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ABSTRACT — In this paper, we present a formulation for spatial rigid body motion based on a set of
non-redundant, homogeneous local velocity coordinates. In contrast to the common practice, the pro-
posed approach renounces the distinction between translational and angular velocity in the sense that
it only makes use of translational local velocities. To obtain the new set of coordinates, we use the ve-
locity vectors of six properly selected points of a rigid body, and represent the rigid body’s translational
and rotational velocities in terms of six scalar local translational velocities. Importantly, the equations
of motion are derived without making use of the rotation matrix or the angular velocity vector. The
position coordinates and the orientation of the body are computed by means of the exponential map on
the special Euclidean group SE(3). In order to solve the incremental motion vector differential equa-
tion, we introduce the inverse of the tangent operator corresponding to our local velocity coordinates.
Furthermore, we use a recently presented 4th-order Runge-Kutta Lie group time integration scheme,
which we extend such that it can be used with respect to our approach and elements of SE(3). To show
the applicability of our approach we simulate the unstable rotation of a rigid body.

1 Introduction

In this paper, we present a formulation for spatial rigid body motion based on a set of non-redundant, homogeneous
local (translational) velocity coordinates. The initial motivation for the present work was the investigation of local
velocity coordinates of a first order H(curl)-conforming finite element proposed by Nédélec [1], which turned out to
be relevant for rigid bodies as well, because the latter finite element offers six non-redundant and – regarding their
physical interpretation – equivalent (=unified) displacement coordinates as degrees of freedom. Since the spatial
motion of a rigid body is known, if the position and velocity (three translational velocity coordinates) of one of its
points as well as its angular velocity (three angular velocity coordinates) are known [2], the questions arises, if it
is possible to describe a rigid body motion using six unified local velocity coordinates, which correspond to the
displacement coordinates of this first order H(curl)-conforming finite element and whether and how the resulting
equations can be solved.

Modelling mechanical systems in such a way that they can be efficiently simulated plays an important role in
many areas, e.g. in real-time simulation and control [3]. The number, complexity and computational efficiency of
the equations describing the system strongly depend on the choice of coordinates used to model the mechanical
system [3, 4]. A common approach to describe the kinematics of a multibody system is to divide the general rigid
body motion into a translational motion and a rotational motion [2, 5, 6, 7], as is the case with the Newton-Euler
equations, for example.

Six coordinates are at least required to define the configuration of a rigid body in space [5]. Three Cartesian
coordinates usually define the origin of the body’s reference frame [5]. In engineering applications, e.g. rotor
dynamics, the body’s orientation is often characterized by three angles of rotation like Euler angles or Bryant
angles [8]. However, in case of large rotations, the representation of the body’s orientation in terms of three angles
of rotation suffers from singularities [6]. Alternative representations, which provide a singularity free description



of the body’s orientation either use for example the components of a rotation matrix or Euler parameters as degrees
of freedom [2].

An alternative set of coordinates has been presented by Garcia de Jalon and co-workers in the early eighties
[9]. They created and further developed the natural coordinates to describe the 2-D and 3-D motion of multibody
systems [10]. The natural coordinates approach uses Cartesian coordinates of three (or more) non-aligned points
to define the position of a solid in space [11]. Natural coordinates require neither angles nor any form of angle
parametrization to describe the orientation of a body in space, which leads to constant inertia matrices and a simple
form of the equations of motion [11]. Natural coordinates can be seen as a set of dependent parameters used to
describe rotations [11]. In contrast to the coordinates used in [5], the description of the motion of a multibody
system with the natural coordinates yields a unified form of the descriptive equations of motion but at the expense
of the use of non redundant position coordinates.

A description of the motion of a multibody system based on inhomogeneous but non-redundant coordinates
at velocity level is possible by describing the kinematics using Lie groups and the associated Lie algebras. The
kinematics are currently described either with the Lie group formed by the Cartesian product of the group of
translations (Euclidean space) with the special orthogonal group SO(3) or with the special Euclidean group SE(3)
[12, 13]. The integration of the body-fixed velocity coordinates, which we will also refer to in the following as
local velocity coordinates, is possible with the help of the matrix exponential function. Crouch and Grossmann
[14] and Munthe-Kaas [15, 16] developed generalizations of classical Runge-Kutta methods and multi-step time
integration algorithms to solve differential equations on Lie groups. Brüls and Cardona [17] exploited the classical
generalized-α method proposed by Chung and Hulbert [18] for time integration on Lie groups which was further
developed by Arnold et al. [8]. However, still the rigid body motion is partitioned into a translational and a
rotational motion.

Nédélec introduced two new families of mixed finite elements in R3, which are conforming on the Sobolev
spaces H(div) and H(curl) [1]. Those element families are commonly used to approximate solutions of Maxwell’s
equations, the equations of elasticity or stokes equations [19]. In particular, the lowest order H(curl) conforming
element family, which consists of Nédélec elements of 1st-kind, is of interest for this work, see Fig. 1. In the
three dimensional case, this finite element offers six non-redundant – and regarding their physical interpretation –
equivalent degrees of freedom, which are associated with the edges of the mesh [19]. This is illustrated by Fig.
1b, showing the six local displacement coordinates. That means, the motion of a rigid body is fully described

x1

x2

1

2
3

x1 x2

x3

1 2
3

4

56

(a) 2D Nédélec element
(lowest order k=1:
#edges=3, #dofs=3)

(b) 3D Nédélec element
(lowest order k=1:
#edges=6, #dofs=6)

i

j

k

i
j

k

l

Fig. 1: Degrees of freedom of a Nédélec element of 1st-kind.

by using only translational velocity coordinates. Moreover, we want to point out, that these translational velocity
coordinates are fully equivalent (=unified) regarding their physical interpretation, which means that no partition
into translational and rotational parts is introduced. Since the degrees of freedom in the Nédélec element of 1st-kind
represent coordinates which are defined in a body-fixed frame, Lie group time integrators based on the exponential
map such as e.g. the ones presented by Crouch and Grossmann [14] or Munthe-Kaas [15, 16] could be applied to
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obtain information about the position and orientation of rigid body.
The rest of the paper is organized as follows. In Sect. 2 we present a short review of Lie group representation of

rigid body kinematics and the exponential map on SE(3). Sect. 3 is devoted to the fundamentals of the rigid body
formulation with non-redundant unified local velocity coordinates as well as to the derivation of the equations of
motion and their generalized forces. In Sect. 4, we show the relation of the proposed formulation to the Newton-
Euler equations and present a further analysis of the proposed rigid body formulation. The proper time integration
of the equations of motion and the non-redundant unified local velocity coordinates is shown in Sect. 5. Lastly, the
proposed formulation is validated through a numerical example in Sect. 6.

