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Multiscale simulations combine phenomena at various length and time scales and often suffer from reduced
numerical precision and integration times dictated by the smallest phenomena modeled. For example, investigators
interested in folding patterns of biopolymers may require micro- or milliseconds worth of data, but these phenom-
ena are often driven by even smaller pico- and nanosecond dynamics [1]. A full resolution atomistic model would
require small integration steps, often on the order of femtoseconds, to fully capture the “natural” motion of the
modeled bodies.

Multiscale modeling methods attempt to address this problem through various approaches: static and dynamic
coarse graining [2, 3], serial methods [4], and concurrent methods [5]. The goal of these methods is a reduction in
the computation time needed to generate time evolutions. This reduction is achieved by either increasing integration
step size or reducing the cost of the forward dynamics.

Our prior works have presented a multiscale method for the continuum regime that allows for bodies at various
scales to be modeled together but defined and integrated at the larger scale [6, 7, 8]. A key component of this
method is the identification of large active and dissipative forces responsible for high frequency behavior but are
not significant contributors to overall response. These forces are eliminated from the dynamics using a scaling
factor a2, allowing resultant accelerations to be significantly smaller. Application of this multiscale method leads
to the scaled equation of motion for the general multibody case:

M(q) q̈ + C(q̇,q) + a2 β D(q) q̇ = a2 ΓΓΓ (1)

where M is the mass matrix, q, q̇, and q̈ are the generalized coordinates and time derivatives, C is the nonlinear
accelerations, β is a characteristic damping term, D is a matrix mapping the damping terms, and ΓΓΓ is the generalized
active forces.

Scaled system results are then compared to the unscaled case to ensure the scaling procedure did not signif-
icantly affect the final predicted states. Testing showed the scaled system better matched empirical data than the
unscaled system and generated the results in significantly less time. However, this formulation assumed that the
scaling factor - the portion of forces that may be removed - was a constant.

In the modeling of biopolymers, driving forces are often electropotential in nature and can be modeled with
a combination of Coulomb and Lennard-Jones terms. More advanced and/or specific potential formulations have
been devised [9, 10] and are derivatives of the low-level particle-particle interactions. The forces resulting from
these potential interactions decay exponentially with increasing distance and may not always be large enough to
satisfy the assumptions made in the derivation of our established multiscale method. However, small but persistent
potential attractive forces between two distant bodies can over time produce significant work, resulting in dramatic
changes in the order of these forces. Our established multiscale method does not make allowances for active forces
whose magnitude changes over several orders. Assuming the contributing forces can be constantly scaled when
the magnitudes vary greatly can lead to results inconsistent with the unscaled case.

This work proposes a means of adaptively scaling the portions of the active and dissipative forces that are
considered non-contributing. The scaling factor a2 then becomes a function of time and must be re-evaluated
throughout the simulation. As active forces change in magnitude, the scaling factor can be updated to reflect the
current state of contribution. The new scaled equation of motion is then:

M(q) q̈ + C(q̇,q) + a2 β D(q) q̇ = a2 ΓΓΓC + a∗2 ΓΓΓP (2)

where a∗2 denotes the time variant scaling factor and the subscripts C and P denote conformational and potential
active forces, respectively. It is expected that the conformational and dissipative forces remain significantly large



enough throughout the simulation to justify the constant scaling factor a2 while the time variant term a∗2 is ap-
plied only to the varying potential forces. This approach allows small potential forces to remain unscaled while
maintaining the scaling on the remaining large non-contributing forces. Once the potential forces have increased
in magnitude significantly, those forces will be similarly scaled. In this manner, the computational savings are
conserved and the work done by the potential forces still produces results consistent with the unscaled case.

This adaptive approach does however introduce new problems that must be addressed, such as the effects of
scaling potential forces on energy calculation. As the potential energy of an interaction is the anti-derivative of
the force, scaling the force also implies that the energy must similarly be scaled. For a constant force scaling, this
energy scaling is not a significant problem - the scaled and unscaled systems will simply have differing amounts
of energy. Adaptive scaling however leads to discontinuities in the amount of potential energy calculated. In
this work, we confirm dynamic consistency in the scaled system by calculating the work done W by both the
generalized active and dissipative forces. These work calculations are then combined with the kinetic energy T to
show a system wide constant:

T − Wβ − WC − WP = constant (3)

where the subscripts β , C, and P denote the work done by dissipative, conformational, and potential forces, re-
spectively.

The system selected for testing this proposed adaptive multiscale method is a nanoparticle conjugated with
GP1b ligands interacting with endothelial Von Willebrand factor proteins. These nanoparticles have been shown
to bind to endothelial cells preferentially over platelets and are a promising scaffold for in situ tissue regeneration
[11]. As these nanoparticles are carried through the blood plasma, they will naturally come within interaction
range of the target proteins, though not necessarily close enough for the potential forces to satisfy the established
multiscale analysis. This model then is ideal for testing the adaptive method proposed in this work.
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