BLieDF2 $^{\text {nd }}-$ a k-step BDF integrator for constrained mechanical systems on Lie groups

Victoria Wieloch ${ }^{1}$ and Martin Arnold ${ }^{1}$
${ }^{1}$ Institute of Mathematics Martin Luther University Halle-Wittenberg, Germany, \{victoria.wieloch,martin.arnold\}@mathematik.uni-halle.de

Configuration spaces with Lie group structure address the inherent nonlinearity of multibody system models with large rotations. Brüls and Cardona [1] have shown how to avoid time-consuming re-parametrizations of the Lie group in generalized- α time integration. After a short transient phase, the Lie group generalized- α method achieves global second-order accuracy for unconstrained as well as for constrained systems [2]. It may be implemented efficiently following a Lie algebra approach [1, 3] that substitutes traditional updates of configuration variables in the (nonlinear) Lie group by updates of solution increments in a linear space.

In the present paper, we discuss the extension of this approach to multi-step methods of BDF type which are the methods-of-choice in most industrial multibody system simulation packages [4]. BLieDF2 ${ }^{\text {nd }}$ is a k-step Lie group integrator for second order systems that avoids order reduction by a slightly perturbed argument of the exponential map for representing the nonlinearity of the numerical flow in the configuration space. For constrained systems, $\mathrm{BLieDF}^{\text {nd }}$ is combined with the index-3 formulation of the equations of motion [4]. We prove convergence with order $p=k$ in all solution components for $\mathrm{BLieDF} 2^{\text {nd }}$ with $2 \leq k \leq 4$ and illustrate the theoretical investigations by numerical tests for unconstrained and constrained versions of the heavy top benchmark.

BDF and the update of solution increments BDF are k-step methods that are zero-stable for $k \leq 6$ and achieve global order of accuracy $p=k$. For ODEs $\dot{\mathbf{x}}=\mathbf{f}(t, \mathbf{x})$, the numerical solution \mathbf{x}_{n+1} at $t=t_{n+1}=t_{n}+h$ is defined implicitly by the corrector equations

$$
\begin{equation*}
\frac{1}{h} \sum_{i=0}^{k} \alpha_{i} \mathbf{x}_{n+1-i}=\mathbf{f}\left(t_{n+1}, \mathbf{x}_{n+1}\right) \tag{1}
\end{equation*}
$$

with h denoting the (fixed) time step size and algorithmic parameters $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$ satisfying $\sum_{i} \alpha_{i}=0$. In this classical form (1), the multi-step method can not be applied to the Lie group setting since there are no linear combinations $\sum_{i} \alpha_{i} \mathbf{x}_{n+1-i}$ in a nonlinear configuration space. Therefore, we transform (1) to an equivalent formula in terms of solution increments resulting in the one-step update

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{x}_{n}+h \Delta \mathbf{x}_{n} \tag{2a}
\end{equation*}
$$

with a vector $\Delta \mathbf{x}_{n}$ that is defined implicitly by the new corrector equations

$$
\begin{equation*}
\sum_{i=1}^{k} \gamma_{i} \Delta \mathbf{x}_{n+1-i}=\mathbf{f}\left(t_{n+1}, \mathbf{x}_{n+1}\right) \text { with } \gamma_{1}:=\alpha_{0} \text { and } \gamma_{i}:=\sum_{j=0}^{i-1} \alpha_{j}, \Delta \mathbf{x}_{n+1-i}:=\frac{\mathbf{x}_{n+2-i}-\mathbf{x}_{n+1-i}}{h},(i=2, \ldots, k) . \tag{2b}
\end{equation*}
$$

BLieDF2 ${ }^{\text {nd }}$ We consider constrained systems being described by a 2 nd order DAE on a Lie group G :

$$
\begin{align*}
\dot{q} & =D L_{q}(e) \cdot \widetilde{\mathbf{v}} \tag{3a}\\
\mathbf{M}(q) \dot{\mathbf{v}} & =-\mathbf{g}(q, \mathbf{v}, t)-\mathbf{B}^{\top}(q) \lambda, \tag{3b}\\
\Phi(q) & =\mathbf{0} \tag{3c}
\end{align*}
$$

with configuration variables $q \in G$, velocity coordinate $\mathbf{v} \in \mathbb{R}^{k}$, Lagrange multipliers $\boldsymbol{\lambda}$, mass matrix \mathbf{M}, force vector \mathbf{g}, holonomic constraints $(3 \mathrm{c})$, constraint gradients $\mathbf{B}(q)$, the tilde operator $\widetilde{(\bullet)}: \mathbb{R}^{k} \rightarrow \mathfrak{g}$ with Lie algebra \mathfrak{g} and directional derivative of the left translation $D L_{q}(e): \mathfrak{g} \rightarrow T_{q} G, \widetilde{\mathbf{v}} \mapsto D L_{q}(e) \cdot \widetilde{\mathbf{v}}$ in e along $\widetilde{\mathbf{v}}$, see [1].

