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ABSTRACT — Gear contact problems are characterized by a large number of possible contact scenar-
ios while only a few of them are simultaneously active at a given time. When applying the model order
reduction method in gear contact problems, the addition of a static shape vector for each possibly-
loaded boundary Degree of Freedom (DOF) will enable the contact being accurately described but
may be computationally expensive when the number of boundary DOF is large. On the other hand,
omission of boundary DOF, though might be computationally efficient, will result in a slow conver-
gence. The objective of this paper is to develop a modeling technique based on Arbitrary Lagrangian
Eulerian (ALE) formulation to reduce DOF while providing accurate gear meshing contact simulation.
Four techniques are adopted to achieve the critical objective of the paper. First, the low-frequency
approximation is attained by ignoring fixed boundary normal modes. Second, under the framework of
ALE formulation, only the the mesh nodes of four engaging tooth-faces are defined as boundary nodes
during the whole process resulting in a great reduction of DOF of the system. Then, the calculation of
inertial force and Jacobian matrix are simplified by ignoring the inertial forces resulted from deforma-
tion. Finally, a four-step high-efficiency contact algorithm is adopted to reduce the number of contact
pairs and accelerate the detection process. The performance of the proposed method is demonstrated
with four gear contact problems and correlated with commercial nonlinear finite element software.

1 Introduction

Gears are widely used to transmit torque and motion through mechanical contact interactions in fields such as
the automotive, aerospace and wind-energy industries. In the design process of gear systems, it is important to
analyze the dynamic behavior of the impacting gear pair. In practice, the dynamic meshing forces may be many
times larger than those obtained based on quasi-static conditions used in a durability problem of the gear pair [1].
The other issue is associated with the noise caused by the non-uniform rotations of the gear wheel arising from
manufacturing and assembly errors, gear tooth wear, and elastic deformation of the loaded gear [2]. Therefore, an
accurate prediction of the dynamic behavior of the impact gear pair is indispensable for reliable and cost-effective
gearbox design.

Analytical models can be used to handle the gear contact problems [3], which is computationally efficient
and can provide an analytical expression for the meshing stiffness as a function of the basic parameters of the
gear. However, analytical models are based on some assumptions and, for this reason, are not applicable to gears
with complex geometric configurations. Additionally, gears are modeled as rigid bodies and discrete elastic and
dissipative elements have to be used to represent the interaction between meshing teeth, which sometimes cannot
capture the complex gear dynamic responses [4]. On the other hand, the finite element (FE) method provides a
powerful tool to obtain the tooth deflections, gear mesh stiffness, and stress distribution under static conditions



[5, 6]; however, a highly refined mesh of the contact area is typically required in order to obtain convincing results,
as shown in Fig. 1 (a). The large number of degrees of freedom (DOF) makes it impractical to use in dynamic
problems, especially for simulations of long periods.

One way to reduce the computational costs of the FE simulations for gear contact problems is to use semi-
analytical contact models [7, 8, 9], where the tooth deformation is obtained by combining analytical and numerical
(FE) approaches. The total deformation of the tooth flank is split into the local deformation obtained through
analytical expression, such as Hertzian contact pressure distribution [7] or Boussinesq point-load solution [9], and
the global deformation using FE with a coarse mesh. Therefore, highly refined meshes for the contact area are not
needed, reducing the computational costs of gear simulation. However, matching the analytical and FE solutions
at a certain depth below the contact surface is computationally involved. It is also worth mentioning that accuracy
of the analytical approach in the description of the local contact behavior is case-specific [8].

Another way to improve efficiency is the model order reduction (MOR) technique in flexible multibody sim-
ulations. Using the floating frame of reference formulation (FFRF), the motion of the flexible body is split into
the translation and rotation of the floating frame and the linear-elastic small deformation with respect to the refer-
ence frame. The elastic nodal displacements can be approximated by the superposition of a reduced set of mode
shapes, the number of which is much lower than that of elastic nodal DOF in original FE model. The choice of
the mode shapes to represent the body flexibility distinguishes one MOR technique from another. However, the
MOR technique cannot be readily applied to the gear contact simulation, which is characterized by the time-variant
contact locations: from the root to the tip of a tooth and from one tooth to another. For a flexible body discretized
by FE method, this means that there are a large number of possibly-loaded DOF while only a few of them are
simultaneously active at a given time. In Ref. [10, 11], the modal models were used to investigate the dynamic
behavior of a gear pair. The original elastic nodal DOF were spanned by a certain set of eigenmodes which satisfy
the geometric boundary conditions but not satisfy the dynamic boundary conditions imposed by the gear meshing
forces, resulting in a slow convergence of the reduced order model. In Ref. [10], eigenmodes with eigenfrequen-
cies up to 80kHz were used to precisely resolve the local deformations and stresses in the contact area, making the
MOR technique computationally expensive.

Another widely used MOR technique is Craig-Bampton method [12], which uses static shape vectors combined
with eigenvectors obtained with fixed boundary conditions, as shown in Fig. 1 (b). The main advantage of this
method lies in the fulfillment of the dynamic boundary conditions and the static completeness which guarantees
the same level of accuracy in static conditions for the reduced order model as the original FE model. Therefore, it
was widely used in the contact problems such as the gear contact simulation [13]. However, the addition of static
shape vectors for each possibly-loaded boundary DOF will result in a high-dimensional reduced order model,
jeopardizing the numerical efficiency of this method. To overcome this problem, Heirman et al. [14] proposed a
static mode switching (SMS) method, which was applied to the gear contact problem by Tamarozzi et al. [15].
This method uses a discontinuously changing basis matrix, which contains the static shape vectors corresponding
to the actually loaded DOF, at each time-step of the simulation. When the static modes are removed or added
from the mode set during simulation, the generalized coordinates of the system stay at a minimum level all the
time. As a result, this approach is computationally efficient as compared with the ones where all the static modes
are included. To obtain convincing results using this approach, time-integration schemes with high-frequency
numerical damping have to be adopted to alleviate the discontinuities resulting from the continuous removal or
addition of static shape vectors from the basis matrix [16].

Although the SMS approach has greatly reduced the number of DOF compared with the original FE model, the
efficiency is still influenced by the resolution of the FE mesh. A parametric model order reduction (PMOR) method
is introduced to solve this problem. It was first used to capture the stress fields resulting from point loads moving
across the flank of the gear [17], in which the location of the contact force is parameterized. In Ref. [18], PMOR
method was applied to gear contact simulations, where the flexibility of the gear is represented by a truncated set of
eigenvectors and a parameter-dependent set of static shape vectors. The latter are obtained by interpolating among
a set of global contact shapes, based on the rotation angles of the gear through static analysis. Due to the choice
of these static shape vectors, the number of the DOF does not depend on the mesh resolution of the original FE
model. Therefore, this method is insensitive to the mesh refinement and computationally efficient. However, the
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choice of static shape vectors may bring a series of problems [18]. As an example, the extension to a misaligned
gear pair is not easy as the number of parameters describing the configuration of the gear increases from one to six
and it is difficult to interpolate between six parameters.

