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ABSTRACT — The paper presents mathematical model of the spatial linkages with flexible links, 

clearance and friction effects in joints. In the general case kinematic structure the linkage can be 

open- or closed-loop. Open-loop systems can form serial or tree structure. When closed-loop 

kinematic chains are analysed, it is necessary to convert such a system into an equivalent system 

with an open-loop kinematic structure. The cut-joint technique is used to make such conversion. 

The joint coordinates and homogeneous transformation matrices are used in description of the 

motion of the system. The flexibility of links is modelled by means of the Rigid Finite Element 

Method. It is assumed that joints are imperfect i.e. the clearance and friction in joints are taken into 

account. It is assumed that the clearance exists only in rotational joints, and two models of the 

clearance, planar and spatial, are proposed. The LuGre bristles’ friction model is used. The 

dynamics equations of motion of the linkage are derived using the Lagrange’s equations. These 

equations are supplemented with closing constraints equations, formulated for joints in which 

closed-loop chains are cut. As an example a one-dof spatial RSUP linkage is analysed. 

Nomenclature 

 g  – acceleration of gravity, 

 c  – symbol of chain 

 l  – symbol of link, 

 rfe( , , )c l r  – symbol of -thr rigid finite element of link l  in chain c , 

 sde( , , )c l s  – symbol of -ths spring-damping element of link l  in chain c , 

 ( , )c ll  – length of link l  in chain c , 

 
( , , )c l rl  – length of -thr rigid finite element of link l  in chain c , 

 
( , )c pm  – mass of link l  in chain c , 

 
( )c

dofn  – number of generalized coordinates describing the motion of chain c with respect to the 

   reference system {0} , 

 
( , )c l

dofn  – number of generalized coordinates describing the motion of link l  with respect to link 1l −  

   in chain c , 

 
( , )c l

dofn  – number of generalized coordinates describing the motion of link l  in chain c with respect to 

   the reference system {0} , 

 ( , )c l

sden  – number of sdes of link l  in chain c , 

 
( , )c l

rfen  – number of rfes of link l  in chain c , 

 
( )c

ln  – number of links in chain c , 
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( , )c l

q  – vector of generalized coordinates describing the motion of link l  with respect to link 1l − , 

   ( ) ( , )
( )

( , ) ( , )
1,2

1, ,
1, ,

c l
c dof

l

c l c l
c j j n
l n

q=
=

=

=q , 

 
( , )c l

q  – vector of generalized coordinates describing the motion of link l  with respect to the  

   reference system {0} , ( ) ( , )
( )

( , ) ( , )
1,2

1, ,
1, ,

c l
c dof

l

c l c l
c j j n
l n

q=
=

=

=q ,  

 
( , )c l

T  – homogeneous transformation matrix from the local reference system of link l  to the  

   local reference system of link 1l − , 

 ( , )c l
T  – homogeneous transformation matrix from the local coordinate system of link l  to reference 

   system {0} , 

 
( , )c l

H  – pseudo-inertia matrix of link (c, l ), 

 
( , )c l

Cr  – vector of position of the mass center of link l in chain c defined in its local reference  

   system, 

 J  – reducing matrix,

1

2

3

1 0 0 0

0 1 0 0

0 0 1 0

   
   

= =
   
      

j

J j

j

, 

( , , )c l s
S ,

( , , )c l s
D  – stiffness and damping matrices of sde( , , )c l s , respectively, 

 ( )c
M  – mass matrix of the chain c , 

 ( )c
f  – vector of external, Coriolis, centrifugal and deformation forces acting in the chain c , 

 
( )c

e  – vector of dynamic forces, 

 lf  – vector of deformation forces of the flexible links, 

 cs  – vector of forces resulting from impacts in clearance joints, 

 
( ) ( ),j br r  – radius of the journal and bearing, respectively, 

1 Introduction 

Increased computational capabilities of modern computers allow us to simulate the dynamics of spatial linkages, 

taking into account the complex phenomena associated with their movement such as flexibility of links, friction 

and clearance in joints. There are many papers which deal with the issue of modelling dynamics of linkages or in 

general multibody systems [1-4]. The clearance in joints are especially dangerous. It can lead to abnormal 

loading of the linkage and as result to damage to the system.  Among the other effects caused by the clearance in 

joints can be additional vibrations, noise and faster wear of parts. Simulations of dynamics of linkages with 

clearance in joints can be applied to the predict and assess the magnitude of the loads acting on the system.  