2 Lie group framework

Since the six unified velocity coordinates are defined in a body-fixed frame, standard integrators such as the
generalized-α method [18] can not be used to obtain (drift-free) information about the current position and orienta-
tion of a rigid body via direct numerical integration. However, Lie group time integrators based on the exponential
map such as e.g. the ones presented by Crouch and Grossmann [14], Munthe-Kaas [15, 16], Brüls and Cardona
[17], Terze et al. [20] or by Arnold et al. [8] can be used in an adapted form, which is why we introduce in this
section the Lie group representation of rigid body kinematics on the special Euclidean group SE(3).

In the following, capital boldface letters represent matrices and lower case letters represent vectors. The hori-
zontal line over vectors ā means that the vector is rigidly attached to the body and the coordinates are given in the
(local) body frame. The components of a vector are written in non-bold letters. If a horizontal line is drawn above
the components of a vector, this means that these are the coordinates of the vector represented in the body-fixed
frame. The same convention is used for matrices and their components.

The position of a rigid body in a reference frame I is represented by a vector a∈R3. To obtain a singularity-free
representation of the orientation of the rigid body with respect to a reference frame, for example either a rotation
matrix

R ∈ SO(3) :=
{

R ∈ R3×3 | RTR = I3, det(R) = +1
}

(1)

or Euler parameters are used as degrees of freedom [2]. Rigid body transformations are represented by frame
transformations, which belong to the special Euclidean group SE(3) [13]. The action of a rigid body transformation
on a body-fixed frame describes how the body-fixed frame rotates and displaces with respect to a inertial frame [21].
Rigid body transformations are such that the position vector xp ∈R3 of any point P in the current configuration on
the rigid body is expressed by the affine mapping

xp = x+yp = x+Rȳp (2)

where x ∈ R3 represents the current position vector of a reference point, which was located at the point o in
the reference configuration [13]. This is illustrated in Fig. 2. The vector yp = Rȳp represents the position of an
arbitrary point P of the body with respect to the fixed reference frame I. Whereas the vector ȳp ∈ R3 represents
the position of the point P in the body-fixed frame. The rotation matrix R maps the vector ȳp from the body-fixed
frame into the reference frame and defines the orientation of the body-fixed frame with respect to the reference
frame I. A rigid body transformation (2) can conveniently be represented in matrix form using the homogeneous
representation of vectors as [

xp

1

]
=

[
R x

01×3 1

][
ȳp

1

]
= H(R, x)

[
ȳp

1

]
. (3)

The set of 4×4-matrices, which are formed by the semi-direct product SO(3)nR3,

H = H(R, x) :=
{

H ∈ R4×4 |H ∈ SO(3)nR3} , H =

[
R x

01×3 1

]
(4)

where R ∈ SO(3) and x ∈ R3 forms together with the matrix product (composition operation) a matrix Lie group,
which is called the special Euclidean group SE(3) [22, 13]. The velocity vector ẋp ∈R3 of any point P on the rigid
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Fig. 2: Rigid body transformation.

body can be expressed in the current frame as linear relation between Ḣ and
[
ȳT

p 1
]T in the form[

ẋp

0

]
= Ḣ

[
ȳp

1

]
. (5)

The time derivative Ḣ reads

Ḣ =

[
RΩ̃ RU
01×3 0

]
=

[
R x

01×3 1

][
Ω̃ U

01×3 0

]
= HṽL. (6)

The 4×4-matrix

ṽL =

[
Ω̃ U

01×3 0

]
(7)

denotes the Lie algebra se(3) corresponding to an element of SE(3) with so(3) defined by

Ω̃ ∈ so(3) :=
{
Ω̃ ∈ R3×3 | Ω̃+ Ω̃

T
= 03×3

}
, Ω̃=

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 , Ω̃= ṘRT (8)

being the Lie algebra corresponding to SO(3) and ẋ = RU with U∈R3. A Lie algebra g is isomorphic to Rk trough
an invertible linear map

(̃•) : Rk → g, q 7→ q̃ (9)

with k being the dimension of the manifold [13]. Therefore, the inverse mapping (9) applied to the Lie algebra (7)
maps the 4×4-matrix ṽL to a six-dimensional vector

vL =
[

UT
Ω

T
]T

(10)

and vice versa. In the vector representation vL of the Lie algebra ṽL, the sub-vector U =
[

U1 U2 U3
]T represents

the translational velocity in a body-fixed frame and the sub-vector Ω =
[

Ω1 Ω2 Ω3
]T represents the angular

velocity vector in a body-fixed frame [12, 8]. The differential Eq. (6) is a first order differential equation on a
matrix Lie group, which produces a relation between H and Ḣ [22, 23]. This differential equation can be solved in
every time step with the exponential map expSE(3) on SE(3)

ṅ(t+h) = T−1
SE(3)(n(t)) vL(t+h), n(0) = 06×1, (11)

H(t+h) = H(t) expSE(3)(n(t+h)), H(0) = H0, (12)
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after the time integration, the incremental motion vector n =
[
n1 n2 n3 n4 n5 n6

