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Objectives: 
 

•   Motivation for estimation, detection, filtering, and identification in stochastic signal 

processing 
 

•  Methodologies on design and synthesis of optimal estimation algorithms 

•  Characterization of estimators and tools to study their performance 

•   To provide an overview in all principal estimation approaches and the rationale for 

choosing a particular technique 

 

 

 

 
In RADAR (Radio Detection and Ranging), SONAR (sound navigation and ranging), 
speech, image, sensor networks, geo-physical sciences,… 

 

Both for parameter and state estimation, 

always on the presence of stochastic disturbances 
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Pre-requisites: 
 

•  Random Variables and Stochastic Processes 

Joint, marginal, and conditional probability density functions: Gaussian / normal  

distributions;  Moments of random variables (mean and variance); Wide-sense 

stationary processes; Correlation and covariance; Power spectral density; 
 

•  Linear Algebra 

Vectors: orthogonality, linear independence, inner product; norms; 

Matrices: eigenvectors, rank, inverse, and pseudo-inverse; 
 

•  Linear  Systems 

LTIS and LTVs; ODEs and solutions; Response of linear systems; Transition matrix; 

Observability and controlability; Lyapunov stability. 
 
 

The implementation of solutions for problems require the use of MATLAB and Simulink. 



PO 1213 

Syllabus: 
 

Classical Estimation Theory 
 

Chap. 1 - Motivation for Estimation in Stochastic Signal Processing [1/2 week] 

Motivating examples of signals and systems in detection and estimation problems; 
 

Chap. 2 - Minimum Variance Unbiased Estimation [1 week] 

Unbiased estimators; Minimum Variance Criterion; Extension to vector parameters; 

Efficiency of estimators; 
 

Chap. 3 - Cramer-Rao Lower Bound [1 week] 
Estimator accuracy; Cramer-Rao lower bound (CRLB); CRLB for signals in white 
Gaussian noise;  Examples; 
 
 

continues… 
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Syllabus (cont.): 
 

Chap. 4 - Linear Models in the Presence of Stochastic Signals [1/2 week] 

Stationary and transient analysis; White Gaussian noise and linear systems;  Examples; 

Sufficient Statistics; Relation with MVU Estimators; 
 

Chap. 5 - Best Linear Unbiased Estimators [1 week]  

Definition of BLUE estimators;  White Gaussian noise and bandlimited systems; 

Examples; Generalized minimum variance unbiased estimation;  
 

Chap. 6 - Maximum Likelihood Estimation [1 week] 

The maximum likelihood estimator; Properties of the ML estimators; Solution for ML 

estimation; Examples; Monte-Carlo methods; 
 

Chap. 7 - Least Squares [1 week] 

The least squares approach; Linear and nonlinear least squares; Geometric 

interpretation; Constrained least squares;  Examples; 

continues… 
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Syllabus (cont.): 
 

Bayesian Estimation Theory 
 

Chap. 8 – Bayesian Estimation [1/2 week] 

Philosophy and estimator design; Prior knowledge; Bayesian linear model; Bayesian 

estimation on the presence of Gaussian pdfs; Minimum Mean Square Estimators; 
 

Chap. 9 – Wiener Filtering [1/2 week] 

The Wiener filter problem; Causal and non-causal solutions; Complementary filters; 
 

Chap. 10 – Kalman Filtering [2 weeks] 

Optimal estimator  in the presence of white Gaussian noise – the Kalman filter; Stability, 

convergence and robustness for LTV and LTI systems; Kalman and Wiener filters; 

Optimal smoothers; Examples; Extended Kalman Filters; 
 

continues… 
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Syllabus (cont.): 
 

Advanced Estimation Topics 
 

Chap. 11 – Multiple Model Adaptive Estimation [1 week] 

Joint system identification and parameter/state estimation using multiple models.  

 

Chap. 12 – Optimal Smoothing [1 week] 

Fixed point, fixed interval, and fixed lag smoothers.  

 

Chap. 13 – Advanced Topics [2 weeks] 

To be detailed later, e.g. Positioning and navigation systems; Failure detection  and 

isolation; Multiple model adaptive estimation; Discretization; Missing data estimation; 

Outlier detection and removal; Feature based estimation; Principal component analysis; 

Nonlinear signal processing; Compressive sensing;… 

 

End. 
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Grading: 
 

•  Five problem sets (50%) 
 Due dates: weeks of 25-03, 08-04, 22-04, 06-05, 06-20 and 03-06 (tentative). 

 
and 
 

•  Term paper (50%) 
 Topic selected randomly by the student. Worked jointly by the faculty/student. 
 To be completed in the final 3-4 weeks, i.e.  week of 5-07. 

or 

•  Final exam (50%) 
 Week of 15-07. 