In the literature it can be found many papers which deal with models of clearance of revolute joints [5-12], 

cylindrical joints [13], translational joints [14] or spherical joints [15-16]. A survey of analytical, numerical, and 

experimental approaches for the kinematics and dynamics analyses of multibody mechanical systems with 

clearance joints is presented in [5]. This work focuses on the modelling of linkages with clearance in revolute 

joints therefore, in the further part of the review, papers related only to revolute joints clearance model will be 

analyzed. Comparative study of clearance effects on dynamic behavior of planar linkages with clearance in 

revolute joints is shown in [6]. Proposed there the numerical model is validated by comparison with results 

obtained from experiment. The planar model of linkages with multiple revolute clearance joints is formulated in 

[7], whereas the planar model of revolute joints based on a geometric description of contact conditions and on a 

continuous contact force model is shown in [8]. In [9] is developed the spatial model of the revolute joint in 

which only radial clearance is taken into account. The cartesian coordinates are used in description of colliding 

bodies and the dynamics of the joint is controlled by contact–impact forces. Marques et al. in their works [10,11] 
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extend model provided by Flores et al. [8, 9] by introducing axial clearance. In the paper [10] the Dahl and 

LuGre dynamics friction models are applied to model friction phenomenon.  Akhadkary et al [12] analyse the 

influence of the joint clearance in a circuit breaker, which is a forty-two degrees of freedom linkage, on dynamic 

response of the system. In this paper, the spatial model of revolute joint with both radial and axial clearance 

taking into account contact with flanges is proposed. This model has been successfully validated by comparison 

with experimental data.  

The aim of the paper is to develop automatic method generation of dynamics equations of motion of linkages 

whose links can be flexible and clearance together with friction in joint are taken into account. In the paper, it is 

assumed that the kinematics of linkage is described by means of the joint coordinates and homogeneous 

transformation matrices. Due to the adopted type of coordinates, in further consideration, it is assumed that the 

clearance can occur only in joints in which closed-loop kinematic chains are cut. The models of clearance 

presented in the paper are based on models presented in [8-9]. Friction in joint is modeled in the sense of the 

LuGre model [17-18]. The flexibility of links is modelled by means of the Rigid Finite Element Method (RFEM) 

[4]. The main advantage of the RFEM is the ability of application of the rigid-body formalism to model 

dynamics of the multibody systems with flexible links. This method has been successfully used to investigate 

dynamics of spatial linkages, manipulators, cranes, satellites [19-21]. 

The paper is organized as follows. In section 2 general introduction to linkages’ topologies is presented. In the 

next section dynamics equations of motion of the RSUP linkage are derived. In the model presented there, it is 

assumed that all joints are ideal. Section 3 develops two models of the clearance, planar and spatial, which are 

formulated for the cut-joint of the RSUP linkage. In section 4 simulation results obtained for the linkage with 

rigid/flexible coupler and clearance in joint are presented. Results calculated for the linkage with ideal joint are 

also shown. The paper ends with conclusions and a list of references.  

2 Topologies of linkage 

In the general case kinematic structure the linkage can be open- or closed-loop (Fig. 1). Open-loop systems 

can form serial (Fig. 1a) or tree structure (Fig. 1c). When closed-loop kinematic chains are analysed, it is 

necessary to convert such a system into an equivalent system with an open-loop kinematic structure. In the paper 

the cut-joint technique is used in order to make such conversion. As a result, the spanning tree thus obtained can 

also have a serial (Fig. 1b) or tree structure (Fig. 1d). In the joint coordinates the dynamics equations of motion, 

depending on the kinematic structure of the linkage, can take one of the following forms: 

 

 

 

a) b) 
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Fig. 1: Possible topologies of linkages 

- the open-loop serial structure: 

 (1) (1)=M q f  (1) 

- the closed-loop serial structure: 

 
(1) (2) (1) (2)T + −  + 

=    
      

q

q

M M Φ q f f

Φ 0 λ c
 (2) 

- the open-loop tree structure: 

 ( ) ( )( ) ( )(1) ( ) (1) ( )c cn ns s+ + + + = + + + +M M M q f f f  (3) 