]T with its sub-vectors

nT =
[
n1 n2 n3

]T and nR =
[
n4 n5 n6

]T is obtained from Eq. (11) at the corresponding time step [22, 12, 13].
To point this out, we have written the Eqs. (11-12) in discretized form for a specific time step t+ h, where h is a
small step forward in time. In Eq. (11), T−1

SE(3) denotes the inverse tangent operator on SE(3) [12]. The exponential
map and the inverse tangent operator on SE(3) can be written in a closed form

expSE(3)(n) =
[

expSO(3)(nR) TT
SO(3)(nR)nT

01×3 1

]
, T−1

SE(3)(n) =

[
T−1

SO(3)(nR) TnTnR−(nT, nR)

03×3 T−1
SO(3)(ñR)

]
(13)

where expSO(3) is the exponential map and TSO(3) the tangent operator on the special orthogonal group SO(3)
[12, 8], which are given by

expSO(3)(nR) = I3×3 +
sin(‖nR‖)
‖nR‖

ñR +
1− cos(‖nR‖)
‖nR‖2 ñ2

R, (14)

TSO(3)(nR) = I3×3−
1− cos(‖nR‖)
‖nR‖2 ñR +

‖nR‖− sin(‖nR‖)
‖nR‖3 ñ2

R, (15)

T−1
SO(3)(nR) = I3×3 +

1
2

ñR +
1
2(2− cot(‖nR‖

2 ))

‖nR‖2 ñ2
R, (16)

TnTnR−(nT, nR) =
1
2

ñT +
1
2(2− cot(‖nR‖

2 ))

‖nR‖2 dñT, ñRe+
1
2

(
‖nR‖2

1−cos(‖nR‖) + cot(‖nR‖
2 )
)

‖nR‖4

(
nT

RnT
)

ñ2
R, (17)

using the the Lie bracket d,e, see [15]. The matrices ñR and ñT are skew symmetric matrices of the form (8), which
are formed from the vectors nR and nT.

3 Spatial rigid body motion using non-redundant unified local velocity coordi-
nates

In many approaches [7, 6, 2], the kinematics of the rigid body and its equations of motion are divided into a
translational part of motion and a rotational part of motion. This subdivision of the general form of motion at
velocity level is currently also used within the Lie group framework, see the previous section or e.g., [12, 8, 13].
Since a unification of the velocity coordinates within the Lie group description of the rigid body motion could be
advantageous, we show in the following how the general state of motion of a rigid body at velocity and acceleration
level can be unified and clearly described using non-redundant local velocity coordinates.

3.1 Non-redundant unified local velocity coordinates

The unification of the local translational velocity coordinates (U1, U2, U3) and the local angular velocity coordi-
nates (Ω1, Ω2, Ω3) to six local velocity coordinates (w1, w2, w3, w4, w5, w6) is achieved, by projecting the local
translational velocity coordinates of six selected points on the rigid body along six selected directions. The scalar
product

wi := b̄T
i vi(ȳi) (18)

generates the i-th unified local velocity coordinate wi ∈ R. The i-th local translational velocity vector of the i-th
point Pi selected for the projection is indicated by the vector vi ∈R3. The local position of point Pi on the rigid body
is marked with vector ȳi ∈ R3. The vector b̄i ∈ R3 represents the i-th direction vector selected for the projection.
The general projection idea is depicted in Fig. 3. The term unified here means, that when describing the velocity
state of a rigid body with the coordinates w, no distinction is made between a translational motion and a rotational
motion. The six coordinates wi with i= 1...6 are non-redundant velocity coordinates, since six velocity coordinates
clearly describe the Lie algebra (7) of a rigid body. The set of projection points P and direction vectors b̄ to generate
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Fig. 3: Basic projection idea to obtain unified local velocity coordinates. S denotes the center of mass of the rigid body. The six points, used for the velocity
projection are denoted with p1 . . . p6. Note that b1, v1, y1 and ei are the global representations of their body-fixed counterparts b̄1, v1, ȳ1 and ēi.

the six unified velocity coordinates w is limited by the condition that the velocity coordinates w must be clearly
mappable to the vector form of the Lie algebra vL. This restriction to the set of permitted projection points and
direction vectors is necessary, as otherwise the Lie algebra ṽL cannot be clearly reconstructed from the unified local
velocity coordinates. We will discuss this condition in more detail in section 4.1. Therefore, theoretically many
projection approaches could be applied. For example a projection towards the lateral surfaces of a hexahedron or
towards the edges of a tetrahedron as shown in Fig. 4. In order to be able to examine the description of the rigid
body motion with unified local velocity coordinates more closely, we will limit ourselves for simplicity’s sake to
the velocity projection along the side edges of a hexahedron with the side lengths (2l1, 2l2, 2l3) as depicted Fig. 4
a. The position vectors ȳi necessary for generating six unified velocity coordinates belonging to six points located
at the centers of the side faces of the hexahedron and the six directional vectors b̄i,
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Fig. 4: Basic geometries for unified local velocity coordinates. S denotes the center of mass of the rigid body. The six points, used for the velocity projection
are denoted with 1. . .6. The corresponding six unified velocities are denoted by w1 . . .w6. Fig. a) shows the hexahedral case, Fig b) shows the tetrahedral
case.
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b̄1 =
[

1√
2

0 0
]T

, ȳ1 =
[
0 −l2 0

]T
, w1 :=

[
b̄T

1
(

˜̄y1b̄1
)T
]

vL, (19)

b̄2 =
[
−1√

2
0 0

]T
, ȳ2 =

[
0 l2 0

]T
, w2 :=

[
b̄T

2
(

˜̄y2b̄2
)T
]

vL, (20)

b̄3 =
[
0 1√

2
0
]T

, ȳ3 =
[
0 0 −l3

]T
, w3 :=

[
b̄T

3
(

˜̄y3b̄3
)T
]

vL, (21)

b̄4 =
[
0 −1√

2
0
]T

, ȳ4 =
[
0 0 l3

]T
, w4 :=

[
b̄T

4
(

˜̄y4b̄4
)T
]

vL, (22)

b̄5 =
[
0 0 1√

2

]T
, ȳ5 =

[
−l1 0 0

]T
, w5 :=

[
b̄T

5

(
˜̄y5b̄5

)T
]

vL, (23)

b̄6 =
[
0 0 −1√

2

]T
, ȳ6 =

[
l1 0 0

]T
, w6 :=

[
b̄T

6

(
˜̄y6b̄6

)T
]

vL, (24)

clearly map a general velocity state, which is given by the vector representation vL of the Lie algebra ṽL to six
unified velocity coordinates

w :=
[
w1 w2 w3 w4 w5 w6

]T
. (25)

In section 4.1 we will show why exactly this choice of direction and position vectors, including the factor 1/
√

2,
is advantageous and why they can clearly map the velocity coordinates w to the Lie algebra.

