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ABSTRACT — Shimmy (or wobble) is a phenomenon of quick oscillation of a steerable wheel of a
vehicle. We study the dynamics of a castor wheel driven by a constant force. The wheel touches the
horizontal plane: depending on the contact model the dynamics of the system differs significantly.
We explore three models: ideal non-holonomic constraint, dissipative non-holonomic constraint and
dry friction in the contact patch between the wheel and the plane. The third model is a model of a
deformable rough plane: we assume that Coulomb friction is distributed on the non-zero contact patch
between the wheel and the plane. For this model we study the stability of the steady rectilinear motion
of the wheel: it is shown that for some critical value of the wheel’s speed a Poincaré-Andronov-Hopf
bifurcation occurs.

1 Introduction

The dynamics of the systems with friction is of great interest as friction appears in all non-ideal contacts between
the surfaces. The investigation of friction has very long history: it includes the experimental studies and models’
construction, application of the models in particular mechanical systems, building of effective analytical and nu-
merical method for the analysis [1]. Shimmy is a phenomenon of quick bar angle oscillation that friction induces
in a steerable wheel of light aircraft or other vehicles. It occurs when the rectilinear motion of the wheel in a fork
loses its stability through Poincaré-Andronov-Hopf bifurcation as it was shown for the simplest model of pneu-
matic tires in [2], see also [3]. The proper pneumatic tires modelling is complicated due to the continuum medium
involved, and the methods for its accurate numerical simulation are illustrated by the system with shimmy phe-
nomenon [4]. However, the complexity of the system makes the stability analysis of the system hard to perform.
Quite simple model with only 3 degree of freedom with classic Coulomb friction (in a stiction and sliding regimes)
was investigated in [5], [6], and the qualitative results including the analysis of the chaos appearing after Poincaré-
Andronov-Hopf bifurcation are impressive (notice, that in this model the suspension is equipped with a spring).
Besides, the existence of shimmy was shown also in the case of so-called polycomponent dry friction [7]: this
model takes into account non-zero area of the contact patch and, consequently, the decreasing of the dry friction
force due to the spinning.

In this article, we study the dynamics of the castor absolutely rigid wheel in rigid fork that is driven by a
constant force along a rough horizontal plane (the statement of the problem is in the Sect. 2). We compare three
models: ideal non-holonomic constraint (Sect. 3), dissipative non-holonomic constraint (Sect. 4) and dry friction
in the contact patch between the wheel and the plane (Sect. 5). It is assumed that non-slipping is provided by
Coulomb dry friction force in the stiction regime: we analyze whether the reaction lies inside the friction cone.
In the third model (distributed dry friction [8]) due to the differential form of Coulomb dry friction and dynamic
distribution of normal stresses in the contact patch the friction force and torque depend both on slipping velocity
and angular velocity of the wheel. The linear stability analysis for the third model is given in Sect. 5.2, 5.3.
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Fig. 1: Driven castor wheel: the notations

2 The Statement of the Problem

We consider the motion of an absolutely rigid wheel of mass m and radius R along a fixed horizontal plane Oxy
(Fig. 1). The wheel is mounted in a weightless fork so that it rotates smoothly about its principal axis Cη . We
introduce a moving frame Cξ ηz attached to the fork: the origin is in the wheel’s center C, the coordinate plane Cξ z
is the middle plane of the wheel. A driving force T = Tex (with constant value and direction, T > 0) is applied to
the point B of the fork. Its radius-vector is CB = beξ +hez, so the offset of the castor-wheel equals b. The middle
plane of the wheel stays vertical. We denote the lowest point of the wheel by M, so that CM = −Rez: the point
M is the contact point in case of point contact and belongs to the contact patch in case of extended contact.

We use the following coordinates: x, y, z are the absolute coordinates of the center C, course angle θ is the
angle between Ox and Cξ , and χ is the proper angle of the wheel’s rotation. Besides, we denote by vξ , vη , vz the
projections of the wheel center’s velocity onto the axes Cξ , Cη and Cz respectively; J1, J3 are the inertia moments
with respect to Cz and Cη .