This paper tries to develop a modeling technique based on the Arbitrary Lagrangian Eulerian (ALE) formula-
tion to reduce DOF while preserving an accurate description of gear contact problems. As the name suggests, ALE
formulation is an arbitrary combination of the Lagrangian and Eulerian formulations, the advantages of which are
combined together while the disadvantages are minimized [19]. The word arbitrary here refers to the fact that the
combination is arbitrary which is specified by the user through the selection of mesh motion. The ALE formulation
had been employed in three-dimensional beam problems to simulate a sliding joint [20] and to model axial mass
flow [21]. Furthermore, it is extended to model the plates [22, 23] and ropes [24]. In ALE formulation, the material
and the mesh are not tied to each other, which provides the flexibility to choose the mesh freely. For example, a
non-rolling mesh [25] is chosen to simulate the interaction between the rolling tire and ground, in which the contact
nodes are a fixed set while the materials are flowing through the mesh nodes. A space-fixed mesh is adopted in
the analysis of a belt drive [26] and reeving system [27] to avoid the moving contact between the belt/rope and
pulley/sheave. The ALE formulation provides a new approach to overcome the efficiency problem in the moving
load problem, where there are a large number of possibly-loaded nodes but only a few of them are loaded simulta-
neously. For example, when a beam moves through a curved tube, under the framework of ALE formulation, only
the beam in the high-curvature section needs to be finely meshed to maintain the accuracy while coarse mesh is
used in the low-curvature section to increase the computational efficiency [28].
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Fig. 1: The outline of the paper: conventional solution to the gear contact problems, (a) nonlinear FE method, (b) model order reduction method, and the four
techniques to improve the numerical efficiency: (c) low-frequency approximation (d) ALE formulation (e) simplified dynamic equations (f) high-efficiency
contact algorithm.

In this paper, the Craig-Bampton method is adopted as the MOR technique and the computational efficiency
of the gear contact simulation is improved through four techniques, as shown in Fig. 1 (c), (d), (e), (f) respec-
tively. First, based on the fact that the excitation frequency of gear meshing forces is much lower than the natural
frequency of the gear, thereby resulting in a quasi-static response of the gear, a low-frequency approximation is
adopted in the gear model by ignoring the contribution of fixed boundary normal modes and just considering the
constraint modes. Second, based on the ALE formulation, only the mesh nodes of the four engaging tooth-faces
are defined as boundary nodes, resulting in a great reduction in DOF of the system. Then, dynamic equations of
the flexible gear are simplified by ignoring the inertial force associated with deformation, and the calculation of
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Fig. 2: (a) Stiffness of different components in the multibody system of shafts and gears (b) the plot of normalized amplitude (magnification factor) of gear
versus frequency ratio.

Jacobian matrix is also simplified. Finally, a four-step high-efficiency contact algorithm is proposed to reduce the
number of contact pairs and accelerate the detection process. The first two techniques are aimed at reducing the
DOF of the system. The third one concentrates on the simplification of dynamic equations and the fourth one is
used to improve the efficiency of contact detection.

The remainder of this paper is organized as follows. From Section 2 to Section 5, four techniques to improve
the computational efficiency of a gear system are presented respectively. In Section 6, the efficiency and accuracy
of the proposed method are investigated by simulating a dynamic gear contact problem and comparing results
against commercial nonlinear finite element software. Finally, Section 7 summarizes the main conclusions.

2 The frequency analysis and low-frequency approximation of the gear

To analyze the dynamic characteristics of the spur gear, a frequency analysis can be carried out using the commer-
cial software ABAQUS. For a multibody system consisting of a pair of gears and shafts, as shown in Fig. 2 (a),
the motion of the gear and shaft is composed of the large rotation of reference frame and the accompanying elastic
vibrational deformation. The excitation forces arise from the meshing forces between the gear and pinion. The
excitation frequency of meshing force can be defined as meshing frequency, which is the product of the number
of teeth and angular velocity of the gear, ωmesh = zgearωgear = zpinionωpinion. In this system, there exist significant
differences of the stiffness between different components. For example, the contact stiffness between the meshing
gear pairs k1 is much larger than the mesh stiffness of a single gear k2, which is also larger than the torsional stiff-
ness of the shaft k3, i.e., k1� k2 > k3. Due to its low stiffness, the natural frequency of the shaft is lower than that
of the gear, but higher than that of the gear-shaft pair system. To avoid the resonance of the system, the rotation
speed of the gear is usually set to the sub-critical range in the design process, for example, ωgearzgear <ω/2, i.e., the
excitation frequency does not exceed the half of the first-order frequency of the model. Therefore, the vibration is
mainly located in the shaft and the deformation response of the gear can be approximately regarded as quasi-static
(magnification factor ≈ 1) as illustrated in Fig. 2 (b), which means it transmits the force from one gear to the other
with time-variant static deformation. For the physical parameters of this gear, the upper limit of rotation speed can
be as high as 5000 revs/min which is obtained through ωgear < ω/2zgear, considering that the natural frequency in
the rotational situation is usually higher than that in the static situation.

In present research, the Craig-Bampton method is used to describe the component modes of the gear. The
system DOF are partitioned into boundary DOF, uB, and interior DOF, uI . Two sets of mode shapes are employed
in this method. One set is the constraint modes, ΦC, i.e., static shapes obtained by giving each boundary DOF a
unit displacement while holding all other boundary DOF fixed. The other set is the fixed-boundary normal modes,
ΦN . The relationship between the physical DOF and modal coordinates can be written as

u =

[
uB

uI

]
=
[

ΦC ΦN
][ qC

qN

]
=

[
I 0

ΦIC ΦIN

][
qC

qN

]
(1)
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where ΦIC and ΦIN are the physical displacements of the interior DOF in the constraint modes and normal modes
respectively, and qC and qN are the modal coordinates of the constraint modes and fixed-boundary normal modes.

To reduce the number of DOF of the gear meshing system, the contribution of fixed boundary normal modes
can be ignored where the low-frequency approximation is applicable. The number of DOF of the system is reduced
from ni + znb to znb, where ni, znb are the number of DOF for fixed-boundary normal modes and constraint modes
respectively, z is the number of teeth and nb is the number of boundary DOF of one tooth. The relationship between
the physical DOF and modal coordinates can be expressed as

u =

[
uB

uI

]
≈ΦCqC =

[
qC

ΦICqC

]
(2)

3 Model order reduction based on ALE formulation

3.1 Reduced order model of ALE gear

For meshing gears, all the FE nodes of the gear on the flanks of all teeth are possibly in contact during a full
revolution. For this reason, all the flanks have to be finely meshed to capture the stress field involving steep
gradients. Due to the number of teeth and the mesh density required, there is a multitude of boundary nodes of the
gear, which have to be reserved in the reduced-order model of the gear. In this section, a gear model based on ALE
formulation is proposed to reduce the number of boundary DOF.

For conventional Lagrangian formulation, the mesh nodes are tied to the material points. Thus, each flank node
has to be defined as a boundary node for possible contact although they are not loaded simultaneously. However,
for ALE formulation, the mesh nodes can be opted not to associate with any specific material points so they are
free to move through the mesh. Therefore, only the mesh nodes in “potential contact area” are defined as boundary
nodes and they are invariant during the whole process, thereby achieving a great reduction in DOF of the system.
The foundation of this method is based on the transmission characteristic of spur gear, i.e., either one or two pairs
of teeth are in contact simultaneously.