3.1.1 Velocity field

The local translational velocity vector v(ȳp) =
[
v̄1 v̄2 v̄3

]T of each point P on the rigid body, whose position on
the rigid body is given by the local vector ȳp, can be calculated from the six local unified velocity coordinates w
using the interpolation

v(ȳp) = N(ȳp)w (26)

where the interpolation matrix N(ȳp)

N(ȳp) =
1√
2

1− ȳ2
l2
−1− ȳ2

l2
0 0 ȳ3

l1
ȳ3
l1

ȳ1
l2

ȳ1
l2

1− ȳ3
l3
−1− ȳ3

l3
0 0

0 0 ȳ2
l3

ȳ2
l3

1− ȳ1
l1
−1− ȳ1

l1

=

N1×6
1 (ȳp)

N1×6
2 (ȳp)

N1×6
3 (ȳp)

 (27)

is given in terms of the hexahedron dimensions and the components of the local position vector ȳp =
[
ȳ1 ȳ2 ȳ3

]T.
To show that the velocity field of the rigid body is correctly described by Eq. (26), we show the derivation of the

first line of Eq. (26). From a kinematic point of view, the velocity component v̄1 is composed of three translational
velocity components, which result from different forms of motion of the rigid body. Namely a translational velocity
component v̄transl

1 , which occurs due to a pure translational motion of the rigid body towards the local basis vector
e1. A velocity component v̄

rote2
1 , which results from a pure rotary motion of the rigid body around the axis of

rotation whose direction is given by the local basis vector e2. As well as a velocity component v̄
rote3
1 , which results

from a rotational motion of the rigid body around the axis of rotation whose direction is given by the local basis
vector e3. From the definition (18) of the six unified velocity coordinates w it follows that w1 = 1√

2
v̄e1

trans and

w2 = −1√
2
v̄e1

trans. By the projection (26) the velocity vector v(ȳ) is not only projected in a direction given by the
direction vectors b, but also scaled at the same time. This is illustrated in Fig. 5 a.

In the case of a pure translational motion, the velocity of any reference point v̄Ref on the rigid body therefore
corresponds by

v̄Ref = w1−w2 =
√

2v̄transl
1 ⇒ v̄transl

1 =
1√
2
(w1−w2) . (28)

The velocity component v̄
rote3
1 follows from linear interpolation

v̄
rote3
1 (ȳ2) =−

1√
2

(
w1

l2
+

w2

l2

)
ȳ2 (29)
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Fig. 5: Representation of the motion of the cross-section spanned by the transformation points (1,2,5,6), see also Fig. 4 a.

according to Fig. 5 b. The negative slope in v̄
rote3
1 follows from the assumed mathematically positive sense of

rotation. In the same sense the velocity component v̄
rote2
1 follows from linear interpolation

v̄
rote2
1 (ȳ3) =

1√
2

(
w5

l1
+

w6

l1

)
ȳ3 (30)

according to Fig. 6 b. Summing up the terms v̄transl
1 , v̄

rote2
1 and v̄

rote3
1 results in the first line of Eq. (26)

(a) (b)

3

4

65
√

2w6

√
2w5

e3

e1
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rote2
1

5 6

ȳ3

e3
e1

4

3

l1−l1

w5

w6

Fig. 6: Representation of the motion of the cross-section spanned by the transformation points (3,4,5,6), see also Fig. 4 a.

v̄1 = v̄transl
1 + v̄

rote2
1 + v̄

rote3
1 =

1√
2
(w1−w2)+

1√
2

(
w5

l1
+

w6

l1

)
ȳ3−

1√
2

(
w1

l2
+

w2

l2

)
ȳ2. (31)

If Eq. (31) is formulated as a scalar product of a 1×6-vector with the vector w, the 1×6-vector appears to be the
first line N1×6

1 (ȳp) of the interpolation matrix shown in Eq. (27). Of course, these relations would also follow from
basic kinematic formulas using the angular velocity vector.

3.2 Representation of accelerations

A unification of the kinematic description of the rigid body motion at velocity level is possible with the help of
the six local velocity coordinates wi as shown in the previous section. A unified kinematic representation of the
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rigid body motion on acceleration level can also be found based on the time derivatives of the unified local velocity
coordinates wi. The velocity field v in Eq. (26) can be written in coordinate representation

v(ȳp) = v̄1e1 + v̄2e2 + v̄3e3 =
(
N1(ȳp)w

)
e1 +

(
N2(ȳp)w

)
e2 +

(
N3(ȳp)w

)
e3, (32)

where (e1, e2, e3) represent the three body-fixed local orthogonal basis vectors, with their (time dependent) coor-
dinates represented in the global frame. The acceleration vector of any point P in the current configuration can be
determined from the time derivative of Eq. (32). Therefore, the acceleration vector follows as

v̇(ȳp) =
(
N1(ȳp)ẇ

)
e1 +

(
N2(ȳp)ẇ

)
e2 +

(
N3(ȳp)ẇ

)
e3+ (33)