We consider three models of wheel-plane interaction: nonholonomic constraint that expresses the absence
of sliding (ideal and dissipative cases) and rolling with sliding along the rough plane with dry friction in the
contact area. To get the equations of motion for both models in a similar way, we denote the friction force or
the component of reactions by F = Fξeξ +Fηeη +Fzez and dry friction torque with respect to the point M by
M = Mξeξ +Mηeη +Mzez. Let R= Rξeξ +Rηeη +Rzez be the resultant reaction which provide the connection
between the fork and the wheel and L = Lξeξ +Lηeη +Lzez be the reaction torque with respect to the point C.
We assume that the cylinder joint between the fork and the wheel being ideal, so we have Lη = 0.
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The equations of motion are

ż = vz (1)

mv̇z = Fz−mg+Rz (2)

m(v̇ξ − vη θ̇) = Fξ +Rξ (3)

m(v̇η + vξ θ̇) = Fη +Rη (4)

0 = −Rz (5)

0 = −Rξ +T cosθ (6)

0 = −Rη −T sinθ (7)

J1θ̈ = Mz +Lz (8)

J3χ̈ = −Fξ R+Mη (9)

0 = −Lz−bT sinθ (10)

Here Eqs. (2)–(4) and Eqs. (5)–(7) express the momentum theorem projected onto the moving frame Cξ ηz for
the wheel and the fork respectively. Eqs. (8)–(9) and (10) express the angular momentum theorem with respect to
the mass center for the wheel (projections on Cη and Cz axis) and for the fork (on Cz axis).

Excluding the reactions in the fork-wheel joint, we get:

ż = vz (11)

mv̇z = Fz−mg (12)

m(v̇ξ − vη θ̇) = Fξ +T cosθ (13)

m(v̇η + vξ θ̇) = Fη −T sinθ (14)

J1θ̈ = Mz−bT sinθ (15)

J3χ̈ = −Fξ R+Mη (16)

To close this system, we need to define how Fξ , Fη , Fz Mη , Mz depend on phase variables. We do it and study the
dynamics in the following sections.

3 Ideal differential constraint

Here we consider the case of the absolutely rigid wheel moving along the plane without sliding. So following
constraints are imposed on the system

vξ −Rχ̇ = 0, vη = 0, vz = 0 (17)

In addition we assume here that the constraints are ideal, thus we have

Mη = 0, Mz = 0 (18)

After differentiating and excluding the reactions from (11)–(16), we get the following closed ODE system:

J1θ̈ +bT sinθ = 0 (19)

(J3 +mR2)χ̈ = T Rcosθ (20)

and the reactions are

Fz = mg, Fξ =− j T cosθ , Fη = T sinθ +mRχ̇ θ̇ ,where j =
J3

J3 +mR2 ≤
1
2

(21)
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In [9], it was shown how to derive the dynamic equations Eqs. (19-20) in laconic way without reactions’ introduc-
ing.

Eq. (19) has the form of pendulum equation and separates from Eq. (20). So, there exists the motions θ = 0, π

with arbitrary speed of the center vξ (t) = Rχ̇(t). The motion θ ≡ 0 are stable with respect to the variable θ and
this property does not depend on the speed Vξ : on the motions in the vicinity of θ = 0, the wheel accelerates since
χ̈ > 0 for θ ∈ (−π/2,π/2) according to Eq. (20). On these motions, the center of mass follows the point B of the
force T application. On the contrary, the motions θ ≡ π are unstable w.r.t. θ — in this case, the wheel rotates
about the vertical axis.

However, Eqs. (19-20) govern the dynamics of the wheel only when the constraint of non-slipping (18) is hold.
To check this, we assume that dry Coulomb friction force assures non-slipping. Then the reaction F should be
inside the friction cone defined by inequality √

F2
ξ
+F2

η ≤ f Fz (22)

where f is a friction coefficient.
We study the projection of the region, where Ineq. (22) holds, on the (θ , θ̇)-plane (we call it FC-region). On

the motions θ ≡ 0, π , the reaction is aligned with the wheel |Fξ | = jT , Fη = 0, and Ineq. (22) is fulfilled when
T ≤ j−1mg. In this case, the FC-region contain some motions in the neighbourhood of the motion θ ≡ 0 for small
χ̇ . Indeed, the squared Ineq. (22) takes the form:

T 2(sin2
θ + j2 cos2

θ)+2mT Rsinθ χ̇θ̇ +m2R2
χ̇

2
θ̇

2 ≤ f 2m2g2

The intersection of the FC-region with the axis θ̇ = 0 can be found from

T 2(1+( j2−1)cos2
θ)≤ f 2m2g2 =⇒ cos2

θ ≥ 1−T−2 f 2m2g2

1− j2

The last inequality has non-empty solution if T ≤ j−1 f mg. The FC-regions on a phase portrait of Eq. 19 for
different value of T are shown on Fig. 2.