- the closed-loop tree structure: 

 

( )(1) ( ) ( )(1) ( )c c
ns T ns + + + + −  + + + + 

=    
      

q

q

M M M Φ q f f f

Φ 0 λ c
 (4) 

where: 

(1)

1,1

(1)

 
 
 
 =
 
 
 
 

M 0 0

M 0 0 0

0 0 0

,

( ) ( )

1,1 1,

( ) ( ) ( )

1, ,

s s

s

s s s

s s s

 
 
 
 =
 
 
 
 

M M 0

M M M 0

0 0 0

, 

( ) ( )

1,1 1,

( )

( ) ( )

1, ,

c c

c

c

c c

c c c

n n

n

n

n n

n n n

 
 
 
 =
 
 
 
 

M 0 M

0 0 0M

M 0 M

,  

(1) (1)

1

T T

 =
 

f f 0 0 , 
( ) ( ) ( )

1

T T T
s s s

s
 =
 

f f f 0 , 
( ) ( ) ( )

1

T T
c c c

c

T
n n n

n
 =
 

f f 0 f , 

( )(1) ( )
TT T

c

T
ns =

 
q q q q . 

Summarizing when the joint coordinates are applied and a linkage has open-loop kinematic structure the motion 

of the system is described by minimal set of coordinates. In the case of closed-loop systems closing constraint 

equations have to be formulated for each cut-joint. 

  

c) 
d) 



5 

 

3 Mathematical model of the RSUP linkage with ideal joints 

A spatial one-dof RSUP linkage [22] consisting of four links is shown in Fig.1. It is assumed that the driving 

link is loaded by driving (
(1,1)

drt ) and resistance (
(1,1)

rest ) torques, respectively. It is assumed that link (2, 2)  

(coupler) can be flexible and other links are rigid. The linkage is divided in the place of cut-joint R (revolute 

joint), and it leads to two open-loop kinematic chains: 1 – formed by links (1,1) , (1, 2)  and 2 – formed by links 

(2,1) , (2, 2)  (Fig.2). It is assumed that the clearance and friction occur only in cut-joint R.  

  

Fig. 2: RUSP linkage Fig. 3: Cut-joint technique 

The Denavit-Hartenberg notation is used to define the motion of the linkage [23]. The RFEM is applied to 

model the flexibility of the coupler (Fig. 3). As a result the flexible link is replaced by the system of rigid 

elements (rfe) interconnected by means of spring-damping elements (sde) [4,20-21].  

 

Fig. 4: The kinematics of the RSUP linkage 

driving link

driven links

(1,1)
rest

(1,1)
drt

RS 20 5 100 

CS 28 200

CS 28 500

CHS 20 5 100 

link (1,1)

link (1,2)

link (2,1)

link(2, 2)

(1,1)
rest

(1,1)
drt

S

(1,1)C

(2,1)C

(2,2)
C

(1,2)C
joint (1,1)

R

joint (2,1)
P

R
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R

chain 1

chain 2

(1,2)l

(1,1)l

chain 2

(2,0)ŷ

(1,1)
x̂

(1,0) (1,1)ˆ ˆ,z z
(1,1)ψ

(2,1)z

( 2,0 )

(1,0)

O
y

(2,0)x̂

(1,1)
drt

(1,0) (1,1)
,O O

(1,1)
rest

(2,0)O

rfe(1,2,0)

(1,0)ŷ
(1,1)ŷ

(1,2,0)ŷ

(1,0)x̂ (1,2,0)x̂

(1,2,0)ẑ

(1,2,0)ψ

(1,2,0)φ

(1,2,0)θ

(2,1)ŷ

(2,2)ŷ

(2,1)x̂
(2,2)x̂

(2,0)ẑ

(2,1)ẑ

(2,2)ẑ

(2,2)ψ

( 2 ,2 )

(2,1)