 

Classes: 
 Tuesdays:  16h00 – 17h30, room C11 
 Thurdays:  16h00 – 17h30, room P9 

 
 

To discuss issues: i) e-mail, ii) phone, or iii) schedule an interview. 
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Summary: 
 

•   Motivation for estimation, detection, filtering, and identification in stochastic signal 

processing 
 

•  Methodologies on how to design optimal estimation algorithms 

•  Characterization of estimators and tools to study their performance 

•   To provide an overview in all principal estimation approaches and the rationale for 

choosing a particular technique 

 

Both for parameter and state estimation, 

always on the presence of stochastic disturbances 

 
In RADAR (Radio Detection and Ranging), SONAR(sound navigation and ranging), 
speech, image, sensor networks, geo-physical sciences,… 
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Speech 
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Signals can be represented by functions (continuous time) or by vectors 

(where a sampling operation takes place) 

 

Examples of speech/sound processing: 

Automatic systems commanded by voice;  

Automatic translation; Voice recognition 

Synthesis of voice 
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Echograms 
The quest for hydrothermal vents 
 
 
 

  D. João de Castro bank 
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Echograms 
The quest for hydrothermal vents (cont.) 
 

   D . João de Castro bank 

Delfim ASC, IST/ISR 
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Echograms 
The quest for hydrothermal vents (cont.) 
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Sidescan Sonar Imaging 
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GPS – Global Positioning System 
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Image with missing data 
Reconstruction   
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Bathymetric survey 
  Geo-referenced data   Reconstructed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Uncertainty on data   Final uncertainty 
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Deblurring an image 
Original Image 

Blurred Image 

Restored image 

Causes: 

•  Out of focus acquisition 

•  Camera-object movement 

•   Shaking 

•   Shallow field of view  … 
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Stock Exchange  

Courtesy Jornal de Negócios 

Models that explain evolution of phenomena 
 

•  Causality 

•  Number of parameters 

•  Type of model 

•  Uncertainty 

Is it possible to predict the  

market price tomorrow,  

next week, next month, 

next year,?… 
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GPS Intelligent Buoys(GIB)-ACSA/ORCA 

Surface buoys with 
•  DGPS receivers  
•  Hydrophones 
•  Radio link  

Control Station  
•  DGPS receiver  
•  Radio link 
•  PC with tracking software 

Tracking with a Sensor Network 

Acoustic pinger  
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GPS Intelligent Buoys(GIB)-ACSA/ORCA 
Tracking with a Sensor Network (cont.) 
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To be possible to design estimators, first the data must be modeled.  
 

Example I: 

Assume that one sample x is available 

(scalar example, i.e. N=1) with constant  

unknown mean θ.	



The probability density function (PDF) is 

 

 

 

For instance if x[0]<0 it is doubtful that the unknown parameter is >>0. 

 

In a actual problem, we are not given a PDF, but must be chosen to be 

consistent with the data and with the prior knowledge. 

The mathematical estimation problem 
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Example II: 

Now the following sequence x is given. 

Note that the value along time  appears 

 to be decreasing.  Lets consider that  

the phenomena is described by 

 

 

where A and B are constant unknown parameters and w[n] is assumed to be white 

Gaussian noise, with PDF N(0,σ 2).  For θ=[A B] and x=[x[0] x[1] …x[n]] the data PDF is 

     Where the uncertainty in the samples 

is assumed to be uncorrelated. 

 

The performance of the estimators is dependent on the models used, so 

they must be mathematically treatable.. 

The mathematical estimation problem 
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Classical estimation techniques  

 Parameters are assumed deterministic but unknown  

 

Bayesian techniques 

 Parameters are used to be unknown but are stochastic also 

described by a PDF. 
 

The joint PDF would then be   p(x , θ) = p(x | θ) p(θ) 

The mathematical estimation problem 

Prior knowledge Dependence of data  
on the parameters 
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Example III (Quiz): 

Given a data sequence from a signal with  

PDF as described by one of three models 

Which one is the correct model? 

 

First scenario: 

 

 

 

For the signal 

 

 

Exploiting simple estimators 
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The answer is obvious: 

θ = 40! 

[ ] [ ] 0,1,..., 1x n w n n Nθ= + = −
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Second scenario  

(lousy sensor quality or lousy data): 

Lets repeat the problem with 

 

 

Exploiting simple estimators 

{ }

2 2

100
40,0, 40

N
θ

=

∈ −

σ = 100

The answer is not obvious anymore! 

Lets propose a couple of estimators  

and to study them… 
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Estimators depend only on observed data thus can be viewed as a function 

 

The study of estimator properties must be done resorting to statistic tools. 
 