θ

θ

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

y

x
θ

θ

0 π-π
-3

0

3
T < fmg

T = fmg

T > fmg

Fig. 2: Phase portrait and the regions where the reaction lies in a friction cone. On the left panel: ideal case, the FC-regions collapse to the abscissa-axis
while χ̇ →+∞. On the right: dissipative case, FC-regions are plotted for maximal velocity χ̇ = T R/c1

However, since Ineq. 3 depends on the product θ̇ χ̇ , FC-region tightens to the x-axis when χ̇ increases. This
means that at some instant slipping occurs on any arbitrary small oscillation θ(t) in the vicinity of rectilinear
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motion θ ≡ 0. It means that this motion can loose stability when the wheel begins to slip. In the next section,
we show that adding dissipation in the system with differential contraint Eq. (18) permits to have stable rectilinear
motion without slipping.

4 Dissipative differential constraint

Now we add rolling and spinning friction of viscous type:

Mη =−c1χ̇, Mz =−c2θ̇ , c1 > 0, c2 > 0 (23)

Then Eqs. (19, 20) take the form:

J1θ̈ +bT sinθ = −c2θ̇ (24)

(J3 +mR2)χ̈ = T Rcosθ − c1χ̇ (25)

The solution θ = 0 becomes asymptotically stable, and the wheel’s proper angular velocity is bounded:

χ̇ =
T R
c1

+

(
χ̇0−

T R
c1

)
exp
(
−c1 j

J3
t
)
≤max(T R/c1, χ̇0)

The transversal component Fη of reaction has the same value as in the previous case (Eq. 21), and the longitu-
dinal one is:

Fξ =− j
(

T cosθ − mR
J3

Mη

)
=− j

(
T cosθ + c1χ̇

mR
J3

)
(26)

If at the beginning the wheel is at rest (strictly speaking, initial speed χ̇0 ≤ T R/c1) then the reaction on the
rectilinear motion θ = 0 does not exceed T . Consequently, the slipping does not occur on rectilinear motion θ ≡ 0
if T ≤ f mg. The FC-region for the maximal χ̇ is given by inequality(

j cosθ +1− j
)2

+
(

sinθ + θ̇
J3(1− j)

c1 j

)2
≤ T−2 f 2m2g2

It means, that if T > f mg the slipping can occur for some large enough value of χ̇ , but if T < f mg there exists the
initial values domains starting from where non-slipping condition can be ensured by Coulomb dry friction (fig. 2).

5 Distributed dry friction

Differential constraints (17) reduce the system (11)–(16) to the system (24)–(25): the order of the system decreases
from 6th to 3rd. It allows getting qualitative analysis of the system. However, the system do not show the well-
known shimmy-fenomenon when rectilinear motion loses its stability for some values of parameter. Below we use
the distributed dry friction model to study the stability of rectilinear model.

5.1 Constructing of a model of friction

The wheel touches the visco-elastic plane z = 0 in point M. We denote its two principal radii of curvature in the
contact point by A and B. We approximate the surface of the wheel by a paraboloid with Mξ , Mη being principal
axes. So, the equation of the approximating surface of the wheel is:

ζ (ξ ,η) =
1
2
(Aξ

2 +Bη
2), where A =

1
2R

, B =
1
2r

Here r is a width of the wheel.
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We assume that the half-space z ≤ 0 is modelled by Winkler bedding: it consists of vertical springs that do
not interact with each other. The springs’ response on deformation is Kelvin-Voigt visco-elastic force fz dΣ with a
density fz in an infinitesimal area dΣ = dxdy:

fz =

{
−kz−ν ż, if − kz−ν ż > 0,

0, if − kz−ν ż≤ 0,
k > 0, ν > 0. (27)