As an example, in Fig. 3, the gear is driven by the pinion and the contact ratio of this gear pair is 1.6458. The
normalized time is introduced as t̄ = ∆θ/(2π/z) to describe the period from meshing-in to meshing-out for a new
tooth pair, such as tooth 1 of I-gear (short for 1I) and tooth 1 of J-gear (short for 1J), where I and J refer to the
pinion and gear respectively for simplicity and ∆θ is the rotation angle of 1I or 1J. The steps are as follows: (i)
t̄ = 0 (Fig. 3 (a)), a pair of new teeth (1I,1J) meshes in. (ii) 0 < t̄ < 0.6458, there are two pairs of teeth in mesh:
(2I,2J), (1I,1J). (iii) t̄ = 0.6458 (Fig. 3 (b)), the previous teeth pair (2I, 2J) meshes out. (iv) 0.6458 < t̄ < 1, there
is only one pair of teeth in mesh: (1I, 1J). (v) t̄ = 1 (Fig. 3 (d)), the subsequent teeth pair (20I, 30J) meshes in. (vi)
1 < t̄ < 1.6458, there are two pairs of teeth in mesh: (1I, 1J) and (20I, 30J). (vii) t̄ = 1.6458 (Fig. 3 (e)), the tooth
pair (1I,1J) meshes out.

Theoretically, there are only one or two pairs of teeth in mesh simultaneously. In practice, given the backlash
and the deformation of gear, the potential contact tooth-face pairs are two or four. For example, in Fig. 3 (c), the
tooth-faces 2B,1A of I-gear have possible contact with the tooth-faces 1A,1B of J-gear (A represents the anterior
face of a tooth while B refers to the posterior one). Fig. 3 (a) shows that the tooth-faces 3B,2A,2B,1A of I-gear
and the tooth-faces 2A,2B,1A,1B of J-gear possibly have contact. To account for this in the meshing process, four
tooth-face pairs are defined as the “potential contact area” in ALE formulation.

For conventional Lagrangian formulation, the rotation of the gear is continuous with the teeth pair meshing-in
and meshing-out one by one. In contrast, for the ALE formulation, the rotation of the gear can be decomposed
into the motion of the “potential contact area” and the moving in or out process of the material points. In most
of the ALE formulations, the relative movement between mesh nodes and material points is continuous [19],
i.e., the material points continuously move through the mesh nodes, such as the ALE beams [21, 20, 28], cables
[20, 24], and plates [22]. In contrast, the prescribed relative movement in present research is a discrete one in
accordance with the sequence of gear engagements, in which the mesh nodes are tied to the corresponding material
points in the “potential contact area” and they are rotating forwards together during most of the time, and only
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Fig. 3: The detailed process of gear meshing for teeth pair (1I, 1J): (a) the moment teeth pair (1I, 1J) meshes in, (b) the moment teeth pair (2I, 2J) meshes
out, (c) the tooth-change moment, (d) the moment teeth pair (20I, 30J) meshes in, (e) the moment teeth pair (1I, 1J) meshes out, (f) the time period from
meshing-in to meshing-out for (1I, 1J), (g) the generalized coordinates of ALE gear.
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at “tooth-change” instants, the mesh nodes instantaneously rotate backwards to associate with the material points
of subsequent tooth-faces. From the viewpoint of material points, old material points move out of the “potential
contact area” while the new ones move in. Therefore, in ALE formulation, the mesh nodes in the “potential contact
area” are invariant with time, but associate with different material points at different time intervals, which is the
reason why only the mesh nodes in the “potential contact area” are chosen as boundary nodes.

Under the framework of ALE formulation, the number of boundary DOF is reduced from znb to 4nb. It is
clearly shown that the number of boundary DOF is determined by the mesh density nb while it is not associated to
the number of teeth z. This is beneficial for the simulation of gears with many teeth. Based on floating frame of
reference formulation (FFRF), as illustrated in Fig. 3 (g), the generalized coordinates of I-gear are expressed as

qT
I =

[
rT

I ϕT
I uT

I
]T (3)

where rI,ϕI are the position and orientation vector of the floating reference frame. uI are the modal coordinates:

uI =
[

uT
3B uT

2A uT
2B uT

1A

]T
=
[ [

u3B,1 ... u3B,25
]T

...
[

u1A,1 ... u1A,25
]T ]T

which consist of the modal coordinates of four tooth-faces 3B, 2A, 2B, 1A, and ui, j is the modal coordinate of
node j in tooth-face i. In fact, uI represents not only the modal coordinates but also the displacements of boundary
nodes. Accordingly, it forms a one-to-one correspondence from modal coordinates to boundary DOF because of
the adoption of constraint modes. The displacement field of the gear can be obtained through modal transformation,
see Eq. (2).

3.2 Tooth-change

Accompanied with the model order reduction through ALE formulation, an important issue called “tooth-change”
arises, which refers to the instantaneous process of mesh nodes rotating backwards to associate with the material
points of next tooth. There are two issues concerning the “tooth-change” process: when and how. This subsection
is aimed at “when” to change tooth.

The detailed process of tooth-change is illustrated in Fig. 3 (a), (b), (c), (d), (e). At first, it is shown in Fig. 3 (a)
that with 1I and 1J meshing in, the number of contact tooth-face pairs changes from two (3B-2A, 2A-2B) to four
(3B-2A, 2A-2B, 2B-1A, 1A-1B). Notice that the index on the left and right side of the dash refers to the tooth-face
of I-gear and J-gear respectively. With the rotation moving on, the first critical moment emerges, representing the
meshing-out of previous tooth pair, 2I and 2J, as shown in Fig. 3 (b). The actual number of contact tooth-face
pairs reduces from four (3B-2A, 2A-2B, 2B-1A, 1A-1B) to two (2B-1A, 1A-1B). With the rotation proceeding,
the second critical moment emerges, as shown in Fig. 3 (d), representing the meshing-in of subsequent tooth pair,
20I and 30J. The number of contact tooth-face pairs increases from two (2B-1A, 1A-1B) to four (2B-1A, 1A-1B,
1B-30A, 20A-30B) again. In the end, the meshing-out process of 1I and 1J is shown in Fig. 3 (e). The number of
contact tooth-face pairs reduces from four (2B-1A, 1A-1B, 1B-30A, 20A-30B) to two (1B-30A, 20A-30B).

Tooth-change has to be implemented between the two critical moments, i.e., from the moment when 2I and 2J
mesh out (Fig. 3 (b)) to the moment at which 20I and 30J mesh in (Fig. 3 (d)), during which there is only one
teeth pair (two tooth-face pairs) in contact. It can be noted that there are always four tooth-face pairs defined in
the simulation but for some time, there are only two tooth-face pairs actually in contact. When there are only two
tooth-face pairs (2B-1A, 1A-1B) in contact, it is possible to change the previous tooth-face pairs (3B-2A, 2A-2B)
not in contact to the subsequent tooth-face pairs (1B-30A, 20A-30B) which are also not in contact. The realistic
tooth-change moments are t̄ = 0.6458 and t̄ = 1 while the tooth-change moment in simulation is 0.6458 < t̄ < 1.
From the viewpoint of dynamics, the generalized contact forces corresponding to the boundary DOF of the previous
(3B-2A, 2A-2B) and subsequent (1B-30A, 20A-30B) tooth-face pair are both zero. By following this procedure,
the tooth-change process can be finished smoothly.
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3.3 Detailed tooth-change process

This subsection is concerned about “how” to change the tooth. In general, at the “tooth-change” instants, it is a
necessity to update the contact tooth-face pairs, general coordinates/velocity, modal basis matrix, stiffness matrix,
and the mass matrix (nine mass invariants), which is actually the computational price of ALE formulation.

1. Change in contact tooth-face pairs
To capture the contacts between an impacting gear pair correctly, the current contact tooth-face pairs have to

be change to the subsequent ones during the tooth-change process. The contact tooth-face pairs are changed from
(3B-2A, 2A-2B, 2B-1A, 1A-1B) to (2B-1A, 1A-1B, 1B-30A, 20A-30B), see Section 5.1.