Is it exact?, i.e. Does it return the true value of the unknown parameters? 

 

Is this a good estimator?  If many experiments can be performed, is it expected that 

the unknown parameter is achievable? Or are the results expected to be biased? 

 

 

 

 

 

 

Assessing estimator performance 

=38.43! 
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Assessing estimator performance 
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How good is an estimator? How much 

uncertainty corresponds to the 

computed value? 

 

The use of computational tools is a good 

idea? No! 

 

Formal methods are required 

 

For our quiz: 
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Questions triggered from this simple example but valid to all our problems:  

 

•  The second estimator is much better than the first estimator.  

•  The quality of the estimate increases with the number of points. Is it reasonable? Is 

it plausible?  

  

•  Do we have always data available? How to get data?  

•  Is this the best one can do with N samples?  

 

•  Are there better estimators that we can exploit? 

        Answers to this questions will be provided along the course… 

Assessing estimator performance 



PO 1213 

Bibliography: 
 

Further reading 

•  Paul Etter, Underwater Acoustic Modelling and Simulation, Taylor & Francis, 2003. 

•  François Le Chevalier, Principles of Radar and Sonar Signal Processing, Artech House, 2002. 

•  Peter Wille, Sound Images of the Ocean in Research and Monitoring, Springer, 2005. 

•  Lawrence Rabiner, Biing Juang, Fundamentals of Speech Recognition, Prentice Hall, 1993. 

•  Gilbert Strang, Kai Borre,  Linear Algebra, Geodesy, and GPS, SIAM, 1997. 

•  Rafael Gonzales, Richard Woods, Digital Image Processing, Prentice Hall, 2001. 

•  Joseph Boccuzzi, Signal Processing for Wireless Communications, McGraw Hill, 2008. 

•  Venkatesh Saligrama,  Networked Sensing Information and Control, Springer, 2008. 

•  Ching-Fang Lin, Modern Navigation, Guidance, and Control Processing, Prentice Hall, 1991. 

See for instance http://www.ieee.org/portal/site 



PO 1213 

 
Advanced Control Systems 

Detection, Estimation, and Filtering 
 
 

Graduate Course on the  
MEng PhD Program  

Spring 2012/2013 
 
 

Chapter 2 
Minimum Variance Unbiased Estimation  

 
 

Instructor: 
Prof. Paulo Jorge Oliveira 

p.oliveira@dem.ist.utl.pt or pjcro @ isr.ist.utl.pt 
Phone: 21 8419511 or 21 8418053 (3511 or 2053 inside IST) 

 
 



PO 1213 

Syllabus: 
 

Classical Estimation Theory 
 
Chap. 1 - Motivation for Estimation in Stochastic Signal Processing [1/2 week] Motivating 

examples of signals and systems in detection and estimation problems; 
 

Chap. 2 - Minimum Variance Unbiased Estimation [1/2 week] 

Unbiased estimators; Minimum Variance Criterion; Extension to vector 

parameters; Efficiency of estimators; 
 
Chap. 3 - Cramer-Rao Lower Bound [1 week] 
Estimator accuracy; Cramer-Rao lower bound (CRLB); CRLB for signals in white Gaussian noise;  
Examples; 
 
 

continues… 
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Unbiased estimators: 
 

The search for good estimators for unknown deterministic parameters begins 

 

Example (revisited): 

Unbiased estimator for DC level in white Gaussian noise. Signal model is 

 

 

A reasonable estimator is 

 

Due to the linearity properties of the expectation operator E[.]: 

 

 

 

Unbiased estimator iff k=1! 
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Unbiasness: 
 

Let the vector of deterministic unknown parameters, with p components, be described as  

 

 

 

 

An estimator must have the same dimensions, i.e. 

 

 

 

 

 

The estimator is unbiased iff  
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Minimum variance criterion: 
 

In searching for estimators some optimality criterion must be adopted. 

 

A natural one is the mean square error (MSE), defined as 

 

 

Unfortunately the choice of the criterion leads to unrealizable estimators, i.e. not only 

function of the data 

 

 

 

 

 

Fortunately, after differentiation an estimator depending on θ will result.	



( ) ( )
2ˆ ˆmse Eθ θ θ−⎡ ⎤= ⎢ ⎥⎣ ⎦
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+
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Minimum variance criterion: 
 

Example: 

Find the value of k such that a realizable mse estimator results 

 

 

From the previous page 

 

 

 

 

Lets find the minimum 

 

 

 

Unfortunately depends on the unknown parameter A.	
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Minimum variance unbiased estimator: 
The  Minimum Variance Unbiased (MVU) 

Estimator must have smallest variance for all 

values of θ. 