Here z is a vertical coordinate of the corresponding spring’s top and ż is its velocity. Assuming that each deformed
spring touches the surface of the wheel, we express the vertical speed of the end of the spring with coordinates
ξ , η as

ż = vz−ωηξ +Aξ (−uξ +ωζ η−ωηζ (ξ ,η))+Bη(−uη −ωζ ξ )

where uξ = vξ − χ̇R, uη = vη are the projections of the velocity of point M on Mξ , Mη axes, ωη = χ̇ , ωζ = θ̇

(details can be found in [8]). Thus, the density of the vertical restoring force is

fz =−k(z+ζ (ξ ,η))−ν
[
vz−ωηξ +Aξ (−vξ +ωζ η−ωηζ (ξ ,η)) +Bη(−vη −ωζ ξ )

]
The contact patch between the wheel and the plane is the set

J = {(ξ ,η) : ζ (ξ ,η)< 0 and fz ≥ 0}.

We assume that each infinitesimal area of the contact patch acts on the wheel by the normal force nn and
sliding dry Coulomb friction force f nv‖

v‖ , where

n=
gradΦ

|gradΦ|
=
−Aξeξ −Bηeη +eζ√

1+A2ξ 2 +B2η2

is the inner normal vector of the paraboloid, and v‖ is the tangent component of each spring’s velocity with respect
to the wheel:

v‖ = ξ̇eξ + η̇eη + ζ̇eζ

where
ξ̇ =−uξ +ωζ η−ωηζ (ξ ,η), η̇ =−uη −ωζ ξ , ζ̇ = Aξ ξ̇ +Bηη̇

Finally, the densities of horizontal forces are

fξ = n

−Aξ + f ξ̇

√
1+A2ξ 2 +B2η2√

ξ̇ 2 + η̇2 + ζ̇ 2

 , fη = n

−Bη + f η̇

√
1+A2ξ 2 +B2η2√

ξ̇ 2 + η̇2 + ζ̇ 2

 .
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where

n = fz

1+ f ζ̇

√
1+A2ξ 2 +B2η2√

ξ̇ 2 + η̇2 + ζ̇ 2

−1

.

We get the resultant force F and the torque M with respect to the point M by integrating over the contact patch
J :

Fz =
∫∫
J

fz dΣ, Fξ =
∫∫
J

fξ dΣ, Fη =
∫∫
J

fη dΣ

M =
∫∫
J

[(
ξ eξ +η eη +ζ eζ

)
× ( fξ eξ + fη eη + fzez)

]
dΣ

5.2 Steady-state motions

Eqs. (11 - 16) allow one-parametric family of steady-state motions with the speed V of the wheel’s center as a
parameter:

z = z0 = const, vz = 0, vξ =V = const, vη = 0, θ = 0, Rχ̇ = vξ −uξ =V −u = const (28)

Here z ≡ z0 is a steady height of the wheel center and uξ ≡ u is a steady slipping speed. Indeed, for this motions
we have the following density of vertical forces

fz =−k(z+ζ (ξ ,η))−ν [(u−V )ξ +Aξ (−V R+(u−V )ζ (ξ ,η))]/R

Calculating horizontal densities we get

ξ̇ =−u+(u−V )ζ (ξ ,η)/R, η̇ = 0, ζ̇ = Aξ ξ̇

and

n = fz

(
1+ f Aξ sign ξ̇

√
1+A2ξ 2 +B2η2√

1+A2ξ 2

)−1

,

fξ = n

(
−Aξ + f sign ξ̇

√
1+A2ξ 2 +B2η2√

1+A2ξ 2

)
, fη =−Bηn.

Since fz, n, fξ depends only on squared variable η , the contact patch J is symmetrical with respect to ξ -axis
and the components Fη , Mz vanish. Substituting the steady-state motions into Eqs. (11 - 16), we get only three
equations that are not trivially fulfilled:

0 = Fz−mg (29)

0 = Fξ +T (30)

0 = −Fξ R+Mη (31)

For any desired speed V we can find the parameters z0 and u from Eqs. (29, 31), and Eq. (30) gives the value for
the driving force T . Notice that the solution does not depend on the parameter b. The solution is found numerically
by means of GNU Scientific Library methods [10] and is shown on Fig. 4. The parameters of the system in the
numerical simulations here and further are:

m = 5, J1 = 0.5, J3 = 1, R = 1, r = 0.16, f = 0.2, k = 10, ν = 1, g = 9.8
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Fig. 4: Steady-state height z0 of the wheel center and slipping speed u versus the center’s speed V .

