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ABSTRACT — The paper describes a procedure for solving  flexible multibody system on multiple 
parallel processors with special attention to the computational efficiency. This procedure is improved 
compared with previous papers by the capability to solve kinematic loops with the similar efficiency 
as flexible multibody system with kinematic chain or branched kinematic tree. The procedure 
combines the usage of efficient algorithms on single processor with massive parallelization with the 
goal to achieve improvement by parallelization even for small systems. The paper describes the 
extension of the elimination procedure towards the parallelized dynamic solution of flexible 
multibody system. The method is based on the modified state space and the efficient set of natural 
coordinates and modal coordinates for the description of the deformation in the system. The 
elimination process is solved by the efficient combination of elimination process and Cholmod 
procedure. The resulting computational complexity is very promising. The elimination procedure is 
applied only to the computation of reaction forces and the local equations of motion are solved 
completely independently on parallel processors without any constraints between the processors. 

1 Introduction 
�e solution of the flexible multibody system dynamics can be done using several procedures. �ey can differ 

in the type of coordinates being used or in the ability for parallel implementation. �ere are many effective 
formalism for which the parallelization is, however, not possible. Usually they are based on the relative 
coordinates and the recursive computation [7, 8]. A method widely used for the parallel solution of multibody 
dynamics is the Divide and Conquer (DAC) method [1-3] based on the tree division of the system with systematic 
reduction of the system size.  

�e new procedure for solving flexible multibody system on multiple parallel processors with special attention 
to the computational efficiency was developed in recent years [5, 6, 9, 10] . �e procedure combines the usage of 
efficient algorithms on single processor with massive parallelization with the goal to achieve improvement by 
parallelization even for small systems. �e method is based on the modified state space and the efficient set of 
natural coordinates and modal coordinates for the description of the deformation in the flexible multibody system. 
�is method uses the natural coordinates for the description of the system position and modal coordinates for the 
description of the deformation in the system and modified state space approach [4] with Schur complement 
procedure [5]. �e elimination process is solved by the efficient combination of elimination process and Cholmod 
procedure. �e resulting computational complexity is very promising. �e elimination procedure is applied only 
to the computation of reaction forces and the local equations of motion are solved completely independently on 
parallel processors without any constraints between the processors. �e limitation of this approach is that it is 
valid just for kinematic chain or branched kinematic tree. 
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�e paper describes an extension of this procedure to solve flexible multibody systems containing kinematic 
loops with the similar efficiency as flexible multibody system just with kinematic chain or branched kinematic 
tree. 

2 Open Loop Procedure 
�e basic method is based on the modified state space and the efficient set of natural coordinates [8, 4] and 

modal coordinates for the description of the deformation in the system. �e the equation of motion for single body 
i is derived as 

𝑴𝑴𝑖𝑖𝒔𝒔�̈�𝚤 + 𝑲𝑲𝑖𝑖𝒔𝒔𝑖𝑖 = 𝑸𝑸𝑖𝑖 (1) 
 
where Mi is the mass matrix, Ki is the stiffness matrix and Qi is the vector of generalized forces. Using the 
procedure described in [6, 9] exploiting the Schur complement the resulting system of equations of motion (EOM) 
is obtained 

 𝑴𝑴�̇�𝒔 + 𝑱𝑱𝑻𝑻𝝁𝝁 = 𝒑𝒑∗ (2) 
 𝑱𝑱�̇�𝒔 = −𝛼𝛼𝒇𝒇(𝒔𝒔) (3) 

where 𝑴𝑴 is the diagonal mass matrix, 𝑱𝑱 is the Jacobi matrix corresponding to the constraints 𝒇𝒇, 𝛼𝛼 is the coefficient 
of the Baumgarte stabilization, 𝒔𝒔 is the vector of natural coordinates describing the absolute system position, 𝒑𝒑∗ 
is the modified momentum of the system and 𝝁𝝁 is the vector of the new Lagrange multipliers.  

Let us suppose that the multibody system has the structure of kinematic chain (Fig. 1). �e structure of the 
Jacobi matrix 𝑱𝑱 can be simplified into the structure represented by the Fig. 2. 

 
Figure 1: The simple kinematic chain   
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 𝑱𝑱3   

𝑱𝑱 =   ⋱  
   𝑱𝑱𝑁𝑁 

 

Figure 2: Structure of the Jacobi matrix 
 
Expressing �̇�𝒔 from (2) and substituing into (3) the resulting system for unknown 𝝁𝝁 is obtained 

 
 𝑱𝑱𝑴𝑴−1𝑱𝑱𝑇𝑇𝝁𝝁 = 𝛼𝛼𝒇𝒇(𝒔𝒔) + 𝑱𝑱𝑴𝑴−1𝒑𝒑∗ (4) 

which can be simply written as follows 
 𝑨𝑨𝝁𝝁 = 𝒃𝒃 (5) 