2. General coordinates/velocity transformation
The translational and rotational DOF of flexible body are kept the same after the tooth-change while the elastic

deformation DOF are converted to those of the subsequent corresponding boundary DOF. This means that u3B→
u2B, u2A→ u1A, u2B→ u1B, u1A→ u20A for I-gear and u2A→ u1A, u2B→ u1B, u1A→ u30A, u1B→ u30B for J-gear.
The elastic deformations of next tooth can be obtained through Eq. (2) and generalized velocity can be obtained in
the same way.

3. Modal basis matrix transformation
In the tooth-change process, the modal basis matrix is transformed from Φ to Φa, then Φa to Φb in two steps,

where Φ,Φa,Φb represent the mode matrix before transformation, after the first and second step respectively.
Φ =

[
Φ1 Φ2 ... Φi ... Φ4nb

]
, where Φi represents the ith mode, 4nb is the number of boundary DOF of

four tooth-face pairs. The detailed transformation process is shown as follows,
Step 1: Each nodal displacement in the column of mode matrix has to be transferred to the corresponding one

in the previous tooth because modal basis matrix is not tied to any material point in ALE formulation. Φa = TΦ,
where T is the transfer matrix

Tz×z =


0 I3nt 0 · · · 0
0 0 I3nt · · · 0
...

...
...

. . .
...

0 0 0 · · · I3nt

I3nt 0 0 · · · 0

 (4)

and I3nt = diag
(

I3×3 ... I3×3
)

have nt ×nt sub-matrices, nt is the number of nodes for a single tooth.
Step 2: Due to the relative rotation δθ = 2π/z between the floating reference frame O− xy and the bound-

ary DOF, coordinate transformation is madeΦb = AT
znt

ΦaA4nb , where A4nb = diag
(

A ... A
)

and AT
znt

=
diag

(
AT ... AT

)
have 4nb×4nb and znt × znt sub-matrices with

A =

 cos(δθ) sin(δθ) 0
−sin(δθ) cos(δθ) 0

0 0 1

 (5)

4nb and znt are the number of nodes for four contact tooth-faces and the whole gear.
4. Stiffness matrix transformation
The stiffness matrix before and after the tooth-change process is essentially the same except that the set of

boundary nodes is changed to the corresponding ones of the subsequent tooth. Thus, the original stiffness matrix
K and the stiffness matrix after tooth-change, Ka, satisfy Ka = AT

4nb
KA4nb .

5. Mass matrix transformation
The mass matrix of a flexible body is the function of rotation parameter ϕ and elastic deformation u associ-

ated with nine constant mass parameters Ui (i = 0 ∼ 8), i.e., M = M(ϕ,u), see Eq. (11)∼(14) in Section 4. In
the the simplified FFRF flexible body model used in this paper, only U0,U1,U2,U3,U6,U7 are preserved (see Eq.
(16)∼(18), (20)∼(24)) and need to be updated in the tooth-change process because of the mode matrix transfor-
mation.

Mass invariants U0, U1 and U6 represent the mass
(
U0 = ∑

n
p=1 mp

)
, center of mass

(
U1 = ∑

n
p=1 mpsp

)
and

moment of inertia
(
U6 = ∑

n
p=1 mps̃T

p s̃p
)

of flexible body in floating reference frame respectively, which are not
influenced by the tooth-change process.
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Fig. 4: Kinematic description used in floating frame of reference formulation (FFRF).

The other three mass invariants U2, U3 and U7 have to be updated after tooth-change. U2 = ∑
n
p=1 mpϕp is

taken as an example here to show the process of transformation. Due to the rotational symmetry of the gear, U2
will not be influenced by the rearrangement of node displacement vector in mode matrix (Step 1 of mode matrix
transformation), i.e., Ua

2 = U2. However, since the ith modal vector of node P has to be converted from ϕa
p,i to ϕb

p,i

(ϕb
p,i = ATϕa

p,iA in Step 2 of mode matrix transformation, see Eq. (3.3)), the mass invariant Ub
2 after tooth-change

can be expressed as

Ub
2 =

n

∑
p=1

mp
[
ϕb

p,1 ... ϕb
p,4nb

]
=

n

∑
p=1

mp
[

ATϕa
p,1A ... ATϕa

p,4nb
A
]

= AT

(
n

∑
p=1

mp
[
ϕa

p,1 ... ϕa
p,4nb

])
A4nb = ATU2A4nb (6)

And U3 and U7 can be updated in the same manner as U2.
The DOF associated with a gear can be reduced greatly from ni + znb to znb by ignoring the contribution of

fixed-boundary normal modes, and from znb to 4nb by using ALE formulation.

4 Simplified flexible body model based on FFRF

With the low-frequency approximation, the dynamic equations of a gear can be simplified by ignoring the inertial
force associated with deformation. The original generalized inertial force Qiner =Qiner (ṙ, r̈,ϕ,ϕ̇,ϕ̈,u, u̇, ü), which
is a function of translational velocity and acceleration ṙ, r̈, and the generalized rotational coordinate, velocity,
acceleration ϕ,ϕ̇,ϕ̈, and elastic deformation and its velocity, acceleration u, u̇, ü can be simplified to Qiner =
Qiner (ṙ, r̈,ϕ,ϕ̇,ϕ̈), reducing the computational costs of the inertial force and Jacobian matrix.

As shown in Fig. 4, the generalized coordinates of a flexible body are denoted as q =
[

rT ϕT uT
]T,

where r,ϕ are the position and orientation of the floating reference frame, u =
[

u1 ... um
]

is the elastic
(modal) coordinate vector, and m is the number of component modes. The global position of an arbitrary point P
is

rp = r+A(sp +up) = r+A
(
sp +ϕpu

)
(7)

where A = A(ϕ) is the orthogonal rotation matrix

A(ϕ) = I+
sinϕ

ϕ
ϕ̃+

1− cosϕ

ϕ2 ϕ̃ϕ̃ (8)

ϕ and ϕ̃ are the norm and skew matrix of rotation vector ϕ.
In the definition of the global position, sp is the position vector in the undeformed configuration and up repre-

sents the displacement vector in the floating reference frame which can be obtained through mode superposition,
up =ϕpu = ∑

m
i=1ϕpiui, ϕp =

[
ϕp1 ... ϕpm

]
is the modal basis matrix of point P.
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Tab. 1: Definition of nine mass invariants

Invariant Size Invariant Size Invariant Size
U0 = ∑

n
p=1 mp 1×1 U1 = ∑

n
p=1 mpsp 3×1 U2 = ∑

n
p=1 mpϕp 3×m

U3 = ∑
n
p=1 mps̃pϕp 3×m U4i = ∑

n
p=1 mpϕ̃piϕp 3×m U5 = ∑

n
p=1 mpϕ

T
pϕp m×m

U6 = ∑
n
p=1 mps̃T

p s̃p 3×3 U7i = ∑
n
p=1 mps̃T

pϕ̃pi 3×3 U8i j = ∑
n
p=1 mpϕ̃

T
piϕ̃p j 3×3

The global velocity vector of arbitrary point P is

ṙp = ṙ+A ˜̄ω
(
sp +ϕpu

)
+Aϕpu̇ (9)

where ˜̄ω is the skew matrix of the angular velocity vector in the floating reference frame, ω̄. The angular ve-
locity vector and time derivative of generalized rotation coordinates can be related as ω̄ = HTϕ̇, where H is the
transformation matrix [29]

H(ϕ) = I+
1− cosϕ

ϕ2 ϕ̃+
ϕ− sinϕ

ϕ3 ϕ̃ϕ̃ (10)

