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ABSTRACT — A novel method named parameter-split-multiple-scales method is proposed to analyze
the forced vibrations of strongly nonlinear oscillators. A nonlinear oscillator equivalent to the original
oscillator is formulated by introducing some unknown parameters first. After that, the approximated an-
alytical solution to the equivalent nonlinear oscillator is obtained by classical multiple-scales method.
In the last, the split parameters are determined by minimizing the residual error of the original non-
linear oscillator equation. The solution procedure about the forced vibration of a Duffing oscillator
by the proposed method is presented in this paper. Two strongly nonlinear Duffing oscillators are con-
sidered as illustrative examples to test the feasibility of the parameter-split-multiple-scales method.
By the comparison of the frequency response curves obtained by classical multiple-scales method, the
parameter-split-multiple-scales method and numerical continuation method, the advantages and the
effectiveness of the proposed method are presented.

1 Introduction

Nonlinear system can exhibit many phenomena that are different from or can’t be found in linear systems [1].
However, it is difficult or impossible to find the exact solutions to the nonlinear systems since they are expressed
by nonlinear ordinary differential equations (ODEs) or nonlinear partial differential equations (PDEs). With the
increasing interests in the applications of nonlinear problems, various analytical methods for finding the approxi-
mate analytical solutions to those nonlinear ODEs have been developed in recent years. The perturbation method
is one of the approximate analytical methods. The perturbation method breaks a nonlinear equation into some
linear equations which exact solutions are obtainable and can be solved one by one. The multiple-scales (MS)
method is a representative of the perturbation methods which is well known for its eliminating secular terms. The
MS method has been applied to many oscillation problems such as the vibrations of cables, vibrations of beams
and plates, etc [2, 3, 4]. However, due to the requirement for small parameter in the system, the MS method lost
its validity when the problem is strongly nonlinear [5]. To solve strongly nonlinear oscillation problems, a lot of
approximate analytical methods have been developed in recent years [6, 7, 8, 9, 10, 11, 12].

In this paper, a novel method is proposed for optimizing the nonlinear oscillator solution obtained by the
MS method. The strategy of this method is that some parameters in the oscillator are split by introducing some
unknown parameters. Based on the solution obtained by the MS method, an optimization objective is formulated
and the introduced unknown parameters are determined by minimizing the cumulative residual error of the original
oscillation equation. Hence the method is named parameter-split-multiple-scales (PSMS) method. The Duffing
oscillator with viscous damping and harmonic external force [13] is adopted to test the effectiveness of the proposed
method. The frequency response curves (FRCs) obtained by the conventional MS method, the PSMS method and
numerical continuation method (NCM) [14] are compared with each other. The results show that the solutions
obtained by the PSMS method are much improved comparing to those obtained by the MS method. The FRCs
obtained by the PSMS method are verified by the FRCs obtained by the NCM.



2 Parameter-split-multiple-scales method

Consider the following non-dimensional Duffing oscillator
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This oscillator is a damped and harmonically forced Duffing oscillator that can be found in many applications such
as the forced vibrations of pendulum, isolator, the vibrations of nonlinear beam and plate, electrical circuit, etc[13].
The Duffing oscillator was also popularly analyzed for examining new solution procedures. Therefore, the Duffing
oscillator is selected as an example to test the effectiveness of the proposed method.

2.1 Parameter splitting (PS)

The natural frequency ω0 and the nonlinear parameter η are split and expressed as
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and
η = η1 +η2ε. (3)

Then the Duffing oscillator can be rewritten as
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where ω01, ω02 and η2 are split parameters to be determined by minimizing the residual error to be introduced in
the following.

2.2 Solution to the equivalent oscillator by multiple-scales method

Since the secular terms can be eliminated by the MS method and the MS method is not effective for analyzing
the strongly nonlinear oscillators [12], the MS method is adopted to analyze the equivalent Duffing oscillator
presented in Eq. (4) to examine the effectiveness of the proposed procedures. With the MS method, the response
of the equivalent oscillator is assumed to be

y = y0(T0,T1,T2)+ εy1(T0,T1,T2)+ ε
2y2(T0,T1,T2)+O(ε3) (5)

where T0, T1 and T2 are the fast and slow time scales expressed by

T0 = t, T1 = εt, T2 = ε
2t. (6)

By chain rule, the operators of time derivatives are
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where Dn = ∂/∂Tn and D2
n = ∂ 2/∂T 2

n . Substituting Eqs. (5), (7) and (8) into Eq. (4) and equating the coefficients
of εm(m = 0,1,2) to zero lead to the following equations.
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The O(ε0) equation is a homogenous differential equation, the solution to it is

y0 =C(T1,T2)eiω00T0 +C(T1,T2)e−iω00T0 (12)

where C is a function of time scales T1 and T2 which can be determined by omitting the secular terms in the O(ε1)
equation. Substituting Eq. (12) into the righthand side of the O(ε1) equation and eliminating the secular terms
yield