5.3 Linearization in the vicinity of steady-state motions

We will study the stability of steady-state motions through linear analysis. We introduce the deviations of variables
in the vicinity of steady-state solution:

z = z0 +δ z, ż = δvz, vξ =V +δvξ , vη = δvη , θ = δθ , θ̇ = δωζ , χ̇ = (V −u)/R+δωη

Linearizing Eqs. (11–16), we get:

(δ z)̇ = δvz

m(δvz)̇ = δFz

m(δvξ )̇ = δFξ

J3(δωη )̇ =−RδFξ +δMη

m(vη )̇ = δFη −T δθ −mV δωζ

J1(δωζ )̇ = δMz−bT δθ

(δθ )̇ = δωζ

(32)

Here

δF· = ∑
∂F·
∂x

∣∣∣∣
Eq. (28)

δx, δM· = ∑
∂M·
∂x

∣∣∣∣
Eq. (28)

δx, x = {z,vz,vξ ,ωη ,vη ,ωζ ,θ}

are variations of the forces and torques in the vicinity of steady motion, the derivatives are calculated on the steady
motions Eq. (28) (further we will skip this notation in formulas).

Friction forces possesses the following properties:

1. The variable θ is a cyclic variable: the shift on this variable is equivalent to the rotation of inertial coordinate
frame about the vertical axis Oz. So the forces and torques do not depend on theta

∂F·
∂θ

= 0,
∂M·
∂θ

= 0

2. The “transversal” components Fη , Mz vanishes for vη = 0, ωz = 0 and arbitrary values of z, vz, vξ , ωη , so
we have

∂Fη

∂ z
= 0,

∂Fη

∂vz
= 0,

∂Fη

∂vξ

= 0,
∂Fη

∂ωη

= 0

∂Mz

∂ z
= 0,

∂Mz

∂vz
= 0,

∂Mz

∂vξ

= 0,
∂Mz

∂ωη

= 0
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3. Vertical and “longitudinal” components Fz, Fξ , Mη are even functions of each vη , ωζ , so

∂Fz

∂vη

= 0,
∂Fz

∂ωζ

= 0,
∂Fξ

∂vη

= 0,
∂Fξ

∂ωζ

= 0,
∂Mη

∂vη

= 0,
∂Mη

∂ωζ

= 0

These properties give that the matrix of the system Eq. (32) has the structure

(δx)̇ =Aδx, x = {z,vz,vξ ,ωη ,vη ,ωζ ,θ} (33)

A=



0 1 0 0 0 0 0
1
m

∂Fz
∂ z

1
m

∂Fz
∂vz

1
m

∂Fz
∂vξ

1
m

∂Fz
∂ωη

0 0 0
1
m

∂Fξ

∂ z
1
m

∂Fξ

∂vz

1
m

∂Fξ

∂vξ

1
m

∂Fξ

∂ωη
0 0 0

1
J3

∂ (−RFξ+Mη )

∂ z
1
J3

∂ (−RFξ+Mη )

∂vz

1
J3

∂ (−RFξ+Mη )

∂vξ

1
J3

∂ (−RFξ+Mη )

∂ωη
0 0 0

0 0 0 0 1
m

∂Fη

∂vη

1
m

∂Fη

∂ωζ

−V − T
m

0 0 0 0 1
J1

∂Mz
∂vη

1
J1

∂Mz
∂ωζ

−bT
J1

0 0 0 0 0 1 0


(34)

The matrix A is block-diagonal and is partitioned into two submatrix of sizes 4×4 (“longitudinal”) and 3×3
(“transversal”). As each steady-state solution does not depend on the offset of the fork b, then all the components
of A except for explicitly shown do not depend on this parameter.