 

In general, the MVU estimator does not 

always exist. 

 

There is no “turn-the-crank ” method. 

Future approaches: 

Chp. 3 – Cramer-Rao lower bound 

Chp. 5 – Sufficient statistics  

Chp. 6 – Restrict to linear estimators: BLUE 
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Syllabus: 
 

Classical Estimation Theory 
 
… 

Chap. 2 - Minimum Variance Unbiased Estimation [1/2 week] 

Unbiased estimators; Minimum Variance Criterion; Extension to vector parameters; 

Efficiency of estimators; 
 

Chap. 3 - Cramer-Rao Lower Bound [1 week] 
Estimator accuracy; Cramer-Rao lower bound (CRLB); CRLB for 
signals in white Gaussian noise;  Examples; 
 
Chap. 4 - Linear Models in the Presence of Stochastic Signals [1 week] 

Stationary and transient analysis; White Gaussian noise and linear systems;  Examples; 

Sufficient Statistics; Relation with MVU Estimators; 
 

continues… 
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Estimator accuracy: 
 

The accuracy on the estimates dependents very much on the PDFs 

 

Example (revisited): 

Model of signal  

 

Observation PDF  

for a disturbance N(0, σ2) 

 

Remarks: 

If  σ2  is  Large then the performance of the estimator is Poor; 

If  σ2  is  Small then the performance of the estimator is Good; or 
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If PDF concentration is High then the parameter accuracy is High. 

How to measure sharpness of PDF (or concentration)? 
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Estimator accuracy: 
 

When PDFs are seen as function of the unknown parameters, for x fixed, they are called 

as Likelihood function. To measure the sharpness note that (and ln is monotone…) 

 

 

Its first and second derivatives are respectively: 

     

 

 

As we know that the estimator Â has variance σ2 (at least for this example) 

 

 

 

 

We are now ready to present an important theorem… 
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σ 2 x[0]− A( ) and
  
−
∂2

∂A2 ln p x[0]; A( ) = 1
σ 2 .

( )
( )

2

2

1 1ˆvar
ln ;

A
curvaturep x A

A

= =
∂

−
∂
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Cramer-Rao lower bound: 
 

Theorem 3.1 (Cramer-Rao lower bound, scalar parameter) – It is assumed that the 

PDF p(x; θ) satisfies the “regularity” condition 

 

        (1) 

where the expectation is taken with respect to p(x; θ). Then, the variance of any unbiased 

estimator      must satisfy 

        (2) 

 

where the derivative is evaluated at the true value of θ and the expectation is taken with 

respect to p(x,  θ). Furthermore, an unbiased estimator can be found that attains the 

bound for all θ  if and only if 

        (3) 

for some functions g(.) and I (.). The estimator, which is the MVU estimator, is 

and the minimum variance 1/ I(θ). 

 

   �
E ∂

∂θ
ln p x;θ( )#

$
%

&

'
( = 0 �������� θ

   

var θ̂( ) ≥ 1

−E ∂2

∂θ 2 ln p x;θ( )%

&
'

(

)
*

 θ̂

   
∂

∂θ
ln p x;θ( ) = I θ( ) g x( ) −θ( )

   
θ̂ = g x( ),
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Cramer-Rao lower bound: 
 

Proof outline: 

Lets derive the CRLB for a scalar parameter α=g(θ). We consider all unbiased estimators 

        

        (p.1) 

Lets examine  the regularity condition (1) 

 

	



	



	



Remark: differentiation and integration are required to be interchangeable (Leibniz Rule)! 

Lets differentiate (p.1) with respect to θ and use the previous results 

  ��
E α̂"# $% = α = g θ( ) �� α̂ p � ;θ( )∫ d� � g θ( ).

  �

E ∂

∂θ
ln p � ;θ( )#

$
%

&

'
( =

∂ ln p � ;θ( )
∂θ

p � ;θ( )∫ d� =
∂p � ;θ( )
∂θ∫ d�

=
∂

∂θ
p � ;θ( )∫ d� � ∂1

∂θ
= 0.

  �
α̂
∂p � ;θ( )
∂θ∫ d� =

∂g θ( )
∂θ

or α̂
∂ ln p � ;θ( )

∂θ
p � ;θ( )∫ d� =

∂g θ( )
∂θ

.
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Cramer-Rao lower bound: 
 

Proof outline (cont.): 

This can be modified to 

 

 

as  

 

Now applying the Cauchy-Schwarz inequality, i.e. 