+
(
N1(ȳp)w

)
ė1 +

(
N2(ȳp)w

)
ė2 +

(
N3(ȳp)w

)
ė3,

where (ė1, ė2, ė3) represent the time derivatives of the three body-fixed local orthogonal basis vectors. Formulated
in matrix-vector notation, the acceleration vector (33) takes the form

v̇(ȳp) = [e1 e2 e3]
[
NT

1 (ȳp) NT
2 (ȳp) NT

3 (ȳp)
]T

ẇ+[ė1 ė2 ė3]
[
NT

1 (ȳp) NT
2 (ȳp) NT

3 (ȳp)
]T

w. (34)

The acceleration vector transformed into the local frame reads as follows

v̇(ȳp) = [e1 e2 e3]
[
NT

1 (ȳp) NT
2 (ȳp) NT

3 (ȳp)
]T

ẇ+
[
ė1 ė2 ė3

][
NT

1 (ȳp) NT
2 (ȳp) NT

3 (ȳp)
]T

w, (35)

where (e1, e2, e3) represent the three body-fixed basis vectors, with their (time dependent) coordinates represented
in the local frame and (ė1, ė2, ė3) represent the time derivatives of the three body-fixed basis vectors, with their
(time dependent) coordinates represented in the local frame. In the body-fixed frame it follows that in case of a
translational motion ėi vanishes. But in case of a rotational motion it follows that ėi 6= 0. Since ėi can be interpreted
as difference of two velocities, Eq. (26) is used to obtain

ėi = v(ei)−v(0). (36)

The velocity term v(0) in Eq. (36) corresponds to a pure translational motion at ȳp = 03×1. Eq. (36) can be
evaluated using Eq. (26). By inserting the Cartesian basis vectors e1 = [1 0 0]T, e2 = [0 1 0]T and e3 = [0 0 1]T

into Eq. (36), it follows that the time derivatives of the basis vectors read

ė1 =
[
0 w1+w2√

2l2
−w5−w6√

2l1

]T
, (37)

ė2 =
[
−w1−w2√

2l2
0 w3+w4√

2l3

]T
, (38)

ė3 =
[

w5+w6√
2l1

−w3−w4√
2l3

0
]T

. (39)

To obtain a compact vector-matrix notation of Eq. (35), the time derivatives of the basis vectors are combined in
the matrix1

Ė :=
[
ė1 ė2 ė3

]
=


0 −w1−w2√

2l2
w5+w6√

2l1
w1+w2√

2l2
0 −w3−w4√

2l3
−w5−w6√

2l1
w3+w4√

2l3
0

 . (40)

The acceleration vector v̇(ȳp) of any point P can be determined using

v̇(ȳp) = N(ȳp)ẇ+P(ȳp,w)w (41)

where the matrix P(ȳp,w) is given by
P(ȳp,w) = Ė(w)N(ȳp) (42)

and the time derivative of the unified coordinates reads

ẇ :=
[
ẇ1 ẇ2 ẇ3 ẇ4 ẇ5 ẇ6

]T
. (43)

1 The skew symmetric matrix Ė collects the vectors ėi. It can be shown that in case the basis vectors correspond to the orthogonal
standard basis, Ė is the representation of the Lie algebra Ω̃ with respect to the six translational velocity coordinates wi.
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3.3 Equations of motion of a free rigid body

In this section, we determine the governing equations of motion (EOM) in terms of w and ẇ. In order to obtain a
clear and simple structure of the underlying equations, we choose in the following the dimensions of the hexahedral
as l1 = l2 = l3 = 1. To obtain the governing equations of motion we use the Gibbs-Appel equations [24, 25, 26].
Since we are searching for EOM depicted in a body-fixed frame, we have to calculate the partial derivatives of the
Gibbs-function G with respect to the time derivative of the velocity coordinates ẇ and equate the derivatives with
the corresponding generalized forces Q̄

∂G
∂ ẇ

= Q̄ with G =
1
2

∫
V

ρ v̇(ȳp)
T v̇(ȳp)dV (44)

which need to be defined in the body-fixed frame too. Using Eq. (41), one can find that the Gibbs-function G can
be written as a sum of three integrals

G =
1
2

∫
V

ρ v̇(ȳp)
T v̇(ȳp)dV =

1
2

∫
V

ρẇTNTNẇdV +
∫

V
ρẇTNTPwdV +

1
2

∫
V

ρwTPTPwdV = G1+G2+G3. (45)

Since the vector ẇ does not appear in the term G3, the partial derivative of G3 with respect to ẇ vanishes. Therefore,
we only make use of the first two terms G1 and G2, since their partial derivative with respect to ẇ is obviously non
zero. Therefore, G1 and G2 follows to

G1 :=
1
2

ẇT
(∫

V
ρNT

(ȳp)N(ȳp)dV
)

ẇ =
1
2

ẇTMẇ, (46)

G2 := ẇT
(∫

V
ρNT

(ȳp)P(ȳp,w)dV
)

w = ẇT
Γw. (47)

A further evaluation of the integrals in G1 and G2 lead us to the definition of a mass matrix M and a velocity
dependent matrix Γ

M :=
∫

V
ρNT

(ȳp)N(ȳp)dV, (48)

Γ :=
∫

V
ρNT

(ȳp)P(ȳp,w)dV. (49)

Since the interpolation matrix N(ȳp) depends only on the chosen reference point ȳp, which is in a body-fixed
frame constant, it follows that the mass matrix M is also constant with respect to the body-fixed frame. The partial
derivatives of G1 and G2 follow to

∂G1

∂ ẇ
= Mẇ and

∂G2

∂ ẇ
= Γw. (50)

Adding up the partial derivatives of G1 and G2, the equations of motion follow to

Mẇ+Γw = Q. (51)

Not, that Eqs. (51) has been obtained without the use of rotation matrices or the angular velocity vector.