�e system of equations (5) is sparse, symmetric, positive definite with band structure for the case of a simple 
kinematic chain of n bodies (Fig. 1). �e system (4) has a structure of blocks (Fig. 3) corresponding to particular 
bodies with equivalent (small) sizes.  
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Figure 3: The resulting matrix-structure 

�us the whole system of the equations can be understood as a set of the interconnected subsystems 
representing by the blocks for unknown vectors 𝝁𝝁𝒊𝒊. �e number of elimination levels is log2(n) and this is 
proportional to the resulting computational costs of elimination process. Based on the comparison of the 
application of elimination process and Cholesky decomposition the combination of both approaches has been 
proposed [6, 9]. �e result is the efficient combination of elimination process and Cholmod procedure (Fig.2). �is 
combination has been investigated for the small blocks (9x9). In the case, that the 9x9 division is used and there 
are not enough processors for the matrix transformations, the process is following. �e number of subsystems ns 
for elimination is the same as the number of bodies n. �e number of processors np is smaller than n. �erefore it 
is possible to evaluate only np elimination in parallel on one elimination level and the rest has to be carried out 
after that.  

 
Figure 4: Efficient combination of the elimination with the Cholesky decomposition 

It is obvious, that the system of equations (5) can be split into the sub-blocks which number corresponds to 
the number of processors (ns= np). However, it is always better from the complexity point of view to split the 
system in that way, that the number of sub-blocks corresponds to the number of particular bodies in the kinematical 
system (ns= n). �us the optimal elimination process is obtained, see [9, 10]. �e complexity of the solution is 
very promising. �e example in [9, 10] demonstrates that 10 times increased of efficiency is possible even on 10 
processors for small flexible multibody systems (20 bodies with 10 flexible modes). 

3 Closed Loop Procedure 
�e limitation of this approach is that it is valid just for kinematic chain or branched kinematic tree. �e 

problem is the occurance of kinematic loop that leads to matrix structure from Fig. 3 with broader bandwith. �is 
paper is devoted to the description of solution of this problem. 
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�e approach for solving the multibody systems with kinematic loops consist in the dividing suitable body 
within the loop into two bodies and their firm connection. �e connection is described by appropriate constraint 
within the constraints f(s) in (3). �e only requirement is that the distance of coordinates describing the position 
of mutually constrained bodies in the enumeration of coordinates in the vector s is small. �is corresponds to the 
resulting bandwith of matrix in Fig. 3. �is can be achieved by repeated division of bodies. �e divided bodies 
has half mass matrix. �is leads to the limitation of the body divisions d. Because of reasonable properties of the 
mass matrix for the numerical integration the reduction of mass of divided bodies to 10-d the number of body 
divisions should be limited by d=1 – 2, i.e. 10-100 times. �is is limitation but it is applicable for smaller flexible 
multibody systems. �is means that the computational complexity of direct dynamic solution for current 
multibody models of machines can be significantly increased similarly as in [9, 10] for kinematic chains. 

�e resulting matrix 𝑨𝑨 in (4)-(5) after Schur complement has the bandwith given by the maximum distance of 
bodies in the corresponding Jacobi matrix (Fig. 2) times the size of one A matrix block (9x9) in Fig. 3.  

�e division of bodies leads to the increase of bodies and coordinates and potentially the computational costs. 
However, the computational costs depends on the number of bodies logarithmically and thus the increase of 
number of bodies is negligible. If the number of bodies is for example increased 2 times then the computational 
costs are increased just by log2(2n)=1+ log2(n).  

�e example of application of this procedure is in Fig. 5. �e simple kinematical loop is in Fig. 5a. Its 
representation in the order of coordinates is in Fig. 5b. �e reduction of distance of constrained coordinates is 
depicted in Fig. 5c. It is achieved by the dividing the first body in the order into three ones and introducing 
equivalent constraints. �e resulting distance of constrained coordinates is reduced from 6 to 3 and accordingly 
the bandwith of matrix 𝑨𝑨.  

 
 

                      
(a)                                                        (b)                                                                       (c) 

Figure 5: (a) �e simple kinematical loop (b) �e order of coordinates (c) Solution with added bodies 
 

�e structure of the Jacobi matrix 𝑱𝑱 in the structure from Fig. 2 for the example from Fig. 5 is in Fig. 6. �en 
the bandwith of the resulting matrix 𝑨𝑨 is four times the size of A matrix block (9x9) instead of seven times for 
original system in Fig. 5a.   

 

 

Figure 6: Structure of the Jacobi matrix 
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4 Conclusions 
�e paper described the extension of the elimination method of parallelization of flexible multibody system 

dynamics towards flexible multibody systems with kinematic loops. �e computational efficiency remains similar 
for both open loop and closed loop flexible multibody system. �e advantages of original parallelization approach 
remained. �e resulting computational complexity is very promising both for smaller multibody systems of current 
machines as well as for larger multibody systems.  
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