 

 

considering  

results 

  �
α − α̂( )

∂ ln p � ;θ( )
∂θ

p � ;θ( )∫ d� =
∂g θ( )
∂θ

,

  � 
α
∂ ln p x;θ( )

∂θ
p x;θ( )∫ d� = αE

∂ ln p x;θ( )
∂θ

%

&
'
'

(

)
*
*
= 0.

( ) ( ) ( ) ( ) ( ) ( ) ( )
2
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θ

∂
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∂
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∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫x x

x
x x
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Cramer-Rao lower bound: 
 

Proof outline (cont.): 

It remains to relate this expression with the one in the Theorem  

Starting with the previous result 

 

 

thus, this function identically null verifies 

 

 

 

 

 

And finally 
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Cramer-Rao lower bound: 
 

Proof outline (cont.): 

Taking this into consideration, i.e.  

 

 

expression (2) results, in the case where g(θ)=θ. 

 

The result (3) will be obtained next… 

 

See also appendix 3.B for the derivation in the vector case. 

 

( ) ( )
2 2

2

ln ; ln ;p p
E E

θ θ

θ θ

⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞
⎢ ⎥ = − ⎢ ⎥⎜ ⎟

∂ ∂⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

x x
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Cramer-Rao lower bound: 

Summary: 

 

•  Being able to place a lower bound on the variance of any unbiased 

estimator is very useful. 

•  It allow us to assert that an estimator is the MVU estimator (if it 

attains the bound for all values of the unknown parameter). 

•  It provides in all cases a benchmark for the unbiased estimators that 

we can design. 

•  It alerts to impossibility of finding unbiased estimators with variance 

lower than the bound. 

• Provides a systematic way of finding the MVU estimator, if it exists 

and if an extra condition is verified. 
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Example: 
 

Example (DC level in white Gaussian noise): 

Problem: Find MVU estimator.           Approach: Compute CRLB, if right form we have it. 

Signal model: 

 

Likelihood function:  

 

 

 

     CRLB: 

 

The estimator is unbiased and has the same variance, thus it is a MVU estimator! And it 

has the form: 

[ ] [ ] [ ] ( )2, 0,..., 1, 0,x n A w n n N w n N σ= + = − :

( )
( )
1 2

2 0
1 [ ]
2

2 2

1;
(2 )
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n
x n A

Np A e σ

πσ

−
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− −∑

=x

   

∂

∂A
ln p x; A( ) = ∂

∂A
−

1
2σ 2 x[n]− A( )2

n=0

N −1
∑

%

&'
(

)*
=

1
σ 2 x[n]− A( ) =n=0

N −1
∑

N
σ 2 x − A( )

( )
2

2 2ln ; Np A
A σ
∂

= −
∂

x ( )
2

2ar
/

ˆ 1v
N N

A σ
σ

≥ =

    

∂

∂A
ln p x; A( ) = I θ( ) g x( ) −θ( ), for I θ( ) = N

σ 2
g x( ) = x.
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Cramer-Rao lower bound: 
 

Proof outline (second part of the theorem): 

Still remains to prove that the CRLB is attained for the estimator    

 

 

If 

 

differentiation relative to the parameter gives 

 

 

and then 

 

 

 

i.e. the bound is attained. 

( ) ( )
( ) ( )

2

2

1var , for ln ;ˆ I E p x
I

θ θ
θ θ

θ
⎡ ⎤∂

= = − ⎢ ⎥∂⎣ ⎦
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∂
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∂ ∂
xx

( ) ( ) ( )( ) ( ) ( )
2
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I
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θ
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∂⎡ ⎤∂
− = − − + =⎡ ⎤⎢ ⎥ ⎣ ⎦∂ ∂⎣ ⎦

xx

( )ˆ gθ = x
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Example: 
 

Example (phase estimation): 

 

Signal model: 

 

 

Likelihood function:  

 

 

[ ] ( ) [ ]0

0
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x n A f n w n n N
A f

π φ= + + = −
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2σ 2
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Example: 
 

Example (phase estimation cont.): 

 

 

 

as 

 

 

       for large N. 

 

 

•  Bound decreases as SNR=A2/2σ2 increases 

•  Bound decreases as N increases 

 

Does an efficient estimator exists? Does a MVUE estimator exists? 

   
−E ∂2

∂φ 2
ln p x |φ( )$

%
&

'

(
) = −

A2

σ 2

1
2
−

1
2
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cos 4π f0n + 2φ( ) ≈ 0 for f0  not near 0 or 1/2.
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∑
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Fisher information: 
 

We define the Fisher Information (Matrix) as  

	



	



Note: 

•  I(θ) ≥0 

•  It is additive for independent observations 

•  If identically distributed (same PDF for each x[n]) 

As N->∞, for iid => CRLB-> 0 

( ) ( )
2

2 lˆ n ;I E p x θ
θ

θ
⎡ ⎤∂
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∑
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%
&

'

(
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%
&

'

(
)n=0

N −1
∑

( ) ( ) [ ]( )
2

2 ln . ;I Ni N p xθ θ θ
θ

⎡ ⎤∂
= = − ⎢ ⎥∂⎣ ⎦
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Other estimator characteristic: 
 

Efficiency: 

 

An estimator that is unbiased and attains the  

CRLB is said to be efficient. 