3.4 Generalized Forces

In order to obtain a complete formulation of the governing equations of motion (51), we define the corresponding
generalized forces Q ∈ R6 here, using the principle of virtual power [27]. Since the obtained equations of motion
are stated in a body-fixed frame, we need to derive the driving generalized forces with respect to a body-fixed
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frame. This can easily be done, since the principle of virtual power is invariant under a coordinate transformation.
Therefore, the principle of virtual power follows to

QT
δw = fT

δv(ȳp) = fT
(

∂v(ȳp)

∂w
δw
)
= fT

(
∂

∂w
N(ȳp)wδw

)
= fTN(ȳp)δw. (52)

The generalized force vector Q, which acts on the point P (local position is given by vector ȳp) of a rigid body as
a result of the external body-fixed force vector f ∈ R3 therefore reads

Q = NT
(ȳp) f. (53)

4 Relation to rotation dependent rigid body motion

In this section we show how the EOM (51) can be converted to the Newton-Euler EOM expressed with respect to
a body-fixed frame. Furthermore, we present the results of the integrals of the mass matrix (48) and the integrals
of the velocity depended matrix (49).

4.1 Relation between w and vL

The vector w can also be determined directly from the multiplication of the vector form of vL, see Eq. (10), with a
matrix D ∈ R6×6

w =



w1
w2
w3
w4
w5
w6

=



b̄T
1
(

˜̄y1b̄1
)T

b̄T
2
(

˜̄y2b̄2
)T

b̄T
3
(

˜̄y3b̄3
)T

b̄T
4
(

˜̄y4b̄4
)T

b̄T
5

(
˜̄y5b̄5

)T

b̄T
6

(
˜̄y6b̄6

)T


vL =



1√
2

0 0 0 0 l2√
2

−1√
2

0 0 0 0 l2√
2

0 1√
2

0 l3√
2

0 0

0 −1√
2

0 l3√
2

0 0

0 0 1√
2

0 l1√
2

0

0 0 −1√
2

0 l1√
2

0


vL = DvL (54)

which is built from the direction and position vectors in Eq. (19-24). From Eq. (54) it follows that the vector form
of the Lie algebra vL can only be clearly reconstructed from the vector w using the relation vL = D−1w if the
matrix D is invertible. In order to enable a bijective mapping between the rotation-free description of the rigid
body motion presented here based on the six unified translational velocity coordinates w and the description of the
rigid body motion based on the translational and rotational velocities D must be a regular matrix. The direction
and position vectors selected in Eq. (19-24) fulfill this condition. Furthermore, if l1 = l2 = l3 = 1, the matrix D
formed with the direction and position vectors in Eq. (19-24) is orthogonal and its determinant is det(D) = −1.
The inverse matrix of D follows to be D−1

= DT and therefore

vL = DTw. (55)

4.2 Mass matrix

If we choose the body’s center of mass as reference point, one can observe that the integrals G1 and G2 in Eq.
(45) can be simplified. The direct calculation of the integrals in G1 and G2 shows, that some matrices stand out
within the general structure of integrals. Therefore, the mass matrix M and the velocity dependent matrix Γ can be
written as a matrix product

M = D
[

J1 03×3
03×3 J2

]
DT and Γ= D

[
ĖJ1 03×3

03×3 ĖJ2

]
DT (56)
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where the diagonal elements of the 3×3-matrix J1

J1 =
∫

V
ρI3dV =

m 0 0
0 m 0
0 0 m

 (57)

contain the rigid body’s mass m and the 3×3-matrix J2

J2(ȳp) =
∫

V
ρ ˜̄yp ˜̄yT

p dV =

J11 J12 J13
J21 J22 J23
J31 J32 J33

 . (58)

represents the body’s inertia tensor. If we use a diagonal inertia tensor

J2(ȳp) =

J11 0 0
0 J22 0
0 0 J33

 , (59)

the mass matrix M exhibits a simple block diagonal structure

M =
1
2



m+ J33 J33−m 0 0 0 0
J33−m m+ J33 0 0 0 0

0 0 m+ J11 J11−m 0 0
0 0 J11−m m+ J11 0 0
0 0 0 0 m+ J22 J22−m
0 0 0 0 J22−m m+ J22

 . (60)

Using a diagonal inertia tensor, the vector Γw containing the quadratic velocity vector reads

Γw =
1

2
√

2



m(w1 +w2)(w4−w3)+
((
−J11− J22

)
(w3 +w4)+m(w5−w6)

)
(w5 +w6)

m(w1 +w2)(w3−w4)−
((

J11− J22
)
(w3 +w4)+m(w5−w6)

)
(w5 +w6)

m
(
w2

1−w2
2− (w3 +w4)(w5−w6)

)
−
(
J22− J33

)
(w1 +w2)(w5 +w6)

−m
(
w2

1−w2
2− (w3 +w4)(w5−w6)

)
−
(
J22− J33

)
(w1 +w2)(w5 +w6)

m
(
w2

3−w2
4− (w1−w2)(w5 +w6)

)
+
(
J11− J33

)
(w1 +w2)(w3 +w4)

m
(
w2

4−w2
3 +(w1−w2)(w5 +w6)

)
+
(
J11− J33

)
(w1 +w2)(w3 +w4)

 . (61)

4.3 Relation to the Newton-Euler EOM

Since the mass matrix M and the velocity dependent matrix Γ can be written as matrix product as depicted in Eq.
(56), the EOM (51) can be rewritten using matrix D,

Mẇ+Γw = 06×1 ⇒ DMDTẇ+DΨMDTw = 06×1 (62)

From Eq. (56) it follows, that the matrices M represent the usual mass matrix of the Newton-Euler EOM [6]. The
matrix Ψ contains the skew symmetric representations of the local angular velocity vector,

M =

[
J1 03×3

03×3 J2

]
and Ψ=

[
Ω̃ 03×3

03×3 Ω̃

]
. (63)

Multiplication from left hand side with DT, gives

MDTẇ+ΨMDTw = 06×1. (64)
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Since ẇ = Dv̇L and w = Dv̇L the equations of motion can be written as

Mv̇L +ΨMvL = 06×1. (65)