O
x

(2,1)O

(2,2)O

(1,2)
rfe(1,2, )rfen

(1,2, ) (1,2, ),s s
ψ ψs d

(1,2, ) (1,2, )
,

s s
θ θs d

(1,2 , ) (1,2, ),s s
φ φs d

(1,2, 1)ˆ rx −

(1,2, )ˆ r
z

(1,2, 1)rl −

sde (1,2, 1)s −

sde (1, 2, )s

sde (1, 2, 1)s +

rfe (1,2, 1)r −

(1,2, )ˆ rx

(1,2, 1)ˆ r
z

−
(1,2, )ˆ r

y

(1,2, 1)ˆ ry −

(1,2, )rl

(1,2, )r
ψ

(1,2, )r
φ

(1,2, )rθ

rfe (1, 2, )r

(0)x̂

(0)
ŷ

(0)ẑ
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The motion of chains are defined by the vectors of generalized coordinates (joint coordinates) in the 

following form: 

 ( ) ( )

( ) ( )

1,2 1, ,
c

dof

c c

ic i n
q

= =
=q , (5) 

where: 

1) for chain 1: 
(1) (1,1) (1,2)T T T

 =
 

q q q , 

(1,1) (1,1) , =  q (1,2)

(1,2,0) (1,2)

(1,2)

(1,2, )(1,2,1) (1,2, ) (1,2)

if 1

if 1

T

TT T
rfe

rfe

T
nr

rfe

n

n

 =


= 
    

q

q
q q q

, 

(1,2)

(1,2, ) (1,2, ) (1,2, ) (1,2, )

0, , rfe

T
r r r r

r n
  

=
 =  q , 

2) for chain 2: 
(2) (2,1) (2,2)T T T

 =
 

q q q , 

(2,1) (2,1) (2,2) (2,2),z   = =   q q  . 

The homogeneous transformation matrices from the local reference frame attached to body l in kinematic 

chain c to the global reference frame {0}  are determined as follows: 

 
( )

( , ) ( , 1) ( , )
1,2

1, ,
c

l

c l c l c l
c

l n

−
=

=

=T T T , (6)  

where: 

1) for chain 1: 

(1,0)

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 
 
 =
 −
 
 

T , 

(1,1) (1,1)

(1,1) (1,1)

(1,1)

c s 0 0

s c 0 0

0 0 1 0

0 0 0 1

 

 

 −
 
 =
 
 
  

T , 

(1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)

(1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,1)

(1,2)

(1,2) (1,

c c c s s s c c s c s s 0

s c s s s c c s s c c s

s c

l

           

           

 

− +

+ −
=

−
T

2) (1,2) (1,2) (1,2)s c c 0

0 0 0 1

  

 
 
 
 
 
  

, 

2) for chain 2:  

( 2,0)

(1,0)

(2,0)

0 0 1 0

1 0 0

0 1 0 0

0 0 0 1

O
y

 
 

−
 =
 
 
 

T , (2,1)

(2,1)

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

z

 
 
 =
 
 
 

T , 

( 2,2)

(2,2) (2,2) (2,1)

(2,2) (2,2)

(2,2)

c s 0

s c 0 0

0 0 1 0

0 0 0 1

O
x 

 

 −
 
 =
 
 
  

T , 

( , ) ( , ) ( , ) ( , )s sin , c cos .          = =  

The dynamics equations of motion for each kinematic chain of the unconstrained linkage are formulated using 

the Lagrange equations of the second kind [24]: 

 
( )( ) ( )

( )

( ) ( ) ( )

d

d

cc c
p ck k

c c c

EE E

t

 
− + =

  
Q

q q q
, (7)  

where 

( )

( ) ( , )

1

c
ln

c c l

k k

l

E E
=

= , 

( )( )

( ) ( ) ( ) ( , ) ( , )

, , , ,

1 1

cc
fl

nn

c c c c l c l

p p g p f p g p f

l l

E E E E E
= =

= + = +  . 

Components of the Lagrange equations are obtained using the computational approach presented in [4]. These 

equations are supplemented by the Lagrange multipliers and constraint equations formulated for joint in which 
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closed-loop kinematic chain is divided. Finally the dynamics equations of motion of the RSUP linkage with 

ideal joints take a form: 

 

T

l
 − − −   

=     
      

q

q

M Φ q Q e f

Φ 0 λ γ
, (8)  

where:   

(1)

(2)

 
=  
 

M 0
M

0 M
, 

(1)

(2)

 
=  
 

q
q

q
, 

(1)

(2)

 
=  
 

e
e

e
,  

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1,1 1, 1,

( ) ( ) ( )( )
,1 , ,

( ) ( ) ( )

