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The motions of the celt on a horizontal plane with viscous friction
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ABSTRACT — The problem of the motion of a celt on a fixed horizontal plane with viscous friction is

considered. On the plane of the parameters of the problem, regions of stability of uniform rotations

about the vertical are constructed. The dynamics of transient processes from unstable motions to stable

ones is studied.

1 Introduction

The Celt is a convex solid body, one of its principal central axis of inertia being perpendicular to the surface of

the body, and the directions of the principal curvatures of the surface at the point of intersection with this axis

are not parallel to the other two principal axes. It is well known that the stability of the rotations of this body

around the vertical axis depends from the direction of rotation. In most of the papers devoted to this property,

the non-holonomic formulation of the problem is considered;it is assumed that the velocity of the point of contact

between the body and the plane is zero (see, for example, [1], [2]). In the paper [3] the motion of the celt on a plane

with friction is considered, and the consistency of this formulation of the problem with full-scale experiments is

confirmed.

In the present paper, the investigation of [1] is continuing, in which it is assumed that the viscous friction force

acts on the stone from the side of the plane. This model of friction allows us to carry out not only numerical, but

also analytical studies in the problem. In addition, when the coefficient of viscous friction strives for infinity, the

force of viscous friction is realized the non-holonomic constraint [4].

2 Statement of the problem

We will introduce the following variables: v is the velocity of the mass centre of the celt, ω is its angular ve-

locity and γ is the unit vector of the rising vertical. The slipping velocity is given by the relation u = v+[ω,r],
where r is the radius vector of the point of contact of the body with the plane, defined by the equation γ =
−gradf(r)/|grad f(r)|.

A gravitational force P = −mgγ, the normal component of the reaction of the support plane N = Nγ and the

friction force F =−mku (k is the coefficient of viscous friction) act on the celt. The equations of its motion in the

moving coordinates have the form

mv̇+[ω,mv] = (N −mg)γ+F (1)

Jω̇+[ω,Jω] = [r,Nγ+F] (2)

γ̇+[ω,γ] = 0 (3)

(v+[ω,r],γ) = 0 (4)

where J = diag(A1,A2,A3) is the central inertia tensor or the celt. Eq. ((1)) is the theorem of the change of the

momentum of the celt, Eq. (2) is the theorem of the change of the angular momentum, Eq. (3) is the condition for

the vector γ to be constant in an absolute coordinates, and Eq. (4) is the condition for the celt to be in contact with
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Fig. 1: A1 = 3 kg ·m2 , A2 = 4 kg ·m2 , A3 = 5 kg ·m2, a1 = 5 m, a2 = 4 m, a3 = 3 m, m = 1 kg, δ = 0.75; J = 7 kg ·m2, ω∗ =−0.97 s−1

the supporting plane. The system (1)–(4) is closed with respect to the variables v, ω, γ and N. From this system,

the normal reaction of the supporting plane is determined

N = m(g+([r, ω̇]+ [ṙ,ω],γ))+ ([ω,r], [ω,γ])) (5)

then the system (1)–(3), taking into account Eq. (5) is considered

The resulting system of equations has solutions of the form

v1 = v2 = v3 = 0, γ1 = γ2 = 0, γ3 = 1, ω1 = ω2 = 0, ω3 = ω (ω ∈ R). (6)

They correspond to uniform rotations of the elt around the principal axis of inertia which is normal to its surface

and coincides with the vertical. The equation of the body surface at γ3 = 1 can be represented in the form

f (r)=x3 +a3 −
(x1 cosδ+x2 sinδ )2

2a1

−
(x1 sin δ−x2 cos δ )2

2a2

+O3(x1,x2),

where a1, a2 – are the main radii of curvature of the body surface at the point of contact, a3 – is the height of

the center of mass, δ — is the angle between the vectors of principal curvatures and principal axes (for celt the

relations are satisfied A1 6= A2, a1 6= a2, δ 6= 0 (modπ/2)).

