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Bicycle is a typical multibody system with nonholonomic constraints. Many scholars have investigated bicycle
dynamics and made a series of important achievements since the end of the 19th century. The stabilities of the
straight motions and circular motions of an uncontrolled bicycle moving on a flat level road have been studied
widely in history [1, 2, 3]. However, the existing studies focus on a special case where the ground was limited to a
horizontal plane. In this paper, we study the dynamics of a bicycle moving on a surface of revolution, and analyze
the stabilities of its circular motions.

Our analysis was based on the benchmark Whipple bicycle model (see Fig.1), which is a multi-rigid-body
system consisting of four rigid bodies: a rear wheel, a rear frame with the rider body rigidly attached to it, a front
wheel and a front frame consisting of the fork and the handlebar. Nine generalized coordinates are needed to
describe the configuration of an unconstrained bicycle.
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Fig. 1: The benchmark Whipple bicycle in a upright, straightreference configuration (a figure adapted from [4]).

We assume that the ground can be mathematically described asz = f (x2+ y2) in an inertial coordinate frame,
corresponding to a surface of revolution. The constraints induced by the contact interactions are closely related
to the surface shapes and the motions of two contacting bodies. To study the evolutions of the contact points
with respect to time, we introduce two curve parameters identifying the points on the edge of the rear and the front
wheel, and four surface parameters identifying the points on the ground. Under the condition that no slippage exists
between the wheels and the ground, two holonomic constraintequations as well as four nonholonomic constraint
equations can be derived by using the methods proposed by Zhao and Liu in [5]. Compared to the case of a bicycle
moving on a horizontal plane, the constraint equations takemore complex formulations.

We adopt the Lagrangian equations to derive the governing equations of the benchmark bicycle moving on the
surface of revolution. Designate byq as the set of the generalized coordinates, byp as the set of the curve and



surface parameters, and byΛ as the set of the Lagrange multipliers. The governing equations of motion for the
benchmark bicycle read,











M(q)q̈ = F(q̇,q)+VT (q,p)Λ,
V(q,p)q̇ = 0,

G(q,p) = 0,

(1)

whereM ∈ R
9×9

,F ∈ R
9
,V ∈ R

6×9
,G ∈ R

6. The second equation in Eq.(1) corresponds to the holonomicand
nonholonomic constraint equations subjected to the two contact points, and the third equation is related to the
parameter equations that establish the relation between the geometric parameters of the contact surfaces (or curves)
and the generalized coordinates of the system.

In order to study the circular motions of an uncontrolled bicycle, we introduce a series of rotation transfor-
mations to eliminate the time-dependent variables included in the set of the generalized coordinates, the surface
parameters and the Lagrange multipliers. The circular solutions of the bicycle then correspond to the equilibrium
points of a new DAE system. We prove theoretically that theseequilibrium points are not isolated, but in the form
of one-parameter families of solutions[3, 4]. Accordingly, we derive the linearized equations around the equilibri-
um point under small perturbations. By eliminating the dependent variables specified in constraint equations, we
obtain seven first-order linear ordinary differential equations. Finally, the stability of the equilibrium point can be
analyzed by calculating the eigenvalues of the linear system.
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