3η1C2Ceiω00T0 +2iD1(C)ω00eiω00T0 +Cω
2
01eiω00T0 = 0 (13)

and
y1 = B13e3iω00T0 +B13e−3iω00T0 , (14)

in which
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Substituting the expressions of y0 and y1 into the O(ε2) equation, eliminating the secular terms, and using the
expression Ω = ω00 + ε2σ where σ is a detuning parameter that can be determined if Ω is given, it gives
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and
y2 = B23e3iω00T0 +B25e5iω00T0 +B23e−3iω00T0 +B25e−5iω00T0 , (17)

in which
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B25 =
η2

1C5

64ω4
00
. (19)

The time derivative of C can be expressed as

dC
dt

= εD1(C)+ ε
2D2(C)+O(ε3). (20)

The polar form of C is assumed to be

C =
1
2

Aeib, (21)

where A is the response amplitude and b is the phase of oscillator response. Substituting Eqs. (13), (16) and (21)
into Eq. (20) and separating the real and imaginary parts yield
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and
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where γ = σT2 −b.
For steady state, Ȧ and γ̇ are equal to zero. Then the frequency-response curve can be obtained by eliminating γ
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and σ in Eq. (23). The relation between the excitation frequency and the response amplitude at steady state is then
obtained to be
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The approximate response of the oscillator is obtained to be

ya = A1 cos(Ωt − γ)+2A3 cos[3(Ωt − γ)]+2A5 cos[5(Ωt − γ)] (25)

in which
A1 = A, (26)
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2.3 Optimization objective

From Eqs. (25)- (28) it is seen that the expression of ya can be considered as a function f (ω01,ω02,η1) of the
variables ω01, ω02 and η1 once the system parameters ω0, c, η , Ω and F are given. Select an interval Ω= [Ωl,Ωu]
on the positive frequency axis, in which most of the frequency-response curve falls. Then for a given value of
excitation frequency within Ω, the values of ω01, ω02 and η1 can be determined by minimizing the value of the
residual error Re given as

Re =
∫ T

0

[
ÿa + cε

2ẏa +ω
2
0 ya +ηεy3

a −Fε
2 cos(Ωt)

]2dt (29)

where T = 2π/Ω. Since the function Re consists of periodic functions with periods 2π

nΩ
(n = 1,2,3 . . .) where Ω

is the excitation frequency, the integration upper limit is hence selected as T to cumulate all the errors induced
by each periodic function. The nonlinear oscillation problem, therefore, has been converted to an optimization
problem. The unknown splitting parameters ω01, ω02 and η2 are determined by minimizing Re via the Levenberg-
Marquardt algorithm (LMA). The complete FRC can then be obtained by repeating this procedure and varying Ω

from Ωl to Ωu.

3 Illustrative exmaples

Two strongly nonlinear Duffing oscillators whose ratios of nonlinear stiffness/linear stiffness ( ηεy3

ω2
0 y ) are equal to y2

and 2y2, respectively, are analyzed to examine the feasibility of the proposed method in the next Section.
The parameter values of the oscillators are listed in Tab. 1. The FRCs obtained by the PSMS method,

Tab. 1: Parameter values in the Duffing oscillators

Oscillator ε ω0 c η F
1 0.1 20 20 4,000 1,000
2 0.1 20 20 6,000 2,000

conventional MS method and numerical continuation method are shown and compared in Figs. 1(a) and 1(b). A
larger redundant portion can be observed in each FRC obtained by MS method in comparison with those obtained
by NCM as the ratio of ηεy3/ω2

0 y becomes larger. However, even when the response amplitude is small, the
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(a) ε = 0.1,ω0 = 20,c = 20,η = 4,000 and f = 1,000
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(b) ε = 0.1,ω0 = 20,c = 20,η = 6,000 and f = 2,000

Fig. 1: The FRCs obtained by the MS method, the PSMS method and the numerical continuation method.

solutions obtained by the MS method still deviate more from the solutions obtained by the numerical continuation
method than those obtained by the PSMS method do, which can be seen from the ’zoomed-in’ figures shown in
Figs. 1(a) and 1(b). This phenomenon is caused by the truncation error in Eq. 5. On the contrary, the PSMS method
can give more accurate solutions to the Duffing oscillators in the whole frequency domain.

4 Conclusions

The strongly nonlinear Duffing oscillator with viscous damping and harmonic force is analyzed by a novel method
named PSMS method in this paper. The FRCs obtained by the PSMS method are compared with those obtained
by conventional MS method and examined by the FRCs obtained by numerical method. The results show that the
FRCs obtained by the PSMS method are much improved comparing to those obtained by the MS method. The error
in the FRCs obtained by the MS method increases as the response amplitude increases. The solutions obtained by
the MS method are not acceptable even when the response amplitude is small. The procedure presented in this
paper is not limit to the Duffing oscillator. Other oscillators can also be analyzed by this method. It is seen that this
procedure is not limited to improving the solutions obtained by the multiple-scales method. The solutions from
other perturbation methods can also be improved by this procedure.
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