,1 , ,

c
l

c
l

c c c c
l l l l

c c c

j n

c c cc
i i j i n

c c c

n n j n n

 
 
 
 

=  
 
 
 
 

M M M

M M MM

M M M

, 
 

( )

( ) ( , )

, ,

max ,

,

c
ln

c c l

i j i j

l i j=

= M M   

( ) ( , )( , 1) ( , 1)

( , )

( , ) ( , )

, 1, ,,, 1, ,

1, ,

c ic i c j
dofdof dof

c j
dof

c l c l

i j v nn v n wi j l

w n

m − − =+ +=

=

=M ,  ( , ) ( , ) ( , ) ( , )

, tr
Tc l c l c l c l

i j i jm = T H T , 
( , )

( , )

( , )

c l

c l

i c l

iq


=


T
T , 

( )

( )

1

( )( )

( )
c

l

c

cc
i

c

n

 
 
 
 =
 
 
 
 

e

ee

e

, ( )
( )

( ) ( , ) ( , )

c
ln

c c l c l

i i i

l i=

= − +e h g , 

( )( , 1)
( , )

( , ) ( , )

1, ,
1, ,

c i
c ldof

dof

c l c l

i n vi l
v n

h −
+=

=

=h ,  
( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

,

1

tr

c l c l
dof dof

T

n n

c l c l c l c l c l c l

i i m n m n

m n m

h q q
= =

=  T H T ,
2 ( , )

( , )

, ( , ) ( , )

c l

c l

m n c l c l

m nq q


=
 

T
T , 

( )( , 1)
( , )

( , ) ( , )

1, ,
1, ,

c i
c idof

dof

c l c l

i n vi l
v n

g −
+=

=

=g , ( ) ( , ) ( , ) ( , )

2

p c l c l c l

i i Cg m g= j T r , 

(1) (1) (1)

(2)

dr res
   −

= =   
   

Q t t
Q

Q 0
, 

(1,1)

(1) dr

dr

t 
=  
 

t
0

, 

(1,1)

(1) res

res

t 
=  
 

t
0

, 

(1)

l

l

 
=  
 

f
f

0
, (1) (1,2) (1,2)

l
 =  f 0 S q , 

(1,2)

(1,2,1)

(1,2)

(1,2, )sden

 
 

=  
 
 

S 0 0

S 0 0

0 0 S

, 


=


q

Φ
Φ

q
 , = − qγ Φ q , , , , , ,

T

R x R y R z R x R yf f f n n =  λ , 

)( =Φ q 0 -holonomic constraint equations. 

In simulations the Baumgarte stabilization method [25] is applied to eliminate constraint violations at the 

position and velocity level. Therefore, the right sides of the constraint equations have to be written in stabilized 

form as follows: 

 2 = − − −qγ Φ q Φ Φ  , (9)  

where  and   are the stablization coefficients. 
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4 Dynamics of the RSUP linkage with clearance in joints 

Due to the fact that the motion of the RSUP linkage’s links is described in the joint coordinates the clearance is 

considered only in the cut-joint. It is assumed that the clearance exists only in rotational joints, and two models 

of the clearance, planar and spatial, are proposed. In both models only a radial clearance is taken into account 

and the influence of the axial clearance is neglected.  

In the case of the planar model, it is assumed that the axes of the connected links are parallel, and the contact 

forces acting between the contacting surfaces are the same along the connection axis. Let us consider two bodies 

bearing b  and journal j  which represent two joined links (Fig. 4).  

 

Fig. 5: The planar model of the clearance 

The radial clearance between joints can be calculated as: 

 
( ) ( )b j

rc r r= −  (10) 

The eccentricity vector e  which describes relative position between the journal and the bearing center can be 

given by: 

 ( ) ( )

(0) (0) .b jS S
= −e r r  (11)  

Depending on the magnitude of the eccentricity vector, two phases of motion can be considered: 

rce  - no contact exists between the journal and bearing and no forces are introduced into dynamics equations 

of motion, 

rce - contact exists and two forces are introduced into system: normal contact force, determined from an 

impact force law, and friction forces calculated using bristles’ friction models. 

