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In order to study dynamics of flapping wing moving at low Reynolds number in ambient fluid, we adopt 

geometric modelling approach of fully coupled wing-fluid system, incorporating Boundary Integral Method for 

calculating added masses, and Lie group rigid body integrator. Our aim is to explore numerical advantages of such 

an approach in comparison to the standard procedures that comprise volume discretization of a fluid domain. The 

configuration space of a flapping wing is modelled as a Lie group 

𝐺 = ℝ2 × 𝑆𝑂(2) (1) 

with the elements of the form 𝑝 = (𝑥, R). The left multiplication in the group is given as 𝐿𝑝:𝐺 → 𝐺, 𝑝 → 𝑝 ⋅ 𝑝, 

where the identity element of 𝐺 is defined by 𝑒 = (𝟎, I) where 𝟎 and I are null and identity matrices, respectivelly. 

With 𝐺 so defined, its Lie algebra with the element 𝑣 comprising wing velocities ('linear' and angular) is given as 

[1] 

𝑔 = ℝ2 × 𝑠𝑜(2). (2) 

By assuming potential flow of an ideal fluid - i.e. inviscid, incompressible fluid with irrotational flow - the 

configuration space of the coupled wing-fluid system is reduced by eliminating fluid variables via symplectic and 

Lie-Poisson two stages reduction [2, 3], identifying configuration space with 𝐺 and reducing dynamics to 𝑔* (dual 

to 𝑔). The first reduction exploits particle relabeling symmetry, associated with the conservation of circulation for 

incompressible ideal fluid (fluid kinetic energy, fluid Lagrangian and associated momentum map are invariant 

with respect to this symmetry [4]). Consequently, the equations of motion for the whole system can be formulated 

without explicitly incorporating the fluid variables [5]. The effect of the fluid flow to the wing overall dynamics is 

accounted for by the added masses [6], and - as a result - the system is parameterized via 𝑝 and 𝑣 only. In such 

approach, the added masses are expressed as boundary integral functions [7] of the fluid density and velocity 

potentials that are, in turn, functions of 𝑝 and 𝑣. After particle relabeling symmetry, further reduction is associated 

with the invariance of the dynamics under superimposed rigid motions. 

The two test cases will be considered here. First test case is an example of the wing with a blunt edge, 

submerged in an ideal fluid, which is at rest at the infinity. At any time t, rigid wing and fluid occupy an open 

connected region ℳ of the Euclidean space, identified here with ℝ2. More specifically, the body occupies region 

ℬ and the fluid occupies a connected region ℱ ⊂ ℳ such that ℳ can be written as a disjoint union of open sets 

as ℳ = ℬ ∪ ℱ. As the region ℱ is connected and flow is irrotational, the velocity field v can be expressed in terms 

of a potential v = ∇𝜙 and incompressibility implies that the Laplacian of 𝜙 is zero [4], i.e. Δ𝜙 = 0 in ℱ. 

Furthermore, with a prescribed velocity on the boundaries, Neumann problem for the Laplace equation can be 

formulated and boundary conditions numerically imposed [8] 

∇𝜙 ⋅ 𝑛 = v ⋅ 𝑛  on  𝜕ℬ, 

Δ𝜙 = 0  at  ∞. 

(3) 



Another test case that will be presented is a wing-fluid system that includes rigid wing with sharp edge. Here, in 

order to account for important effects of vorticity in the fluid flow around the wing, the vortices will be shed from 

the sharp edge by enforcing a Kutta condition in every time step [9, 10]. 

With the aim of dynamics integration of a rigid wing immersed in ambient fluid, Lie group integrator that 

operates in state space [1] will be used. To this end, rigid wing state space is introduced as  

𝑆 = 𝐺 × 𝑔  i.e. 𝑆 = ℝ2 × 𝑆𝑂(2) × ℝ2 × 𝑠𝑜(2) ≅ 𝑇𝐺. (4) 

This is a Lie group itself that possesses Lie algebra 

𝑠 = ℝ2 × 𝑠𝑜(2) × ℝ2 × ℝ2. (5) 

As it is shown in [1], DAE-index-1 Lie group integrator can be utilized for dynamics integration in such a setting. 

This type of integrator, but supplemented with the added masses determination procedure based on the properties 

of fluid flow, will be used for solving dynamics of the flapping wing test cases. 
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