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The non-vectorial nature of the configuration space of oty systems allows for several equivalent kine-
matic representations, see elgd.[[l| 2,13,14,]5, 6]. For instaa rotation can be represented equivalently by a
3 x 3 orthogonal matrix or a unit quaternion. Similarly, a matican be represented by a paixk 3 orthogonal
matrix - displacement vector, or a unit dual-quaternion.sdechers have adopted one representation over the
others typically because they find it more insightful inte #inematics and more convenient to carry out theo-
retical developments. When it comes to the numerical implgation, a more objective measure of the merit of
a representation can be assessed based on the computeffmiahcy, including the storage and the number of
elementary operations.

One of the most basic operation to be performed for kinemagithe composition of motions. As an intro-
ductory example to the problem of efficiency, consider thmasition of rotations. If the 3 3 orthogonal matrix
representation, denoté&] is adopted, the composition is the matrix product: 9 numbes needed for the storage
of each matrix and the composition of rotations requiresgrations (3 multiplications and 2 additions for each
component 053). In contrast, the unit quaternion representation, dehpteequires 4 numbers for storage and
the composition of rotations, i& = p,op,, can be done with 28 operations (4 multiplications and 3taudi for
each component q_i3). The parametrization of motions is also an important gg@man multibody codes and it is
affected by the kinematic representation. Consider, fetaimce, extracting the rotation operator from the 3 Cayley
parameters. The computation of the 8 3 orthogonal matrix is given bR = (I +&)(1 — &)~ = | + a8+ a&?,
wherea = 2/(1+a' a) andd’is the skew-symmetric matrix built on the components.oThe cost of this evalua-
tion can be optimized to 35 operations. The equivalent urdternion representation is obtainedoas o /2[1;a],
which only requires 11 operations. The unit quaternionesgntation is thus computationally more efficient for
the composition and Cayley-parametrization of rotatidtesvertheless, other operations involving rotations might
be used in a general purpose code. For instance, considestétion of a three-dimensional vectar With the
matrix representation, this operation is straightforwds, and can performed with 15 operations (3 multiplica-
tions and 2 additions for each component of the rotated yeclhe unit quaternion representation, however, is
more complicated, requires intermediate variables an@mperations (an optimized implementation would use 3
intermediate numbers and 51 operations). Table 1 summsahealiscussion above. The choice of a representation
towards an efficient implementation depends on the type mgiéncy of operations needed in typical numerical
simulations.

Representation | Composition of rotationg Cayley map| Rotation of a vector
3 x 3 orthogonal matriR 45 35 15
unit quaternionp 28 11 51

Tab. 1: Number of operations

In this work, we propose to study several representatiomstafions and motions and report their computation
efficiency for the simulation of realistic flexible multibpgystems. In the pursuit of computation efficiency, the
current work relies on a local frame, global parametrizafi@e framework that the authors and their co-workers
have been developing[7,[8,[9,/10] 11]. A key aspect of thiménaork is the reduction of kinematic non-linearities
affecting the equilibrium equations. The most basic opamatto be performed are the compositions of motions and
the local parametrizations. Indeed, such operations aéateto compute the element matrices relative motions
in kinematic joints and flexible joints. In addition to thengposition of motions, the time integration method and



the finite element discretization require a local pararration of the motion increments and the relative motions
within the elements, respectively.

References

[1] O. BauchauFlexible Multibody Dynamics. Dordrecht, Heidelberg, London, New-York: Springer, 2011

[2] M. Borri, L. Trainelli, and C. Bottasso, “On represerdais and parameterizations of motiomultibody Systems
Dynamics, vol. 4, pp. 129-193, 2000.

[3] M. Géradin and A. Cardondlexible Multibody System: A Finite Element Approach. New York: John Wiley & Sons,
2001.

[4] J. Angeles,Fundamentals of Robotic Mechanical Systems. Theory, Methods, and Algorithms. New York: Springer-
Verlag, 1997.

[5] J. Selig,Geometric Fundamentals of Robotics. Monographs in computer science, New York: Springer, 2005.

[6] A. Miller, “Group theoretical approaches to vector graeterization of rotationsJournal Of Geometry and Symmetry
in Physics, vol. 19, pp. 43-72, 2010.

[7]1 M. Brils, O.and Arnold and A. Cardona, “Two Lie group foulations for dynamic multibody systems with large
rotations,” inProceedings of the IDETC/MSNDC Conference, (Washington D.C.), August 2011.

[8] O. Briils, A. Cardona, and M. Arnold, “Lie group generald-al phatime integration of constrained flexible multibody
systems,'Mechanism and Machine Theory, vol. 48, pp. 121-137, February 2012.

[9] V. Sonneville, A. Cardona, and O. Briils, “Geometrigakact beam finite element formulated on the special Euatide
group SE(3),Computer Methodsin Applied Mechanics and Engineering, vol. 268, no. 1, pp. 451-474, 2014.

[10] V. Sonneville and O. Brills, “A formulation on the spaldeuclidean group for dynamic analysis of multibody systém
Journal of Computational and Nonlinear Dynamics, vol. 9, no. 4, 2014.

[11] V. Sonneville and O. Bauchau, “Parallel implementataf comprehensive rotor dynamics simulation based on the
motion formalism,” inAmerican Helicopter Society 53th Annual Forum Proceedings, (Fort Worth, Texas, USA), May
9-11 2017.



