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This work presents a computational environment for dynamic simulations of flexible Multibody Systems
(MBS) using polygonal finite elements mesh. Recent works in topology optimization ([1], [2], [3]) have shown
that polygonal elements can be very useful in numerical analysis since they provide great flexibility in discretizing
complex domains and they are computationally very efficient when compared to conventional simplex elements
(eg., triangles and quads)1. To the best of author’s knowledge this kind of elements have not been used before for
MBS simulations. Two problems will be addressed: the first one consists of two plate bodies in a vertical plane x-y
with a point mass in the tip and two rotational joints with z-axis degree of freedom as shown in the Fig. 1a. The
second problem involves adding angle motors to each joint such that the same time-dependent angle is imposed to
each rotational joint.

Both problems comprise the analysis of flexible multibody systems composed of plates in plane stress state,
subject to large displacements and small deformations. For simplicity, the material constitutive relationship is
chosen as linear. The 2D elements are subject to stretching and bending and the point mass has no rotational
effects2.

The methodology used here to solve these problems follows the variational approach for a constrained MBS as
stated in ([5]), ([6]) and ([7]). The flexible MBS can be modeled as a set of discretized bodies represented by a set
of n generalized coordinates q, satisfying the following set of m holonomic constraints

φ(q, t) = 0, (1)

The Lagrangian function L that relates the kinetic K , potential V and the deformation W energies can be
written as

L (q, q̇) = K (q, q̇)−V (q)−W (q) . (2)

The vector holding the nodal displacements q (t) is obtained by solving the variational problem

δ

∫ t2

t1

(
L −λTφ

)
dt = 0. (3)

where λ is a vector of Lagrange multipliers that take into account the geometrical constraints amongst the bodies.
After integrating Eq. (3), a differential-algebraic system of equations (DAE) is obtained as

M (q) q̈+ggyr (q, q̇)+gint (q)−gext (q)+φT
q (q, t)λ= 0 (4)

φ(q, t) = 0, (5)

where ggyr = ∂K /∂q, gint = ∂W /∂q, gext =−∂V /∂q,M is the mass matrix, φq (q, t) = ∂φ/∂q and the force
vectors are gathered into g = ggyr +gint −gext .

In order to solve this continuous system of equations, Eq. (4) is expressed as a residual r =Mq̈+ g+
φT
qλ, whose solution is q (t), λ(t). The time is discretized into equal steps and we assume that initial conditions

1Moreover, since the next step of the present research is to apply topology optimization techniques to minimize the overall weight of
the multibody systems and for this purpose polygonal elements in topology optimization has proven to be ([1], [2], [3]) more efficient when
compared to conventional elements and prevents the formation of anomalies such as checker boarding pattern or single node connections,
we decided use polygonal elements in this work.

2The natural three dimensional extension for the polygonal elements are the polyhedral elements. These 3D elements have successfully
been used for solving static problems in the context of topology optimization applications [4].



q0, q̇0, q̈0,λ0 are given. The solver attempts to minimize both r and φ, according to a prescribed numerical
tolerance and this is accomplished by integrating Eq. (4) using the generalized-α method ([8]) with the Newton
linearization scheme. Additionally, it should be noticed that high index DAE numerical solutions are polluted by
perturbations due to finite arithmetic precision when small time steps are chosen. Thus a preconditioning scheme
is necessary. In this work we use the method described in ([9]) is used.

The methodology used here is implemented in the MATLAB programming environment and the two problems
are also validated using the ANSYS Workbench software, for gaining insight and confidence. The deformed plates
for the first problem, at two different time steps are shown in Fig. 1b.

Fig. 1: (a) Two vertical flexible plates with two joints and a mass (units in mm). (b) Deformed plates at two different time steps.

References
[1] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes, “Polymesher: a general-purpose mesh generator for polygo-

nal elements written in matlab,” Structural and Multidisciplinary Optimization, 45(3):309-328, 2012.

[2] C. Talischi, G. H. Paulino, A. Pereira, and I. F. Menezes, “Polytop: A matlab implementation of a general topology opti-
mization framework using unstructured polygonal finite element meshes,” Struct. Multidiscip. Optim., vol. 45, pp. 329–
357, Feb. 2012.

[3] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes, “Polygonal finite elements for topology optimization: A
unifying paradigm,” International Journal for Numerical Methods in Engineering, vol. 82, no. 6, pp. 671–698, 2010.

[4] A. L. Gain, G. H. Paulino, L. S. Duarte, and I. F. Menezes, “Topology optimization using polytopes,” Computer Methods
in Applied Mechanics and Engineering, vol. 293, pp. 411 – 430, 2015.

[5] M. Geradin and A. Cardona, Flexible Multibody Dynamics: A Finite Element Approach. Wiley, 2001.
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