Following the Lie algebra approach [3], the kinematic equations (3a) are discretized by a (nonlinear) Lie group version of (2a) with solution increments $\Delta \mathbf{q}_{n} \in \mathfrak{g}$ in a linear space. Instead of time-consuming re-parametrizations of the configuration space, we just use exponential map exp : $\mathfrak{g} \rightarrow G$ and Lie group operation $\circ: G \times G \rightarrow G$:

$$
\begin{align*}
q_{n+1} & =q_{n} \circ \exp \left(h \widetilde{\Delta \mathbf{q}_{n}}\right) \tag{4a}\\
\sum_{i=1}^{k} \gamma_{i} \Delta \mathbf{q}_{n+1-i} & =\mathbf{v}_{n+1}+h^{2} \mathbf{L}_{k}\left(\mathbf{v}_{n}, \mathbf{v}_{n-1}, \ldots, \mathbf{v}_{n-k} ; h\right) \tag{4b}\\
\frac{1}{h} \mathbf{M}\left(q_{n+1}\right) \sum_{i=0}^{k} \alpha_{i} \mathbf{v}_{n+1-i} & =-\mathbf{g}\left(t_{n+1}, q_{n+1}, \mathbf{v}_{n+1}\right)-\mathbf{B}^{\top}\left(q_{n+1}\right) \lambda_{n+1} \tag{4c}\\
\Phi\left(q_{n+1}\right) & =\mathbf{0} \tag{4d}
\end{align*}
$$

(details of initialization [4] are omitted because of space limitations). Note the correction term $h^{2} \mathbf{L}_{k}$ in the increment update (4b) that was introduced to avoid order reduction. Without this correction term, the order of convergence may drop to $p=\min \{k, 2\}$ as can be seen by the numerical test results in the upper left plot of Fig. 1 . ("brute force approach"). Guided by the convergence analysis, we define

$$
\begin{equation*}
\mathbf{L}_{2} \equiv \mathbf{0} \quad \text { and } \quad \mathbf{L}_{3}=\mathbf{L}_{3}\left(\mathbf{v}_{n}, \mathbf{v}_{n-1}, \mathbf{v}_{n-2} ; h\right):=\frac{1}{12} \hat{\mathbf{v}}_{n} \dot{\mathbf{v}}_{n} \quad \text { with } \quad \dot{\mathbf{v}}_{n}:=\frac{3 \mathbf{v}_{n}-4 \mathbf{v}_{n-1}+\mathbf{v}_{n-2}}{2 h} \tag{5}
\end{equation*}
$$

with the hat operator representing a matrix commutator in the sense of $\widetilde{\hat{\mathbf{v}}_{n} \dot{\mathbf{v}}_{n}}=\left[\widetilde{\mathbf{v}}_{n}, \widetilde{\mathbf{v}}_{n}\right]$. The formal proof of global accuracy of order $p=k$ for $\mathrm{BLieDF}^{n d}$ with $k \leq 3$ is nicely illustrated by the numerical test results for unconstrained and constrained versions of the heavy top benchmark [1], see Fig. 1.

Fig. 1: BLieDF2 ${ }^{\text {nd }}$ for the heavy top benchmark [1]. Upper plots: unconstrained formulation with $\mathbf{L}_{k} \equiv \mathbf{0}$ (left plot, "brute force approach") and with \mathbf{L}_{k} according to (5) (right plot). Lower plots: constrained formulation (left plot: error in q, right plot: error in $\boldsymbol{\lambda}$).

References

[1] O. Brüls and A. Cardona, "On the use of Lie group time integrators in multibody dynamics," J. Comput. Nonlinear Dynam., vol. 5, p. 031002, 2010.
[2] O. Brüls, A. Cardona and M. Arnold, "Lie group generalized- α time integration of constrained flexible multibody systems," Mechanism and Machine Theory, vol. 48, pp. 121-137, 2012.
[3] M. Arnold, A. Cardona and O. Brüls, "A Lie algebra approach to Lie group time integration of constrained systems," in Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics (P. Betsch, ed.), vol. 565 of CISM Courses and Lectures, pp. 91-158, Cham: Springer International Publishing, 2016.
[4] M. Arnold, B. Burgermeister, C. Führer, G. Hippmann and G. Rill, "Numerical methods in vehicle system dynamics: State of the art and current developments," Vehicle System Dynamics, vol. 49, pp. 1159-1207, 2011.