The kinematic energy of the flexible body is given by Ek =∑
n
p=1

1
2 mpṙT

p ṙp =
1
2 q̇Mq̇ , where q̇=

[
ṙT ϕ̇T u̇T

]T
is the generalized velocity, n is the number of nodes, and M is the mass matrix which can be expressed in the fol-
lowing compact form

M =

 Mtt Mtr Mt f

Mrr Mr f

sym M f f

 (11)

with Mαβ for α,β = t,r, f denotes the blocks of the mass matrix partitioned according to the system coordinates
for t associated with translational coordinates, r with rotational coordinates and f with elastic coordinates, which
are defined as

Mtt =U0I3×3 Mtr =−AU12HT =−A

(
Ũ1 +

m

∑
i=1

uiŨ2i

)
HT (12)

Mt f = AU2 Mr f = HU34 = H

(
U3 +

m

∑
i=1

uiU4i

)
M f f = U5 (13)

Mrr = HU678HT = H

[
U6 +

m

∑
i=1

ui
(
UT

7i +U7i
)
+

m

∑
i=1

m

∑
j=1

uiu jU8i j

]
HT (14)

where Ui(i = 0∼ 8) are the mass invariants, as shown in Tab. 1.
The original form of equations of motion based on FFRF flexible body is Mq̈+

{
∂ (Mq̇)

∂q −
1
2

[
∂ (Mq̇)

∂q

]T
}

q̇+Kq+ fe +
(

∂C
∂q

)T
λ = 0

C(q, q̇, t) = 0
(15)

where K is the stiffness matrix, fe is the generalized external forces including the contact forces between impacting
gears and other applied forces, C(q, q̇, t) are the constraint equations such as the joint connecting the gear to the
ground, and (∂C/∂q)T

λ are the contribution of constraint forces.
The elastic deformation of a flexible body yields elastic forces, influences the mass distribution and conse-

quently corresponding terms in inertial forces. This simplified formulation is based on the small deformation
assumption of a flexible body and the terms concerning u, u̇, ü are assumed to be small. In addition to that, the
response of the gear is quasi-static and the inertial deformational forces are ignored.
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4.1 Simplification of generalized inertial force

4.1.1 Simplification of acceleration term

The generalized inertial forces linearly proportional to accelerations can be simplified as

M(q) q̈ =

 Mtt Mtr Mt f

MT
tr Mrr Mr f

MT
t f MT

r f M f f

 r̈
ϕ̈
ü

 Mtt r̈+Mtrϕ̈
MT

trr̈+Mrrϕ̈
MT

t f r̈+MT
r f ϕ̈

≈
 Mtt r̈+Mtrϕ̈

MT
trr̈+Mrrϕ̈

MT
t f r̈+MT

r f ϕ̈

 (16)

by ignoring the contribution of ü.
This can be further simplified by ignoring the deformation terms in the mass matrix. Therefore, the mass

matrix will be reduced to a function of rotation vector, M = M(ϕ) as follows

Mtr =−AU12HT ≈−AŨ1HT ≡Mtr Mr f = HU34 ≈HU3 ≡Mr f (17)

Mrr = HU678HT ≈HU6HT ≡Mrr (18)

4.1.2 Simplification of quadratic velocity term

The quadratic velocity vector Qq is quadratically proportional to generalized velocities and can be simplified as

Qq (q, q̇) =

{
∂ (Mq̇)

∂q
− 1

2

[
∂ (Mq̇)

∂q

]T
}

q̇ =

(
V− 1

2
VT
)

q̇≈

 V1ϕ̇

V2ϕ̇+ 1
2

(
VT

1 ṙ+VT
2 ϕ̇
)

V3ϕ̇+ 1
2

(
VT

4 ṙ+VT
5 ϕ̇
)


by ignoring the effect of u̇, where

V =
∂ (Mq̇)

∂q
=

 0 V1 V4
0 V2 V5
0 V3 V6

 (19)

Furthermore, Vi(i = 1,2,3,4,5) can be simplified as

V1 =
∂ (Mtt ṙ+Mtrϕ̇+Mt f u̇)

∂ϕ
=−

∂
(
AU12HTϕ̇

)
∂ϕ

+
∂ (AU2u̇)

∂ϕ
≈−

∂
(
AŨ1HTϕ̇

)
∂ϕ

(20)

V2 =
∂
(
MT

trṙ+Mrrϕ̇+Mr f u̇
)

∂ϕ
=

∂
(
HU12ATṙ

)
∂ϕ

+
∂
(
HU678HTϕ̇

)
∂ϕ

+
∂ (HU34u̇)

∂ϕ

≈
∂
(
HŨ1ATṙ

)
∂ϕ

+
∂
(
HU6HTϕ̇

)
∂ϕ

(21)

V3 =
∂

(
MT

t f ṙ+MT
r f ϕ̇+M f f u̇

)
∂ϕ

= UT
2

∂
(
ATṙ

)
∂ϕ

+UT
34

∂
(
HTϕ̇

)
∂ϕ

≈ UT
2

∂
(
ATṙ

)
∂ϕ

+UT
3

∂
(
HTϕ̇

)
∂ϕ

(22)

V4 =
∂ (Mtt ṙ+Mtrϕ̇+Mt f u̇)

∂u
=−

∂
(
AU12HTϕ̇

)
∂u

+
∂ (AU2u̇)

∂u
=−A

[
Ũ21 ... Ũ2m

]
HTϕ̇ (23)

V5 =
∂
(
MT

trṙ+Mrrϕ̇+Mr f u̇
)

∂u
=

∂
(
HU12ATṙ

)
∂u

+
∂
(
HU678HTϕ̇

)
∂u

+
∂ (HU34u̇)

∂u
≈ H

[
Ũ21 ... Ũ2m

]
ATṙ+H

[
UT

71 +U71 ... UT
7m +U7m

]
HTϕ̇ (24)
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4.2 Simplification of Jacobian matrix

The Jacobian matrix J of FFRF flexible body takes the following form

J =
∂Q
∂q

+α
∂Q
∂ q̇

+α
2 ∂Q

∂ q̈
(25)

where α = 1/∆t, ∆t is integration time-step, and Q is the sum of generalized inertial force Qiner and generalized
elastic force Qelas, Q = Qiner +Qelas. Thus, J = Jiner +Jelas.

The Jacobian matrix of generalized elastic force is constant, Jelas = K = diag(0,0,K f f ). Since Qiner =
Qiner (ṙ, r̈,ϕ,ϕ̇,ϕ̈,u, u̇, ü) is simplified to Qiner = Qiner (ṙ, r̈,ϕ,ϕ̇,ϕ̈), the corresponding Jacobian matrix is

Jiner =
∂Qiner

∂q
+α

∂Qiner

∂ q̇
+α

2 ∂Qiner

∂ q̈
=
[

α
∂Qiner

∂ ṙ +α2 ∂Qiner
∂ r̈

∂Qiner
∂ϕ +α

∂Qiner
∂ ϕ̇ +α2 ∂Qiner

∂ ϕ̈ 0
]

(26)

In the present simulation, Jiner can be obtained through numerical difference of the Qiner, thereby reducing the
number of operations required to calculate generalized inertial forces Qiner, from m+7 to 7.