3 Stability conditions

Linearized equations of perturbed motion of the system in the neighborhood of solutions Eq. (6) and the corre-

sponding characteristic equation are in [1].In the case of non-holonomic statement of the problem (k → +∞) the

stability conditions have the form [1],[2]

A1 < A2 < A3, a1 > a2 > a3, 0 < δ <
π

2
(7)

J = (A1+A2−A3)

(
a1

a3

+
a2

a3

−2

)
−ma2

3

(
4−3

(
a1

a3

+
a2

a3

)
+2

a1

a3

a2

a3

)
> 0 (8)

ω < 0, ω2 > ω2
∗ =

mg

Ja3

(a1 −a3)(a2 −a3) (9)

Eq. (7) means that the rotation occurs around the axis of the greatest moment of inertia, and the corresponding

equilibrium (ω = 0) is stable. Eq. (8) imposes constraints on geometric and dynamic parameters of the body.

Eq. (9) means that only rotations in the negative direction and with a enough large angular velocity are stable.

In the case of an arbitrary coefficient of viscous friction, the linearized equations of the perturbed motion of

the system in the neighborhood of the solutions Eq. (6) are rather cumbersome [1] and the analytical analysis of
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Fig. 2: A1 = 3 kg ·m2 , A2 = 4 kg ·m2 , A3 = 5 kg ·m2, a1 = 5 m, a2 = 4 m, a3 = 2 m, m = 1 kg, δ = 0.75; J = 3 kg ·m2, ω∗ =−3.13 s−1
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Fig. 3: A1 = 3 kg ·m2, A2 = 4 kg ·m2 , A3 = 5 kg ·m2 , a1 = 5 m, a2 = 4 m, a3 = 2 m, m = 3 kg, δ = 0.75, J =−1 kg ·m2

stability conditions is difficult. At Fig. 1, Fig. 2, Fig. 3 the stability regions for some parameters of the problem

are given. In the case shown at Fig. 1, for sufficiently large friction coefficients, there are two regions of stability.

One corresponds to a non-holonomic statement of the problem (below the dotted line), the second is located in a

neighborhood of zero. As k decreases, these regions merge into one, containing almost all negative values of ω
and a small range of positive values ω . At very small k he stability region have some symmetry with respect to the

horizontal.

In the case shown at Fig. 2 (which differs from the previous only by the height of the center of mass), the

stability region is divided into two parts: the region corresponding to the non-holonomic case and the region in the

neighborhood of equilibrium. In the case shown at Fig. 3 (body mass increases) only the region of stability in the

neighborhood of equilibrium remains.

4 Numerical experiments

Numerical experiments were carried out for a celt with parameters

A1 = 0.058 ·10−3 kg ·m2, A2 = 0.44 ·10−3 kg ·m2, A3 = 0.49 ·10−3 kg ·m2

a1 = 0.661 m, a2 = 0.073 m, a3 = 0.0098 m, m = 0.1 kg, δ = 0.1, J =−0.007 kg ·m2.

These parameters correspond to the model of a stone having the shape of an ellipsoid, and all obtained results of

numerical experiments coincide with full-scale experiments.

The region of stability of permanent rotations for this model is presented at Fig. 4. Numerical experiments

3



5000

5

-10

0

5000

5

-10

0

κ

ω3

Fig. 4

t

ω3

0

−2.4

0.73

4

−4
0 25 t0 25

Fig. 5: γ3(0) = 0.99999 and γ3(0) = 0.999

were carried out on a plane with a coefficient of friction k = 50 s−1. The initial conditions had the form

γ2(0) = 0, ω1(0) = ω2(0) = 0, u(0) = 0. (10)

At Fig. 5 on the left are the results of experiments with different initial angular velocities of rotations with a very

small initial deviation from the vertical (γ3(0) = 0.99999), on the right for greater deviation (γ3(0) = 0.999). The

area of stability of rotations with a selected coefficient of viscous friction is highlighted in gray. As we see, stable

rotations with a positive angular velocity of rotation have a very small region of attraction.