The penetration depth causes by the impact of the connected links can be calculated as: 

 
rc= −e . (12)  

The impact force nf  acting between the journal and bearing is evaluated using the model proposed by Lankarani 

and Nikravesh [26]  and it is given by: 

 
( )2

( )

3 1
1

4

en

n

k
K

−

 −
 = +
 
 

f





, (13)  

where K is the generalized stiffness, n  is the exponent equals to 1.5 for metal surfaces, ek  is the restitution 

coefficient and 
( )−  is the velocity in the initial impact phase. The contact model (13) is extension of the 

classical Hertz contact law and it allows us to take into account energy dissipation introduced by a damping 

hysteretic factor.  

(0)
ŷ

(0)
x̂

( )bS

δ

n−f

nf
ff

f−f

( )jS

( )

(0)
bS

r

( )

(0)
jS

r

( )bK

( )jK

( )

(0)
bK

r

e

( )

(0)
jK

r

bearingb
journal j

( )br
( )jr
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The tangent force 
ff corresponds to the friction force which is modelled by means of the LuGre bristles’ friction 

model [17,18]. Therefore, the friction coefficient can be expressed as follows: 

 
0 1 2 tz z v= + +    , (14)  

where tv  is the tangent velocity, 0 , 1 , 2  are stiffness, damping and viscous damping coefficients which 

describe the contact of the bristle, respectively. 

Deflection of the bristle z  can be calculated from the additional state equation which can be written in the 

following form: 

 
( )

( )

0

2

sgn
1

exp

t

t

t
k s k

s

z
z

 
 
 
 = −

   
 + − −  
     

 



  



, (15)  

where s , k  are static and kinetic friction coefficients, respectively. 

Total force acting in the contact point can be expressed as the sum of the normal and tangent forces: 

  c f n= +f f f . (16)  

The generalized forces associated with contact force cf  are given by: 

 
( ) ( )

(0) (0)
b jT TK K

c c c

 
= −

 

r r
s f f

q q
. (17)  

The dynamics equations of motion of the RSUP linkage with the 

planar model of clearance in the cut-joint can be rewritten in the 

following form: 

  
,

,

T
l cp

p pp

− − + −    
=     

      

q

q

q Q e f sM Φ

λ γΦ 0
,  (18)  

where , , ,

T

p R z R x R yf n n =  λ  are the Lagrange multipliers. The 

constraint equations ( )p =Φ q 0  describes that the axis of rotation 

of the bearing and journal should be parallel and connected bodies 

can’t move along this axis. 

In the case of a spatial model, skewing of the axis additionally 

is taken into account. The influence of the axial clearance is 

neglected. 

In the paper following scenarios of the contact are considered: 

- no contact exists between connected links, 

- the bearing and journal are in contact along the line, 

- the journal contacts with bearing at a point 

- both links are in contact in two points (Fig.6). 

Applying reasoning similar to that presented for the planar model, 

dependencies for forces acting at the contact points can be derived. 

Thus, the generalized forces vector can be expressed as: 

( )bS

,2ff

( )
1

j
S

1e 2e ,2nf ,2n−f,1nf,1nf

( )
2
b

K
( )
2

j
S

,2f−f

,1ff

,1f−f

( )
1

b
K

( )
1

j
K ( )

2
j

K

2δ1δ

( )bS

( )
2

j
S

( )
1

jS

(0)
ŷ

(0)
x̂

( )
2

(0)
b

K
r

( )
2

(0)
j

K
r

( )
2

(0)
j

K
r

( )
2

(0)
b

K
r

(0)
ẑ

Fig. 6: The spatial model of the clearance 
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( ) ( ) ( ) ( )
1 2 1 2

(0) (0) (0) (0)

,1 ,2 ,1 ,2

b b j j
K K K KT T T T

c c c c c

   
= + − −

   

r r r r
s f f f f

q q q q
. (19) 

Finally introducing of the spatial model of clearance into the mathematical model of the RSUP linkage lead to 

the following equations of motion: 

 
,

,

T

l cs

s ss

  − − +−    
=     

      

q

q

q Q e f sM Φ

λ γΦ 0
, (20)  

where ,

T

s R zf =  λ is the reaction force acting along the joint axis which results from the constraint equation 

( )s =Φ q 0  according to which the joined links can’t move along this axis. 

