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Machining is an essential and critical part of production processes in industry. Designing efficient processes,
reduced cycle times and consequently reduced costs can be attained for instance by high material removal rates.
High material removal rates in turn may yield high amplitude vibrations resulting in unacceptable surface quality
of the workpieces and additional tool wear or even yield unstable processes resulting in damaged cutting tools and
machine tools.

Time-delayed systems are used for mathematical modeling of the surface regeneration of the workpiece which
may lead to an instability called chatter. For milling processes these systems are periodic and frequently in addition
non-smooth. Periodicity of systems can cause dynamic instabilities as well. Based on Floquet theory, the stability
can be analyzed by an eigenvalue analysis of an approximated transition matrix by time discretization. If all
eigenvalues of the discrete system are located inside of the unit circle in the complex plane, the system is stable.

Stability lobe diagrams, representing the stability limit in dependency of machining parameters such as spindle
speed Ω and axial immersion and the specific cutting-force coefficient H respectively, are employed for the choice
of appropriate operating points. For this purpose, the magnitude of the critical eigenvalue λ1 can be evaluated on a
full grid and, subsequently, the implicitly defined stability limit can be interpolated.

Efficient calculation schemes for stability lobe diagrams in the literature are based on bisection [1] or curve
tracking as marching squares [2], both acting on regular grids, or continuation methods based on circular search
[3, 4], for instance. If the time-delay system is smooth, software packages are available, see [5, 6]. These software
packages are capable of continuation methods using Newton’s iteration.

There are typical characteristics in stability limits which complicate the calculation: singular points and near-
branch zones where the stability limit almost intersects with itself, see Fig. 1 and for a detailed description [4].
However, using the semi-discretization method (SDM) for stability analysis, which is capable of handling non-
smoothness, these algorithms in literature are exclusively based on the magnitude of the critical eigenvalue

f1(Ω,H) = |λ1(Ω, H)|−1 = 0 (1)

Figure 1 depicts a typical stability lobe diagram of machining processes. Here exemplary a single-degree-of-
freedom model is applied with full-immersion, for detailed information see [7]. Beginning on the right-hand side,
a Flip lobe can be identified, followed by three Hopf lobes, a Flip lobe and so on. At the stability limit of a Flip
lobe, the critical eigenvalue can be located at λ1 =−1, in case of a Hopf lobe complex conjugated eigenvalues are
located at |λ1,2|= 1 with ℑ(λ1,2) 6= 0.

At singular points, where two lobes intersect, at least two eigenvalues are located at the unit circle in the com-
plex plane, thus, these points may be defined by two linearly independent equations using for several eigenvalues
or the real and the imaginary component of the critical eigenvalue.

In addition, eigenvalue analysis provides eigenvalues and their associated eigenvectors, hence, a specified
eigenvalue can be tracked during an operation. For this purpose, the eigenvalue to be tracked can be identified by
its associated eigenvector using the modal assurance criterion, for instance.

Furthermore, derivatives of eigenvalues of the approximated transition matrix obtained by semi-discretization
can be calculated resulting in

∆ fi(Ω,H) =
[

∂λi(Ω,H)
∂Ω

∂λi(Ω,H)
∂H

]
. (2)

Consequently, the calculation of the implicitly defined stability limit

F = { (Ω, H) | f (Ω, H) = 0 } (3)
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Fig. 1: Stability lobe diagram of full-immersion milling with a single-degree-of-freedom model in the space of the technological parameters spindle speed
Ω and specific cutting-force coefficient H, for details see [7]

can be enhanced by the additional information or can be done by another class of methods such as continuation
methods using derivatives, for example based on the implicit function theorem [8]. Furthermore, approaches in
uncertainty quantification of machining processes, see [9], based on optimization schemes may be enhanced as
well.
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