5 High-efficiency contact algorithm for gear meshing

In standard contact analysis of a gear pair, all the flank nodes and elements of one gear may have contact with
those of the other gear during continuous rotation. For a gear pair with z1 and z2 number of teeth, the maximum
number of tooth-face pairs possibly in contact is nc,max = 2z1z2. Obviously, it is computationally inefficient to
loop over all these tooth-face pairs and calculate the global positions of all the boundary nodes through modal
transformation. This is particularly true when considering that only a small number of pairs of tooth-faces (2 or 4,
depending on the single/double teeth in contact) may come into contact simultaneously. To improve the efficiency
of contact detection, a four-step contact algorithm as depicted in Fig. 5 (a), (b), (c), (d) is proposed in this paper.
The algorithm is as follows:

Step 1: coarse collision detection. It is used to identify the four tooth-face pairs possibly in contact.
Step 2: surface-to-surface contact detection. It is used to identify which two element-faces of a tooth-face pair

are possibly in contact by looping over all the element-faces in each tooth-face. The bounding sphere method is
used to accelerate the process.

Step 3: node-to-surface contact force calculation. It is used to calculate the contact force between two element-
faces through a penalty method.

Step 4: tooth-change process. It is used to update the current four pairs of tooth-faces in contact to the subse-
quent ones at the right time to capture the contact between gear pairs correctly.

5.1 Coarse collision detection and tooth-change process

First, a simple two-dimensional case as depicted in Fig. 6 (a) is used to illustrate the coarse collision process. In this
case, both gears are hinged to the ground using a revolute joint. Accordingly, the parallelism of the two gear axes is
guaranteed. Two reference frames are introduced to measure the angular position of I-gear. One is the body-fixed
reference O1− xy. The other is the space-fixed reference O1− x0y0, the origin of which is located in the center of
I-gear, the direction of the x-axis is pointing from the center of I-gear to that of J-gear. The angular difference θ(t)
between O1−xy and O1−x0y0 is defined as the angular position of I-gear. As can be seen in Fig. 6 (a), at the initial
moment t̄ = 0, 1I and 1J mesh have four contact tooth-face pairs (3B-2A, 2A-2B, 2B-1A, 1A-1B), and the angular
position of I-gear is θ0. To identify the four pairs of tooth-faces in contact during the following revolution, the
angular displacement ∆θ = θ −θ0 is introduced. With the I-gear rotating anti-clockwise, ∆θ increases and can be
used to update the contact tooth-face pairs. Within the framework of ALE formulation, the tooth-change process
has to be implemented during the one-tooth in contact period. For example, in this case, the contact ratio is 1.6458,
thereby the tooth-change process has to be accomplished at a series of time instants t̄ci = t̄c + i, i = 1,2,3..., where
t̄c is the tooth-change time threshold, 0.6458 < t̄c < 1. At each time moment ∆θ(t) = t̄ci · (2π/z), i = 1,2,3..., the
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Fig. 5: The four-step high-efficiency contact algorithm for impacting gear pairs: (a) coarse collision detection, (b) surface-to-surface contact detection, (c)
node-to-surface contact force calculation, (d) tooth-change process.

contact tooth-face pairs are updated to the successive ones. In this case, when ∆θ = t̄c ·(2π/z), the contact pairs are
updated from (3B-2A, 2A-2B, 2B-1A, 1A-1B) to (2B-1A, 1A-1B, 1B-30A, 20A-30B) and to (1B-30A, 20A-30B,
20B-29A, 19A-29B) when ∆θ = (t̄c + 1) · (2π/z). Therefore, the key procedures in coarse collision detection is
to define the contact tooth-face pairs at the initial time and obtain the angular displacement of I-gear in each time
step. Then, the contact tooth-face pairs can be updated to the subsequent ones according to the tooth-change time
threshold.

In three-dimensional contact, the axes of two gears are not perfectly aligned because of the elastic deformation
of the shaft. Therefore, a generalized approach has to be introduced to define angular position of I-gear while the
other procedures are the same as those in the two-dimensional case. As illustrated in Fig. 6 (b), reference frame
O1−x0y0z0 is introduced to define the angular position of I-gear. The origin of O1−x0y0z0 is fixed with the center
of I-gear and its x-axis is from O1 to O2. Accordingly, the z-axis can be obtained as ẑ0 = ẑ−

(
ẑTx̂0

)
x̂0 , where

x̂0, ẑ0 are the x-axis and z-axis of O1− x0y0z0, ẑ is z-axis of body-fixed frame O1− xyz of I-gear. Then, the y-axis
of O1− x0y0z0 is given by ŷ0 = ẑ0× x̂0. In O1− x0y0z0 frame, the angular position θ of I-gear is given by

θ = tan−1
(

x̂Tŷ0

x̂Tx̂0

)
(27)

which measures the angular position θ in 3D space, in which the xy plane may not coincide with x0y0 plane. It
should be pointed out that Eq. (27) is acceptable for small rotations, in which the angular difference α between
the z-axes of O1− x0y0z0 and O1− xyz is small, usually less than 10◦. This is the case for gear contact simulation.

5.2 Surface-to-surface detection acceleration using bounding sphere method

After four pairs of contact tooth-faces are identified, the contact forces between each pair can be obtained. For
a tooth-face pair meshed with n1 and n2 element-faces, the number of element-face contact pairs is n1× n2 by
looping over each element-face of the tooth-face. It is noted that only a small part of them may have contact, since
the theoretical contact area for two meshing spur gears is a line, and only the element-faces adjacent to this line
have possible contact. To avoid too many useless evaluations of element-face pairs, the bounding sphere method is
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Fig. 6: The coarse collision process: (a) two-dimensional case, (b) three-dimensional case.

adopted to accelerate the contact detection process. The core of this method is to replace the contact between two
element-faces with two bounding spheres which are easy to judge whether they have contact or not and quickly
eliminate the pairs that could not possibly be in contact. The whole process is divided into two steps, the details of
which are shown in Ref. [30, 31].

Step 1: bounding sphere construction. It is used to construct a bounding sphere for each element-face such as
a triangle or quadrilateral (element-face of tetrahedron and hexahedron element).

Step 2: overlap detection between spheres. It is used to identify which pair of n1× n2 pairs of bounding
spheres may have possible contact by comparing the distance between the sphere centers against the sum of the
sphere radii.

5.3 Point-to-surface contact formulation

Without loss of generality, the FE model of gear is meshed with eight-node hexahedral elements and the corre-
sponding element-faces are quadrilaterals as illustrated in Fig. 5 (c). A general point-to-surface contact scheme is
adopted, which involves a slave node and a master surface. The Gauss integration points of one of the element-faces
are chosen as the slave nodes with the other element-face as the master surface.

The global position of an arbitrary point in the element-face can be obtained by

r(ξ ,η) =
4

∑
i=1

Niri =
[

N1I3×3 N2I3×3 N3I3×3 N4I3×3
]

q = Nq (28)

where arbitrary point (ξ ,η) in the local frame is mapped to the point r = [x,y,z]T in the global frame, ri is
the coordinate of the corner node Pi (i = 1 ∼ 4), q =

[
rT

1 rT
2 rT

3 rT
4
]

are the generalized coordinates of the
element, N =

[
N1I3×3 N2I3×3 N3I3×3 N4I3×3

]
is the shape function, which is expressed as

N1 =
1
4
(ξ −1)(η−1) N2 =−

1
4
(ξ +1)(η−1)

N3 =
1
4
(ξ +1)(η +1) N4 =−

1
4
(ξ −1)(η +1) (29)

To obtain the projection point P of point A, the geometric conditions

[R− r(ξ ,η)]T
∂r
∂ξ

= 0 [R− r(ξ ,η)]T
∂r
∂η

= 0 (30)

are imposed. This implies that the projection vector PA must be perpendicular to the tangent vector of the surface,
where R and r are the positions of points A and P, ∂r/∂ξ ,∂r/∂η are the tangent vectors of point P. These two
non-linear equations can be iteratively solved using Newton-Raphson method.
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The penetration depth δ of point A is given by