 

 θ

( )var θ̂

1

2

3

ˆ

ˆ

ˆ MVU

θ

θ

θ =

3̂  MVU and efficientθ

No MVU available.

( )var θ̂
1

2

3

ˆ

ˆ

ˆ

θ

θ

θ

θ
3̂  MVU but not efficientθ

CRLB 

CRLB 

( )var θ̂

1

2

3

ˆ

ˆ

ˆ

θ

θ

θ

θ

CRLB 
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Transformation of parameters: 
 

Imagine that the CRLB is known for the parameter θ. Can we compute easily the CRLB 

for a linear transformation of the form α = g(θ) = aθ + β ? 

 

 

 

 

 

 

Linear transformations preserve biasness and efficiency. 
 

 

And for a nonlinear transformation of the form α=g(θ)? 

  
α̂ = aθ̂ + b, E aθ̂ + b#$ %& = aE θ̂#$ %& + b = α

( )

( )

2

2
2

2

var vaˆ

ln ;

ˆr

g

a b a
E p

θ
θ

θ
θ

θ θ

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠⎡ ⎤ ⎡ ⎤+ = =⎣ ⎦ ⎣ ⎦ ⎡ ⎤∂

− ⎢ ⎥∂⎣ ⎦
x
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Transformation of parameters: 
 

Remark: after a nonlinear transformation, the good properties can be lost. 
 

 

 

 

Example: Suppose that   given a stochastic variable                              we desire to have 

an estimator for  α=g(Α)=A2 (power estimator). Note that 

 

 

 

( )
( )

( )

2

2

2

var
l ;

ˆ

n

g

E p

θ
θ

θ
θ

θ

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠≥
⎡ ⎤∂

− ⎢ ⎥∂⎣ ⎦
x

2

,x N A
N
σ⎛ ⎞

⎜ ⎟
⎝ ⎠

:

( ) ( )( ) [ ] [ ] [ ] [ ] [ ]
2 2 2 2 2 2 2 2var 2 2E E E E E E E E E E⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − + = − + = −⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

x x x x x x x x x x x x

( ) [ ]2 2varE E⎡ ⎤ = +⎣ ⎦x x x

A bias estimate results. Efficiency is lost. 
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Cramer-Rao lower bound: 
 

Theorem 3.1 (Cramer-Rao lower bound, Vector parameter) – It is assumed that the 

PDF p(x;θ) satisfies the “regularity” condition 

 

where the expectation is taken with respect to p(x, θ). Then, the variance of any unbiased 

estimator      must satisfy 

where ≥ is interpreted as meaning the matrix is positive semi-definite. The Fisher 

information matrix I(θ) is given as 

 

where the derivatives are evaluated at the true value of  θ   and the expectation is taken 

with respect to p(x;θ). Furthermore, an unbiased estimator may be found that attains the 

bound for all θ  if and only if 

        (3) 

for some functions p dimensional function g(.) and some p x p matrix I (.). The estimator, 

which is the MVU estimator, is  and its covariance matrix is I-1(θ). 

( )ln ;E p θ
θ
∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦

θ 0x for all 

( )1
ˆ 0,I
θ

−− ≥θC θ̂

( ) ( ) ( )( )ln p I
θ
∂

= −
∂

x;θ θ g x θ

( )ˆ ,=θ g x

( ) ( )
2

ln ; ,
ij

i j

I E p
θ θ

⎡ ⎤∂
= −⎡ ⎤ ⎢ ⎥⎣ ⎦ ∂ ∂⎢ ⎥⎣ ⎦

θθ x
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Vector Transformation of parameters: 
 

The vector transformation of parameters   impacts on the CRLB computation as 

 

 

where the Jacobian is 

 

 

 

 

 

  In the Gaussian general case for x[n]=s[n]+w[n], where  

the Fisher information matrix is 

 

 

( )α = g θ

   
C

α̂
−
∂g θ( )
∂θ

I −1 θ( )
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#
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%
%
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%

&
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⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤
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θ θ θ θ
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θ θ
θ

θ θ
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Example: 
 

Example (line fitting): 

 

Signal model: 

 

 

Likelihood function: 

 

The Fisher Information Matrix is  

 

