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The technology for tracking reflective markers in 3D using IR cameras is currently mature and widely available,
which makes optical motion capture the most popular approach for analyzing human motion. The method consists
of recording the trajectories of several markers attached to anatomical landmarks, and then using these trajectories
to reconstruct the motion of a rigid multibody model that represents the underlying skeletal system.

This method has multiple sources of error, due to the inaccuracy inherent to biomechanical systems. Unless CT
scan or similar data is available, the exact geometry of the skeletal system is unknown. In addition, the ideal joints
commonly used in multibody models do not always represent the actual kinematics with accuracy. Furthermore, the
marker trajectories are perturbed by noise from the capture system and, more importantly, they undergo significant
displacements relative to the skeleton, known as skin motion artifact.

Fig. 1: Marker configuration and multibody model

Obtaining the best estimate of the skeletal motion requires the solution of two problems, which are commonly
tackled using optimization techniques: first, the geometry of the multibody model must be fit to the actual skeleton,
and secondly, its motion must be adjusted to track the recorded marker trajectories as closely as possible. There
exist several methods in the literature for addressing these tasks [1, 2, 3], although in general they carry out the
motion reconstruction as a post process, so that real–time applications such as biofeedback–based rehabilitation
are not possible. Moreover, the task of obtaining said marker trajectories poses its own problems. Markers must
be identified or labeled at every time step, and this is a nontrivial problem, since motion capture systems do not
always provide the marker coordinates in a specific order. In addition, marker occlusions can occur during the
capture, so there is no guarantee that all markers will be available at every time step.

In order to overcome these problems and attain real–time motion reconstruction, an efficient Extended Kalman
Filter is proposed in this work. In the literature, most applications of Kalman filter to motion capture are designed



for inertial sensors, although there exist some implementations based on optical markers [4, 5]. However, they use
computationally–expensive observation functions, thus reducing their applicability to real–time applications.

The 52–DOF multibody model used in this work, depicted in Fig. 1, is formed by 18 bodies: pelvis, trunk,
neck, head, arms, forearms, hands, thighs, calves, feet and toes. Most joints are considered spherical; however,
in order to reduce the number of markers, the connection between neck and trunk is modeled as a universal joint,
and the toe segments are attached to the feet through revolute joints. Therefore, the state vector x comprises 156
variables: the absolute position of the lumbar joint, three absolute Euler angles per body (except relative angles
for the neck and toe segments), and all their associated velocities and accelerations. The filter uses a simple
second–order kinematic model [6] to propagate the states of each degree of freedom i from instant t to t +h:
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Qi is the covariance of the process noise which, in turn, depends on the variance of the acceleration, σ2
i .

In the proposed filter, 36 optical markers rigidly attached to anatomical landmarks act as absolute position
sensors. The nonlinear observation function z = h(x) is formed by 36 blocks of the following form:

zi = rb +Rbm̄i = r1 +
b

∑
j=2

(R j−1r̄ j)+Rbm̄i (2)

Assuming that marker i is rigidly attached to the anatomical segment b, its absolute position, zi, can be obtained as
the sum of two components: the absolute position of the proximal joint, rb, and the relative position of the marker,
Rbm̄i, which is, in turn, the result of applying the rotation matrix of the segment, Rb, to the local coordinates of the
marker, m̄i. The absolute rotation matrices Rb depend on the Euler angles from the state vector, and the absolute
joint positions rb are obtained recursively, starting at the lumbar joint, being r̄ j the coordinates of the proximal
joint of each segment j within the local frame of its predecessor in the kinematic chain, j−1.

The use of absolute rotations for describing the orientation of most segments greatly simplifies the derivation of
the Jacobian of the observation function H(x), due to the avoidance of cumulative rotation matrix products. This,
along with the fact that all the matrices involved in the filter are very sparse, leads to a highly efficient algorithm:
it performs several times faster than real time with 100 Hz IR cameras, on a regular desktop PC.

Moreover, this filter helps overcoming the main technical problems associated to marker–based motion capture.
Since the states are propagated in time using a second–order model, the filter is robust to brief marker occlusions.
And the problem of marker labeling is easily addressed by relating, at every time step, the current observed and
estimated marker positions, using a nearest neighbor approach.

The performance and robustness of the filter will be verified by implementing a C++ application with real–time
3D visualization.
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