{\omega}} \otimes \boldsymbol{\omega})^{2}+(\boldsymbol{\omega} \times \dot{\boldsymbol{\omega}}) \otimes(\dot{\boldsymbol{\omega}} \times \boldsymbol{\omega})\right]-\widetilde{\mathbf{S t}_{3}}+\mathbf{t}_{3} \otimes \mathbf{t}_{3} \tag{16}\\
\operatorname{det} \boldsymbol{\Phi}_{3}=\frac{12\left(\mathbf{t}_{3} \times \dot{\boldsymbol{\omega}}\right)\left(\boldsymbol{\omega} \times \mathbf{t}_{3}\right)+27 \boldsymbol{\omega} \cdot \dot{\boldsymbol{\omega}}(\boldsymbol{\omega} \times \dot{\boldsymbol{\omega}})^{2}}{4}
\end{gather*}
$$

The hyper-jerk field $\boldsymbol{\Phi}_{4}$ will be obtained in a similar way.

References

[1] J. Angeles, "Fundamentals of Robotic Mechanical Systems" Springer Verlag, New-York-Berlin-Heidelberg, 1997
[2] J. Angeles, "The Angular Acceleration Tensor of Rigid-Body Kinematics and its Properties", Archive of Applied Mechanics, 69, 204-214, 1999
[3] D. Condurache and M. Matcovschi, "Computation of Angular Velocity and Acceleration Tensors by Direct Measurements", Acta Mechanica, vol. 153, Issue 3-4, pp 147-167, 2002
[4] D. Condurache and M. Matcovschi, "Algebraic Computation of the Twist of a Rigid Body Through Direct Measurements", Computer Methods in Applied Mechanical Engineering, 190/40-41, 5357-5376, 2001