5.4 The stability of transversal subsystem

Since shimmy phenomenon occurs when the variable θ increases, we will study the transversal subsystem of
Eq. 33. It reads:

d
dt

δvη

δωζ

δθ

=

a11 a12 −T/m
a21 a22 −bT/J1
0 1 0

δvη

δωζ

δθ

 (35)

where

a11 =
1
m

∂Fη

∂vη

, a12 =
1
m

∂Fη

∂ωζ

−V, a21 =
1
J1

∂Mz

∂vη

, a22 =
1
J1

∂Mz

∂ωζ

The characteristic polynom is

λ
3− (a11 +a22)λ

2 +

(
a11a22−a21a12 +

bT
J1

)
λ − a11bT

J1
+

a21T
m

= 0

The Routh-Hurvitz stability criterion for this system has the form:

a11 +a22 < 0

a21T
m
− a11bT

J1
> 0(

a11a22−a21a12 +
bT
J1

)
(a11 +a22)−

a11bT
J1

+
a21T

m
< 0

Collecting terms and substituting the notations, we get

1
m

∂Fη

∂vη

+
1
J1

∂Mz

∂Ω
< 0

b >
∂Mz

∂vη

/
∂Fη

∂vη

(36)
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bT
J1

a22 <−(a11a22−a21a12)(a11 +a22)−
a21T

m
We got numerically that a11 and a22 are negative for the considered values of the parameters, so the first inequality
holds and the third one has the form:

b >−J1(a11a22−a21a12)(a11 +a22)

a22T
− J1a21

a22m
(37)

The derivatives were calculated numerically in GNU Scientific Library basing on discrete calculation of the forces
ant torques. The region of stability is shaded on Fig. 5. The curve 1 corresponds to Ineq. 36, the curve 2, which
has small positive slope, corresponds to Ineq. 37. It follows that the steady-state motion is stable for b > b0(V )≈
6 ·10−2 and 0 <V <V0(b)≈ 7.

We calculated the eigenvalues of the transversal system Eq. eq:transversal for b = 0.9 for V ∈ [0, 15]. One of
them λ1 always has negative real part. The real parts of λ2,3 are shown on the left panel of Fig. 6. They are real
and have negative real parts till V ≈ 3.7, for V ∈ [3.7, 12.5] eigenvalues λ2,3 are complex and their real parts are
positive for V > 7. Finally, λ1, λ2 are real and have positive real parts for V > 12.5. On the right panel of Fig. 6,
the imaginary values of λ1, λ2 are plotted versus their real parts. Thus, the Poincaré-Andronov-Hopf bifurcation
occurs at V ≈ 7.

We numerically simulate the acceleration of the wheel that starts from the rest with small initial angle θ . We
take

T = 5, θ(0) = 0.1, χ̇ = 0

10



−2

0

2

4

6

8

10

12

14

−1

−0.5

0

0.5

1

1.5

t
0 20 40 60 80 100

u
th

Fig. 7: Shimmy occurs during the acceleration of the wheel.

The dependence of the course angle θ through time is shown on Fig. 7 by black line, red line shows the value of
slipping u =

√
u2

ξ
+u2

η . While the speed is small, θ fastly decreases to zero, but after approximately 45 time-units
the oscillation begins and grows significantly up to a certain finite amplitude.

6 Conclusions

Three models of ground-wheel interaction were considered. In first two cases the reaction forces are calculated
from the equations of motions and imposed non-holonomic constraints of non-slipping. The steady rectilinear
motion with the wheel center behind the fork is stable. Under the action of the constant driving force in any vicinity
of the stable steady solution the wheel accelerates till the moment when the wheel slips. After that, the stability
results can not be applied to the system. Rolling and spinning friction makes the steady solution asymptotically
stable and bound the maximal speed of the wheel. For small values of driving force (they depend on the coefficient
of dry friction) there exists the vicinity of the steady motion without sliding in it, and, consequently, no shimmy. For
the distributed dry friction, the steady-state rectilinear motions are found and their stability is studied. It is shown
that the Poincaré-Andronov-Hopf bifurcation occur. The stability region is plotted. In addition, the numerical
simulation of the wheel starting from rest under the constant force is performed: shimmy oscillation occurs after
the wheel accelerates enough.
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