 

 

where 

 

[ ] [ ], 0,..., 1
,  deterministic unknown quantities
x n A Bn w n n N
A B

= + + = −

   

p x;θ( ) = 1

(2πσ 2 )
N
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∂A∂B
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σ 2
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∑ .
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Example: 
 

Example (cont.): 

Moreover 

 

 

Since the second order derivatives do not depend on x, we have immediately that 

 

 

 

 

And also, 

   

I θ( ) = 1
σ 2

N N (N −1)
2

N (N −1)
2

N (N −1)(2N −1)
6

$

%

&
&
&
&

'

(

)
)
)
)
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Example: 
 

Example (cont.): 

Remarks: 

For only one parameter to be determined     . Thus a general results was 

obtained: when more parameters are to be estimated the CRLB always degrades. 

Moreover 

 

 

 

The parameter B is easier to be determined, as its CRLB decreases with 1/N3. This 

means that x[n] is more sensitive to changes in B than changes in A. 

[ ] [ ]

[ ] [ ] .

x n
x n A A

A
x n

x n B n B
B

∂
Δ ≈ Δ = Δ

∂
∂

Δ ≈ Δ = Δ
∂

( )
2

ˆvar A
N
σ

≥

ˆ( ) (2 1)( 1) 1, for 3.ˆ 6( )
CRLB A N N N
CRLB B

− −
= > ≥
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Syllabus: 
 

Classical Estimation Theory 
… 

Chap. 3 - Cramer-Rao Lower Bound [1 week] 
Estimator accuracy; Cramer-Rao lower bound (CRLB); CRLB for signals in white 
Gaussian noise;  Examples; 
 

Chap. 4 - Linear Models in the Presence of Stochastic Signals [1 

week] Stationary and transient analysis; White Gaussian noise and 

linear systems;  Examples; Sufficient Statistics; Relation with MVU 

Estimators; 
 
Chap. 5 - Best Linear Unbiased Estimators [1 week]  
Definition of BLUE estimators;  White Gaussian noise and bandlimited systems; 
Examples; Generalized minimum variance unbiased estimation;  
 

continues… 
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A very special class of systems: 
 

FACT: 

The determination of the MVU Estimator is in general a difficult task. 

 

 

A class of systems that allows the determination of this estimator easily… 

LINEAR SYSTEMS 

The statistical performance is also easy to compute  

and an efficient solution is obtained. 

 

The key point is on the formulation of a problem as a linear one. 
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MVU Estimator for the Linear Model: 
 

Theorem 4.1 – If the data observed can be modeled as 

 

 

where x is a N x 1 vector of observations, H is a known N x p observation matrix (with 

N>p) and rank p, θ is a p x 1 vector of parameters to be estimated, and w is an N x 1 

noise vector with PDF N(0, σ2Ι), then the MVU is 

 

       (1) 

and  the covariance matrix of  estimate is  

 

       (2) 

 x = Hθ + w

   
θ̂ = HTH( )−1

HT x

   
C
θ̂
= σ 2 HT H( )−1

.
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MVU Estimator for the Linear Model: 
 

Proof outline: 

As discussed in Chapter 3, it is possible to determine the MVU estimator if the equality 

constraints of the CRLB are satisfied. 

From the signal model, it follows that the log-likelihood function is  

 

 

And 

 

 

 

 

Using the relations (deduce them, good exercise…) 

   
ln p x;θ( ) = − ln 2πσ 2( )N / 2

−
x − Hθ( )T x − Hθ( )

2σ 2

   

∂ ln p x;θ( )
∂θ

= −
1

2σ 2

∂

∂θ
xT x − 2xT Hθ +θ T HT Hθ%& '(.

   

∂bTθ
∂θ

= b ∂θ T Aθ
∂θ

= 2Aθ
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MVU Estimator for the Linear Model: 
 

Proof outline (cont): 

It follows 

 

 

Under the assumptions of the theorem, HTH is invertible 

 

 

Note that it is in the format introduced in the previous chapter, from where (1) and (2) 

follows immediately. 

         

 

Major constraints: 

 what if HTH is not invertible? 

 what if HTH is ill-conditioned? 

   

∂ ln p x;θ( )
∂θ

=
1
σ 2 HT x − HT Hθ%& '(.

   

∂ ln p x;θ( )
∂θ

=
HT H
σ 2 HT H( )−1

HT x −θ%
&'

(
)*
. ∂ ln p x;θ( )

∂θ
=I θ( ) g x( )−θ%& ()

+

,
-
-

.