5 Numerical simulations 

In simulations, it is assumed that stable value of the driving torque is (1,1)

,0 10 Nmdrt =  and this value is reached in 

time 2sst = . The angular velocity of the crank corresponding to the resistance torque (1,1) (1,1)

,0 ,0res drt t=  is 

-1

0 9 rad s() = (Fig. 7). 

 

Fig. 7: Assumed courses of driving and resistance torques 

The initial configuration of the linkage is described by the following vector: 

 
(1,2,1) (1,2) ( 2,1) ( 2,2)

(1,2, )

(1,1) (1,2,0)

0 0 0.25 0
2 3

n
rfe

T

 
 

= − 
 
  

q q q
q

q q

q 0 0
 

. (18)  

The flexible coupler was discretized into 5 rfes. The parameters applied in simulation are summarized in Tab. 1. 

The dynamics equations were integrated using the Runge-Kutta method of fourth order with constant step size 

equals to 65 10 sh −=  . The Baumgarte stabilization coefficients applied in simulation were 100= , 50= .  

Table 1: Parameters applied in simulations 

Parameter Symbol Value 

Static coefficient of the friction s  0.2  

 (1,1) Nmdrt

(1,1)

,0drt

 st

0t

(1,1) (1,1)

,0 ,0(1,1) 2 3

,0 2 3

0 0

3 2dr dr

dr

t t
t t t

t t
= −

 (1,1) Nmrest

(1,1) rad

s
ψ

 
 
 



(1,1)

0ψ

(1,1)

,0rest
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Kinetic coefficient of friction k  0.1 

Stribeck velocity, 1ms−  sv  0.0175  

Stiffness coefficient, 1m−  0  600  

Damping coefficient, 1s m−  
1  600  

Coefficient of viscosity, 1s m−  
2  0  

Radius of the bearing, m  ( )br  0.005  

Radius of the journal, m  ( )jr  0.004  

Coefficient of restitution ek  0.9  

 

The influence of the clearance on the motion of the linkage can be observed through the time courses of the 

slider displacement, velocity and acceleration (Fig. 8). In the time courses of the slider velocity, it can be 

observed slight peaks caused by the influence of the impulse forces. It can be seen, that the clearance 

significantly affects on acceleration courses. Magnitude of the acceleration is significantly larger than the one 

obtained for the ideal joint. Fig. 9 shows time courses of the contact force acting in the clearance joint obtained 

for model with rigid and flexible coupler. It can be noted, that the number of peaks caused by the impact force is 

also larger when the coupler is flexible (Fig. 8). Similar conclusion can be formulated for the time courses of the 

acceleration. 

 

 

 

Fig. 8: Time courses of values of displacement, velocity and acceleration of the slider 
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Fig. 9: Time courses of values of the normal contact force 

Trajectory of the journal inside the bearing is presented in Fig. 10. Black dotted line represents the reference 

circle whose radius equals to the assumed clearance in joint (1mm). Each crossing of this reference line means 

that the journal and bearing are in contact. 

 

a)  b) 

Fig. 10: Journal trajactory obtained for linkage with rigid (a) and flexible (b) coupler 

6 Conclusions 

Dynamics model of the spatial linkage with flexible links and clearance in revolute joints was presented. The 

joint coordinates and homogeneous transformation matrices were applied in description of motion of the links. 

Due to this fact the clearance effect was analyzed only in joints in which closed-loop chain was divided into 

open-loop kinematic chains. The planar and spatial models of clearance were proposed. Both models use the 

normal contact force model based on the Lankarani–Nikravesh contact force model and friction phenomenon is 

modeled by means of the LuGre friction model. Flexible links were discretized by means of the RFEM. As a 

special case of the spatial linkage, dynamics of the RSUP linkage was analyzed. In numerical simulations, 

dynamic response of the system with/without clearance and with/without flexible links were analyzed. Only 

results obtained for planar model of the clearance were presented. Simulations show that the clearance has the 

significant influence on motion of the linkage and force acting in joints. For the assumed geometric dimensions 

of the linkage, the link flexibility have no a great influence on the system dynamic response. The flexibility 
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affects the number of impulses caused by the contact of the journal and bearing. In the extended version of this 

work will be presented the detailed formulas leading to the determination of the contact forces. Results obtained 

for the spatial model will be also shown. 
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