Splitting up the EOM (65) into a term for the translational motion and the rotational motion leads to the well known
Newton-Euler equations, e.g. see [12, 13]

J1U̇+ Ω̃J1U = 03×1 (66)

J2Ω̇+ Ω̃J2Ω= 03×1. (67)

5 Time integration of the unified local velocity coordinates

In order to obtain the current position and orientation of the rigid body with respect to the reference configuration
from the unified velocity coordinates w, we need to find a proper representation of the Lie algebra ṽL or its vector
representation vL and furthermore of the inverse tangent operator T−1

SE(3) with respect to w. Once this is achieved,
we only need to apply a proper time integration method to the incremental motion vector differential Eq. (11) and
apply its solution to Eq. (12) to obtain the current position and orientation of the rigid body. Therefore, the goal
of this section is, to find a proper representation of Lie algebra ṽL as well as a proper representation of the inverse
tangent operator T−1

SE(3) and furthermore to describe the numerical time integration of the governing equations of
motion (51), the incremental motion vector ODE (11) and the kinematic differential Eq. (6).

5.1 Lie algebra corresponding to w

Since the Lie algebra ṽL in the kinematic differential Eq. (6) is a function of the translational velocity vector U and
the angular velocity vector Ω, we need to find a corresponding representation of the Lie algebra with respect to the
velocity coordinates w in order to be able to apply the solution approach depicted in Eq. (12). This corresponding
representation of the Lie algebra can easily be found, since the translational velocity of the reference point can be
determined with respect to w using Eq. (26)

U = N(01×3)w. (68)

Since, the local angular velocity tensor Ω̃ can be expressed with matrix Ė, the representation to the Lie algebra
so(3) with respect to w corresponds in case that the basis vectors represent the standard orthogonal basis to

Ω̃= Ė(w). (69)

Therefore, the Lie algebra ṽL(w) corresponding to H ∈ SE(3) is given by the matrix

ṽL(w) :=

[
Ė(w) N(01×3)w
01×3 0

]
=


0 −w1−w2√

2
w5+w6√

2
w1−w2√

2
w1+w2√

2
0 −w3−w4√

2
w3−w4√

2
−w5−w6√

2
w3+w4√

2
0 w5−w6√

2

0 0 0 0

 . (70)

Since the lie algebra g is isomorphic to Rn by the invertible linear map (9), the vector form vL of the lie algebra vL
can be formed from the matrix-vector multiplication

vL :=



1√
2
− 1√

2
0 0 0 0

0 0 1√
2
− 1√

2
0 0

0 0 0 0 1√
2
− 1√

2
0 0 1√

2
1√
2

0 0
0 0 0 0 1√

2
1√
2

1√
2

1√
2

0 0 0 0





w1
w2
w3
w4
w5
w6

= DT w. (71)
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5.2 Inverse tangent operator

The differential equation for the incremental motion vector ṅ is calculated as already shown in Eq. (11) from
the matrix vector multiplication of the tangential operator by the vector form of the Lie algebra. The relationship
between the vector form of the lie algebra vL and the vector of the unified coordinates w is established by the
direction vectors b̄ and the position vectors ȳP in the form of the inverse transformation matrix DT via the relation-
ship vL = DTw. The tangential operator T−1

SE(3) matching the unified coordinates can thus be determined by matrix
multiplication

T−1
SE(3)(n) = T−1

SE(3)(n)D
T (72)

The tangential operator T−1
SE(3) can be written similar to the tangential operator T−1

SE(3) in closed [22] form as

T−1
SE(3)(n) = DT

+
1
2

T1(n)+K(n)T2(n) (73)

with

T1(n) =
[

ñ46 ñ13
03×3 ñ46

]
DT

, (74)

where n =
[
n1 n2 n3 n4 n5 n6

]T
=
[
nT

13 nT
46

]T. The coefficient matrix K(n) is defined via Eqs.

K(n) =

[
k1(n)I3 k2(n)I3

03 k1(n)I3

]
, (75)

k1(n) =
1

‖n46‖2

(
1− ‖n46‖

2
cot
(
‖n46‖

2

))
, and (76)

k2(n) =
nT

46n13

2‖n46‖4

(
‖n46‖2

1− cos(‖n46‖)
+‖n46‖cot

(
‖n46‖

2

)
−4
)
. (77)

The matrix T2(n) is defined using the Lie bracket d,e see [15],

T2(n) =
[
dñ13, ñ46e 03×3

03×3 ñ2
46

]
DT

. (78)

5.3 Integration scheme

We focus next on a numerical time integration scheme, which can be used to solve the differential equations

ẇi+1 = M−1 (Qi−Γiwi
)
= f(H0, w0, t0) , (79)

ṅi+1 = T−1
SE(3)(ni)wi+1. (80)

Once a solution of Eq. (80) is obtained for a specific time step (i→ i+1), the corresponding SE(3) group element
update is obtained from the update formula

Hi+1 = Hi expSE(3)(ñi+1). (81)

For the purpose of numerical time integration, we adopt a recently presented 4th-order Runge-Kutta time integra-
tion scheme proposed by Terze et al. [20], such that it can be applied to our formulation. Starting with values at
the previous step, wi, ∆ti,Hi, ni, the slope estimations are obtained by

K1 = ∆tT−1
SE(3)(ni)wi, k1 = ∆t f(Hi, wi, ti) , (82)

K2 = ∆tT−1
SE(3)

(
1
2

K1

)(
wi +

1
2

k1

)
, k2 = ∆t f

(
Hi, wi +

1
2

k1, ti +
1
2

∆t
)
, (83)

K3 = ∆tT−1
SE(3)

(
1
2

K2

)(
wi +

1
2

k2

)
, k3 = ∆t f

(
Hi, wi +

1
2

k2, ti +
1
2

∆t
)
, (84)

K4 = ∆tT−1
SE(3) (K3)(wi +k3) , k4 = ∆t f(Hi, wi +k3, ti +∆t) . (85)
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The four coefficients K1, . . . ,K4 represent the slopes within one time step (i→ i+1) in the solution process of the
incremental motion vector ODE (80) and the four coefficients k1, . . . ,k4 contain the slopes within one time step in
the solution process of the EOM (79). The quantity ∆t represents the time step size in the integration process. The
following two equations

wi+1 = wi +
1
6
(k1 +2k2 +2k3 +k4) , (86)

Hi+1 = Hi expSE(3)

(
1
6
(K1 +2K2 +2K3 +K1)

)
, (87)

update the quantities w and H. Note, that the incremental motion vector is set to n0 = 06×1 for i = 0.

