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Feedforward control of a crane manipulator
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Crane manipulators are appropriate for handling large and heavy payloads in space. The application standing
behind the present investigation is three-dimensional cold forming of steel or aluminium plates by means of so-
called ship building presses. For appropriate positioning of the workpiece under the press table it is suspended by
four chain hoists of an overhead or gantry crane with two bridges each with two trolleys (Fig. 1a). The bridges,
trolleys and chain hoists are independently controllable with coordinates yi, xi j, si j, i, j ∈ {1,2} to achieve the
desired workpiece position. Passive degrees of freedom are the sway angles ϕi j, ψi j of the chain hoist units that
are swivel-suspended under the trolleys, the six rigid-body degrees of freedom of the plate due to the spring travels
of the four lifting attachments and the sway motion of the plate and elastic plate deformations, in Fig. 1a described
by the torsion coordinate w belonging to the shape function of a plate with four point-like supports. A basic task
for crane control is to move the plate from a given rest position into another desired rest position without residual
sway motions by means of synchronized actuation of the drives.

For the special case of a motion between two horizontal rest positions of the plate in y-direction at different
heights z, the two bridge coordinates yi(t) as well as the four chain lengths si j(t) are synchronized. Here the
problem can be reduced to the control of the double pendulum (sway angles ϕ = [ϕ1 ϕ2]

T) shown in Fig. 1b.
The upper pendulum body (length lH, mass mH, inertia moment θH) corresponds to the hoist units, and the lower
mass-point pendulum represents load mass mL with neglected chain mass. The overall pendulum length lC is the
sum of the chain length and the constant travel of the attachment springs in the static equilibrium. Dynamic travel
of the springs during motion is neglected as it is assumed to be approximately decoupled from the sway motion.
The trolley coordinate y(t) and pendulum length lC(t) are kinematically prescribed. The equations of motion of
the system are

M(ϕ, t)ϕ̈= k(ϕ,ϕ̇, t)+B(ϕ) ÿ (1)

with the explicit time dependence in M and k resulting from the prescribed function lC(t).
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Fig. 1: Idealized crane models. a Crane manipulator with four chain hoists. b Double pendulum crane.



The objective is to find feedforward controls y(t) and lC(t) that move the load mass within the time inter-
vall [0,T ] from a rest position at yL(0) = y(0) and zL(0) = lH + lC(0) into a desired rest position at yL(T ) = y(T )
and zL(T ) = lH + lC(T ). Analysis of the equations of motion (1) shows that a flat output being much favourable
for feedforward control design [1, 2] cannot be achieved due to the rotational inertia of the hoist units. This issue is
also discussed in [3]. An approach for solving the control task that is relatively flexible with respect to the structure
of the underlying equations of motion is described in [4]. Here a time trajectory of the actuated coordinate y(t) is
calculated in such a way that the boundary conditions

y(0) = 0 , ẏ(0) = 0 , y(T ) = yT , ẏ(T ) = 0 , (2)

ϕ(0) = 0 , ϕ̇(0) = 0 , ϕ(T ) = 0 , ϕ̇(T ) = 0 , (3)

according to the desired initial and final rest positions are fulfilled. Hereby a smooth transition of the pendulum
length between the rest position values lC(t) from lC(0) into lC(T ) is prescribed.

A solution is obtained by defining a shape function for y(t) that fulfills the boundary conditions (2) and in-
cludes four additional design parameters pi to fulfill the boundary conditions (3). A possible shape function is the
polynomial form [4]
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It fulfills the initial condition y(0) = 0 in (2) and contains five parameters a1, . . . ,a5 to meet the three other initial
conditions in (2) and the additional conditions ÿ(0) = ÿ(T ) = 0 in order to achieve continuous trolley acceleration
at t = 0 and t = T . By this the parameters a1, . . . ,a5 are expressed in terms of the four remaining design parameters
p1, . . . , p4. These parameters are then determined in such a way that the equations of motion (1) with ÿ(t) expressed
by the second-order time derivative of (4) fulfill the four boundary conditions in (3) at t = T . This boundary value
problem is numerically solved by means of the Matlab function bvp4c. The trolley motion y(t) and their time
derivatives ẏ(t), ÿ(t) are reference functions for the motion controller of the trolley.

For the parameters lH = 0.5m, mH = 100kg, mL = 200kg, θH = 15kg m2, T = 4s, y(T ) = 0.1m Fig. 2 shows
the time trajectories of trolley motion variables y(t), ẏ(t), ÿ(t), sway angles ϕ1(t), ϕ2(t) and pendulum length lC(t).
The transition from lC(0) = 3m to lC(T ) = 2.9m is interpolated by a prescribed smooth polynomial function.

While feedforward control is intended to contribute the major part of the control signal, model incertainties and
disturbances are to be compensated by an additional feedback controller. Together with control of spatial motions
this is part of ongoing work.
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Fig. 2: Time trajectories of trolley motion variables y(t), ẏ(t), ÿ(t), sway angles ϕ1(t), ϕ2(t) and pendulum length lC(t).
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