δ =−(R− r)T n n =
∂r/∂ξ ×∂r/∂η

‖∂r/∂ξ ×∂r/∂η‖
(31)

where n is the unit normal vector at point P. If δ < 0, there is no interaction between point A and the surface and
the contact force is zero. When δ > 0, the normal contact force is Fn = Fnn =

(
Kδ e + cδ̇

)
n , where Fn is the value

of normal contact force Fn, K is the normal stiffness, c is the normal damping ratio, e is the nonlinear exponent,
and δ̇ is the normal penetration velocity of point A, which is

δ̇ =−(vA−vP)
T n =− [vA−N(ξP,ηP) q̇]T n (32)

where vA,vP are the velocities of points A and P, vA is obtained in its element-face while vP = N(ξP,ηP) q̇, where
q̇ =

[
ṙT

1 ṙT
2 ṙT

3 ṙT
4
]

is the generalized velocity.
Velocity-based friction model [32] is adopted to calculate the tangential friction force, Ft = µ f Fn, where µ f is

the coefficient of friction

µ f (vt) =


step(vt ,−vs,µs,vs,−µs) (−vs ≤ vt ≤ vs)

−sgn(vt) · step(|vt | ,vd ,µd ,vs,µs) (vs < |vt |< vd)
−sgn(vt) ·µd (|vt | ≥ vd)

(33)

in which µd is the dynamic coefficient of friction, µs is the static one, vs is the static transition velocity, and vd is
the dynamic transition one, vt is the norm of tangential slip velocity of point A with respect to point P, vt = vtτ

vt = (vA−vP)−
[
(vA−vP)

T n
]

n τ =
vt

‖vt‖
=

vt

vt
(34)

It is noted that the frictional force Ft is zero when vt = 0. The total contact force can be obtained through
F = Fn +Ft , where Ft is the tangential frictional force, Ft = µ f Fnτ .

F is applied at slave point A and its reaction force −F is distributed to four master nodes, P1, P2, P3, P4
according to the principle of virtual work, δrT (−F) =−δqTNTF = δqTQr

Qr =
[

FT
r1 FT

r2 FT
r3 FT

r4
]T

=−NTF (35)

where Fri (i = 1∼ 4) is the reaction force applied at node Pi, Fri =−NiF. The choice of which of the two flexible
bodies is the master body and which one is the slave one might slightly affect the results [15]. In this study, a
general two-pass algorithm in Ref. [15] is adopted in which the two flexible gears are alternatively chosen as
master or slave body and the contact force is the weighted average result with a weight factor w f ∈ [0,1]. In this
approach, w f = 0,1 represents the situation where one of the gears is chosen as the master body, the other as slave
body, and no average is used.

6 Numerical examples

Four numerical examples are given in this section to verify the proposed method. The FE models of the pinion and
gear used in the numerical simulation and the basic parameters are shown in Fig. 7. Both of the gears are meshed
by the hexahedral elements, and fine meshes are used in the potential contact area of tooth flanks. All the nodes on
the bore surface are rigidly connected to the center of the gear (MPC element), where the origin of floating frame
of reference is based. In the simulation, a material with Young’s modulus E = 210GPa, density ρ = 7860kg/m3

and Poisson’s ratio ν = 0.3 is used.
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Parameters Pinion Gear

Number of teeth 13 97

20 20

Normal module (mm) 8 8

Face width (mm) 40 40

Base Circle Radius (mm) 48.864 364.6005

Pitch Circle Radius (mm) 52 388

Nodes per flank

Number of nodes 33605 60528

Number of elements 27820 43650

Pressure angle (  )

121(11  11) 66(11  6)

x

y

z

Fig. 7: The FE model used in the numerical simulation and basic parameters of gear and pinion.

6.1 Dynamic verification of tooth-change process

In this example, both the gear and pinion are hinged to the ground with revolute joints along its z-axis. The
simulation is performed by applying rotational velocity constraint to the gear (driving gear) while the pinion (driven
gear) is left to rotate with a resistant torque M = 1225×step(0,0,1,1)Nm. A quasi-static situation is considered in
this example with angular velocity of gear ω = 0.01× step(0,0,1,1) rad/s. The simulation covers the engagement
process of six pairs of teeth within 40s of physical time. Fig. 8 (a) and (b) show the engagement and tooth-change
process of six pairs of teeth. In this figure, the x-axis is the normalized time t̄ = ∆θ (t)/(2π/z), representing the
number of rotation teeth from the beginning while y-axis is the tooth index. During the meshing process, there
are four contact tooth-face pairs formed from four tooth-faces from three teeth of the pinion and four tooth-faces
from two teeth of the gear. In Fig. 8, it can be seen that tooth 1, 2, and 3 of the pinion (tooth-face 1A, 2B, 2A,
3B actually) mesh with tooth 1 and 2 of the gear (tooth-face 1B, 1A, 2B, 2A in fact) at the first engagement.
To realize continuous rotation, tooth-change has to be carried out. In this example, the tooth-change threshold
is adopted as t̄c = 0.5, which means the contact tooth-face pairs are updated to the next ones at a series of time
instants t̄ = t̄c + i = 0.5+ i, i = 0,1,2,3... (orange dash line in Fig. 8). The FE mesh is the same as the previous
two examples while the number of DOF is close to four times the size of example 2 for ALE formulation, due to
that the nodes of four tooth-faces are adopted as boundary nodes, i.e., tooth-face 1A, 2B, 2A, 3B of the pinion and
tooth-face 1B, 1A, 2B, 2A of the gear.

The influence of tooth-change threshold t̄c is shown in Fig. 8, in which dynamic transmission error (DTE) and
Mises stress are used to assess the accuracy of the proposed method. DTE is defined as the difference between the
actual position and the theoretical position that the gear would occupy if the gear teeth are considered perfect and
rigid, and it is an important characteristic in the study of gear vibration and noise [33, 34]. It is. Fig. 8 (c) shows
DTE (θc−θt) of pinion center where θc and θt are the actual and theoretical angular displacements of the center.
In this figure, the meshing-out moments are (k+ 0.44), where k is a positive integer which is illustrated in blue
dot-dash lines, and the meshing-in moments are (k+ 0.63) represented by the orange dot-dash lines. As pointed
out in Section 3, tooth-change has to be carried out during the one-tooth-in contact period, i.e. t̄ ∈ (0.44, 0.63)
in this case. Therefore, four different tooth-change thresholds are chosen as: 0.4, 0.5, 0.6, 0.7 to investigate the
influence. It can be seen from the figure that results for t̄c = 0.5,0.6 are in very good agreement. However, for
t̄c = 0.4, tooth-change moment is prior to the meshing-out of the previous tooth. This means that although the
previous two tooth-face pairs are still in contact (there are four tooth-face pairs in total), the contact tooth-face
pairs are changed to the next two which are not in contact yet. It leads to the sudden increase of the DTE ahead of
its schedule (actually, we refer to the absolute value of (θc−θt) because θc−θt < 0), which is inconsistent with
the real situation. Similarly, for t̄c = 0.7, tooth-change moment is posterior to the meshing-in of the next tooth,
which means although the next two tooth-face pairs are already in contact, the contact tooth-face pairs have not
yet been transferred from the previous two not-in-contact pairs to the next two. It leads to the delay of the sudden
drop of DTE. Fig. 8 (d) shows the Mises stress of point 1 of the pinion tooth. Similar to the result of DTE, the
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Fig. 8: The engagement and tooth-change process of six tooth pairs for (a) gear, and (b) pinion. Comparison between different tooth-change thresholds of
(c) pinion DTE (θc−θt) of center (d) stress of point 7 of tooth 1 of the pinion. For clear illustration, the meshing-out (blue dot-dash line) and meshing-in
(orange dot-dash line) moments for a tooth are shown in the figure.

results for t̄c = 0.5,0.6 are almost the same while t̄c = 0.4 leads to the sudden increase of Mises stress happening
ahead of its schedule and t̄c = 0.7 results in the delay of the sudden drop of Mises stress due to the inappropriate
tooth-change moments. It is noted that there are no obvious oscillations in the vicinity of tooth-change moments in
the presented simulation, which verifies the smoothness and effectiveness of tooth-change methods in the present
ALE formulation.