6 Numerical example

As an example of usage, we present the rotation of a rigid body about an axis close to its unstable axis of rotation.
No external torques are applied. This example is taken from [20, 28]. The rigid body is a box with an inertia
tensor with respect to the body’s center of mass equal to J2 = diag(5.2988, 1.1775, 4.3568). All quantities are
expressed in standard units. A unstable rotation about the third axis is expected, since J11 > J22 > J33. Since we
focused the analysis of the six unified local velocity coordinates on the hexahedral projection with side lengths
(l1 = l2 = l3 = 1), the hexahedral projection vectors b̄i and the projection points ȳi, i = 1...6, of Eqs. (19-24), are
used to obtain six unified local velocity coordinates from the body’s velocity state,

v0 =
[
UT

0 Ω
T
0

]T
=
[
0 0 0 0.01 0 100

]T
, (88)

where U0 = 01×3 represents the body’s local center of mass velocity vector and Ω0 = [0.01 0 100 ]T the body’s
local angular velocity vector corresponding to the values used in [20, 28]. Therefore, the initial conditions are set
to

w0 =
[

100√
2

100√
2

0.01√
2

0.01√
2

0 0
]T

(89)

and R0 = I3 and x0 = 03×1. The rotation matrix R0 represents the body’s initial orientation and the vector x0 the
body’s initial position with respect to the reference frame. Therefore, the initial conditions in terms of an element
of SE(3) follow to

H0 =

[
R0 x0
0 1

]
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (90)

The initial conditions w0 represent U0 and Ω0, since by definition, the velocity state of a rigid body is expressed
in case of a hexahedral projection by w0 = Dv0. Since no external forces or torques are applied, the equations of
motion follow to

Mẇ+Γw = 06×1 (91)

Despite that no translational motion is studied in this example, we set the body’s mass m = 1 in Eq. (60) for the
sake of completeness.

For a better understanding of the simulation results, the position of a point P, which position vector is given
in the body-fixed frame by p̄ = [0 0 1 ]T, is tracked during rotation. Numerical simulations are conducted in the
time domain of one second. In order to obtain a reference solution, we use the time integration scheme without
explicitly imposing the unit-length constraint proposed by Terze et al. [20], which we will abbreviate in the
following figures with f 1. Our unified local velocity coordinate formulation will be abbreviated with ulvc in the
following figures. Since all methods converged to the same solution (up to machine precision) for a time step of
h = 1e− 5, results obtained with that time step can be considered as a reference. The trajectory of p̄, expressed
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Fig. 7: Spatial trajectory of point p̄
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in an inertial frame, is shown in the three-dimensional plot in Fig. 7, while its components as a function of time
are shown in Fig. 8. The position of the point p̄ is changing between [0 0 1 ]T and [0 0 −1 ]T. Components of
the body’s angular velocity vector Ω as a function of time are shown in Fig. 9. As expected, the body’s rotation is
unstable after rotating about an axis close to the third axis, the body flips over and continues its rotation as one can
observe in Fig. 9. The condition that the determinant of the rotation matrix det(R) = +1 is shown as a function of
time in Fig. 10. Finally, Fig. 11 illustrates convergence based the norm of the error of the angular velocity error
‖Ω−Ωconverged‖2 and Fig. (12) illustrates the determinant of the rotation matrix det(R) =+1 for decreasing values
of the integration step size h(1/10, 1/40, 1/80, 1/160, 1/320, 1/640, 1/1280, 1/2560, 1/5120). The reference
solution is obtained with the time step h = 1e− 5. The convergence plots are displayed in logarithmic scale. As
shown in Fig. 11 the unified local velocity coordinate formulation exhibits the same convergence and accuracy
as the method proposed by Terze et al.[20] (largest difference in the norm of the angular velocity vector error is
0.0581), since both integration schemes are based on a fourth order explicit Runge-Kutta method. As depicted in
Fig. 12, the determinant of the rotation matrix condition det(R)−1 = 0 stays for both methods under 10−13. The
unified local velocity coordinate formulation shows a slightly better accuracy in the condition det(R)−1 = 0 than
the one obtained with the method proposed by [20], whereas the method presented in [20] shows a slightly higher
convergence rate. The better accuracy of the unified local velocity coordinate formulation compared to the one
obtained with the method of Terze et al. may be explained by the fact, that we use directly the exponential map on
SO(3) to obtain a rotation matrix from which we compute the determinant, whereas in the method of Terze et al.
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Fig. 9: Body angular velocity
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Fig. 10: Determinant of rotation
matrix
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of the angular velocity error. The
triangle in the figure represents a
gradient triangle. As can be seen
from the figure, the norm of the er-
ror of the solution of the local angu-
lar velocity vector converges with
fourth order.
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one have to first compute a unit quaternion with which one can construct a rotation matrix and after that one can
compute its determinant.
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Fig. 12: Curve of the rotation ma-
trix condition det(R) = +1 with re-
spect to time integration step size
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7 Conclusions

Concluding, we found a formulation to describe spatial rigid body motion in terms of non-redundant, homogeneous
local velocity coordinates. We obtain equations of motion with a simple structure, which can be integrated using
adopted Lie-group time integration schemes. Currently, the proposed approach offers no noticeable computational
advantages compared to state of the art formulations but it promises to be useful in cases, in which one does not
want to distinguish between translational and rotational motion.
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