We note that in the non-holonomic statement of the problem for the chosen parameters there are no stable

rotations (J < 0). In the case of the plane with friction and a small positive initial angular velocity of rotation, there

is a change in the direction of rotation of the stone, with a subsequent exit to the stable uniform rotations.

The results of numerical experiments with sufficiently large initial angular velocities are presented at Fig. 6.

Here such property of a stone, as the transition of rotational motions to vibrational motions and vice versa is

observed. The final movement with a negative initial speed can be rotation in both the negative and positive

directions.

5 Transient processes

For study the transient processes shown at Fig. 5 the equations (1)–(3) up to second-order terms in the variables

v1,v2,ω1,ω2,γ1,γ2 are considered.

ẋ = A(k,δ ,ω3)x̃+b(x,k,δ ,ω3)+O3(x̃) (11)
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Fig. 7: δ = 0, γ3(0) = 0.999

The changing of variables

v1 = ν cosψ , v2 = ν sinψ , ω1 = ρ2 cosϕ2, ω2 = ρ1 sinϕ1, γ1 =
ρ1

ξ1

cosϕ1, γ2 =
ρ2

ξ2

sinϕ2

is performed, where ξ 2
1,2 = mg(a1,2 − a3)/A2,1 . Averaging over variables ψ , ϕ1 and ϕ2 is carried out. Then the

equations Eq. (11) have a view

v̇ =−kv, ρ̇1=−k
ma2

3

2A2

ρ1, ρ̇2=−k
ma2

3

2A1

ρ2,

ω̇3=−k
m

2A3

(
a2

1 cos2δ−a2
2 sin2δ

ξ 2
1

ρ2
1+

a2
2 cos2δ−a2

1 sin2δ

ξ 2
2

ρ2
2

)
ω3 +

mg

2A3

sin2δ (a1 −a2)

(
ρ2

1

ξ 2
1

−
ρ2

2

ξ 2
2

) (12)

For the case of the coincidence of the directions of the principal axes of the body with the directions of the

principal curvatures (δ = 0) the numerical solutions of the averaged system Eq. (12) (Fig. 7, dotted curves) and

leanerized system (Fig. 7, solid curves) have a good coincidence. Solving the averaged system Eq. (12) for exam-

ple, under the initial conditions Eq. (10), we have v ≡ 0, ρ1 = ρ1(0)exp(−mka2
3t/(2A2)), ρ2 ≡ 0 and equality

ω3 = ω3(0)e
α1(ρ

2
1−ρ1(0)

2), α1 =
a2

1A2

2a2
3A3ξ 2

1

(13)

is fair. Under initial conditions differing only in the direction of rotation, the motions are completely analogous and

differ only in sign ω3, and the corresponding curves ω3(t) Fig. 7 are symmetrical with respect to the horizontal.
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This property is not preserved for the Celt (δ 6= 0), and the equality Eq. (13) takes the form

ω3 = ω3(0)e
α1(ρ

2
1−ρ1(0)

2)+
g(a1 −a2)sin 2δ

2k(a2
1 cos2 δ +a2

2 sin2 δ )

(
1− eα1(ρ

2
1−ρ1(0)

2)(a2
1 cos2 δ+a2 sin2 δ )/a2

1

)
(14)

In this case, the solutions of the averaged system, differing only in the initial direction of rotation, are not symmetric

with respect to the horizontal. However, the displacements arising in this case are sufficiently small, and, depending

on the initial conditions, they can be directed both to the lower and upper half-planes. In this case, the solutions

of the system Eq. (11) deviate significantly from the solutions of the averaged system (Fig. 8), but in reality the

displacement is directed to the lower half-plane. The changing in the direction of rotation of the stone is explained

by the deviations of the exact solution from the averaged solution, and the final value of the angular velocity of

rotation is always in a small neighborhood of zero.

6 Conclusions

Thus, the results of modeling the interaction of the Celt with the supporting plane by the force of viscous friction

are consistent with the known properties of its dynamics, and it makes sense to investigate the considered problem

further.
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