6.2 Dynamic verification of accuracy and efficiency

In this example, the accuracy and efficiency of the ALE method are compared with those of the nonlinear FE
method. This model is the same as the one studied in example 3, but with ω = 50× step(0,0,0.1,1)RPM and
M = 1225× step(0,0,0.1,1)Nm. The simulation experiences 0.3s, covering about the engagement process of 20
pairs of teeth (about 1.5 cycles of pinion), and the acceleration process is 0.1s.

Figure 10 (a) shows the DTE of the gear. In this figure, θi is the angular displacement of point i(i = 1,4,7,10)
of tooth 97, θc and θt are the actual and theoretical angular displacements of the center, which are the same for
the driving gear (θc = θt). θi−θt represents the angular deflection of point i caused by elastic deformation. It is
clearly shown in Fig. 10 (a) that the angular deflections are almost the same for different regions of tooth 97 of the
gear during the non-meshing period while increases from the root to tip (point 10→point 7→point 4→point 1) in
meshing period, i.e., t̄ ∈ (0.63, 2.44) for the acceleration process.

Fig. 10 (b) shows the angular deflections of the pinion (tooth 1), the result of which is very similar to the gear,
except that there are two peaks. The first peak is t̄ ∈ (0.63, 2.44) for acceleration process and the second peak
is t̄ ∈ (13.63, 15.44) for stable process. Because the pinion is the driven gear, the contact force is in the same
direction as the deflection so that θi−θc > 0 (Fig. 10 (b)) while θi−θc(θt)< 0 (Fig. 10 (a)) for the driving gear.
It can be noted that the angular deflection of the gear is less than that of the pinion because of its larger radius.

Fig. 10 (d) shows the DTE (θc− θt) of the pinion center, which has two typical regions, high DTE region
t̄ ∈ (k+0.44, k+0.63) for single-pair contact and low DTE region t̄ ∈ (k+0.63, k+1.44) for double-pair contact,
where k is a positive integer. There are steep transitions between these regions, representing the meshing-out
(k+0.44, blue dot-dash line) and meshing-in moments (k+0.63, orange dot-dash line).

Fig. 10 (c) is the sum of Fig. 10 (b) and Fig. 10 (d), i.e., (θi−θt) = (θi−θc)+(θc−θt), representing the DTE
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Fig. 9: Time evolution of the Mises stress for different teeth of (a) pinion and (b) gear. For clear illustration, the meshing-out (blue dot-dash line) and
meshing-in (orange dot-dash line) moment for a tooth is shown in the figure.

of point 1, 4, 7 and 10. In Fig. 10 (b), θi−θc > 0 while in Fig. 10 (d), θc−θt < 0, but in Fig. 10 (c), θi−θt < 0,
which shows a larger influence of rigid rotation compared with the flexible deformation.

Overall, the DTE results of the ALE formulation closely agree with those of the non-linear FE method. The
differences between these results can be attributed to the ignorance of higher frequency modes and the difference
in contact-detection algorithm between ABAQUS and in-house code.

Figure 10 (e) shows the Mises stress of the pinion, in which σMi is the stress of point i(i = 1,4,7,10) of tooth
1. It is clearly shown that the stresses are almost zero for different regions of the pinion during the non-meshing
period. There are also two peaks during the meshing period, the first of which is t̄ ∈ (0.63, 2.44) in acceleration
process and the second is t̄ ∈ (13.63, 15.44) in stable process. By analyzing the second peak period as an example,
the tooth-root stress of point 7 suddenly increases when it meshes in (t̄ = 13.63) or the previous tooth meshes out
(t̄ = 14.44), and it drops when the subsequent tooth meshes in (t̄ = 14.63) or itself meshes out (t̄ = 15.44). This
is in close agreement with ABAQUS results. For point 1 and 4 of the pinion, the stress level is lower than that
of point 7 and the time history is similar. However, for point 10, it experiences two continuous peaks because it
is the tooth root both for tooth 1 and the previous tooth, tooth 2. During the first half meshing process of tooth 2
(t̄ ∈ (12.63, 13.63)), point 10 is in the area of compressive stress which continuously increases. Then, the stress
of point 10 drops suddenly because the tensile stress caused by meshing-in of tooth 1 counteracts the compressive
stress caused by tooth 2, after which it behaves just like point 7.

For points 1, 4, 7, and 10 of the gear, the situation is a little different because points 1, 4, 7, and 10 of the pinion
are not in the contact tooth-face while the corresponding points of the gear are in the contact tooth-face. It can be
seen from Fig. 10 (f) that the stress of points 7, 4, and 1 increases from zero successively. This means that they
have contact from the root (point 7) to the middle (point 4) until the tip (point 1), which correlates to the realistic
situation qualitatively. For point 10, it is also located in the transition area between tooth 97 and 1. Therefore, it
also has two continuous peaks just like point 10 in the pinion.

Fig. 9 shows the time history of the first six teeth of the pinion and gear and it is noted that the pinion has
rotated more than one circle. In the stable process of rotation, the stress curves for different teeth are the same
because of the rotational symmetry of the gear.

Finally, the computational costs of two formulations are compared. It takes about 180 hours to finish this
task using ABAQUS, while only 8.4 hours are used to obtain comparable results with present ALE formulation.
This implies that computational efficiency of the proposed method is one order of magnitude better in this typical
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Fig. 10: Comparison of DTE between ALE formulation and nonlinear FE method, (a) DTE (θ −θc) of points 1, 4, 7 and 10 of tooth 97 of the gear (b) DTE
(θ −θc) of points 1, 4, 7 and 10 of tooth 1 of the pinion (c) DTE (θ −θt) of points 1, 4, 7 and 10 of tooth 1 of the pinion (d) pinion DTE (θc−θt) of center
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example when compared to the conventional method.

7 Conclusions

In this paper, a novel model order reduction method based on ALE formulation is developed to improve the
efficiency of the gear contact simulation. The efficiency has been achieved by the following four techniques. First,
a low-frequency approximation of the gear model is adopted, which is valid when the rotation speed of the gear pair
is a fraction of the natural frequency of the gear. Second, by taking advantage of ALE formulation, the mesh nodes
and the materials are not tied together, and only the mesh nodes of four tooth-faces are defined as boundary nodes
which are associated with different material points at different times. These two techniques are designed to reduce
the DOF of the gear pair, from ni + znb to znb by ignoring the fixed boundary normal modes, and from znb to 4nb
by using ALE formulation. The third technique focuses on the simplification of inertial force and Jacobian matrix
by ignoring the contributions from deformation. Finally, a four-step high-efficiency contact algorithm is used to
reduce the number of contact pairs in the detection process and improve the efficiency through coarse collision
detection and bounding sphere method. Four numerical examples demonstrated the accuracy and efficiency of the
proposed method.
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