/
0
0
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Example - Fourier Analysis: 
 

Cyclic components in white Gaussian noise 

Signal model: 

 

 

Defining  

 

 

 

 

 

 

The model can be reformulated as a linear system, with solution if M < N/2 

 

[ ] [ ] [ ] ( )21 1

2 2cos sin , 0,..., 1, 0,M M
k kk k

kn knx n a b w n n N w n N
N N
π π

σ
= =

⎛ ⎞ ⎛ ⎞= + + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ :

= a1 ... aM b1 ... bM
!
"#

$
%&
T

,w = w0 wN−1
!
"#

$
%&
T

,and

H =

1 ... 1 0 ... 0

c 2π
N

(

)
*

+

,
- ... c 2πM

N
(

)
*

+

,
- s 2π

N
(

)
*

+

,
- ... s 2πM

N
(

)
*

+

,
-

     

c
2π N−1( )
N

(

)

*
*

+

,

-
-
... c

2πM N−1( )
N

(

)

*
*

+

,

-
-
s
2π N−1( )
N

(

)

*
*

+

,

-
-
... s

2πM N−1( )
N

(

)

*
*

+

,

-
-

!

"

#
#
#
#
#

$

%

&
&
&
&
&

 x = Hθ + w
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Important fact: The columns of H are orthogonal.  

Define 

 

 

Moreover, the discrete Fourier Transform (DFT) relations can be applied, i.e. 

 

 

 

 

 

 

From where it follows 

    
H = h1 h2 ... h2M

!
"

#
$
, it follows hi

T h j = 0, i ≠ j .

.
2

T N
=H H I

1

0

1

0

1

0

2 2cos cos
2

2 2sin sin
2

2 2cos sin 0, , .

N
ijn

N
ijn

N

n

in jn N
N N
in jn N
N N
in jn i j
N N

π π
δ

π π
δ

π π

−

=

−

=

−

=

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑

∑ for all

Example - Fourier Analysis (cont.): 
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The MVU estimator is 

 

 

 

§ 

 

or finally 

 

 

 

with covariance 

 

[ ]

[ ]

1

0

1

0

2 2ˆ cos ,

2 2ˆ sin .

N
k n

N
k n

kna x n
N N

knb x n
N N

π

π

−

=

−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑

∑

θ̂ = HTH( )
−1
HTx = 2

N
HTx =

2
N
h1
Tx


2
N
h2M
T x

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

,

2

ˆ
2 .C
N
σ

=
θ

I

Example - Fourier Analysis (cont.): 
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Example: System Identification 
 

Signal model, where the Finite Impulse  

Response (FIR) is to be estimated.  

The user can apply the input signal  u: 

 

 

In matrix form, considering x=[x0 … xN-1]T, the input/output relations of this linear system 

can be written as 

 

 

 

 

 

Or in compact form, once again 

   
x n!" #$ = h k!" #$u n − k!" #$k=0

p−1
∑ + w n!" #$ , n = 0,..., N −1, w n!" #$  N 0,σ 2( ) .

x =

u 0!" #$ 0 ... 0

u 1!" #$ u 0!" #$ ... 0

   
u N −1!" #$ u N − 2!" #$ ... u N − p!" #$

!

"

&
&
&
&
&
&

#

$

'
'
'
'
'
'

h 0!" #$
h 1!" #$


h p−1!" #$

!

"

&
&
&
&
&
&

#

$

'
'
'
'
'
'

+w w = w0 wN−1
!
"&

#
$'
T

.

 x = Hθ + w

H(z) u[n] x[n] 

w[n] 
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The MVU estimator is once again 

 

 

Note that accuracy depends on the input signal applied. How to choose it? 

Problem: Choose u[n] to minimize           subject to the constraint 

that             is fixed. 

 

Introducing the crosscorrelation (autocorrelation) 

 

 

 

Choosing a Pseudorandom Noise (PRN) makes this last matrix diagonal 

 

( ) ( )1 12
ˆ

ˆ , .T T TC σ
− −

==
θ

θ H H H x H Hwith covariance

Example - System Identification (cont.): 

( ) ˆ
ˆvar , 1,..., ,i ii

i pθ ⎡ ⎤= =⎣ ⎦θC
[ ]1

0

N

n
u n−

=∑

[ ] [ ]1

0

1[ ] N i
ux n
r i u n x n i

N
− −

=
= +∑ HTH =

ruu 0!" #$ ruu 1!" #$ ... ruu p−1!" #$

ruu 1!" #$ ruu 0!" #$ ... ruu p−2!" #$

   
ruu p−1!" #$ ruu p−2!" #$ ... ruu 0!" #$

!

"

&
&
&

#

$

'
'
'

[ ]( ) [ ]

2
2

ˆ
1

0 .
0uu

uur
C r σ

σ
−
==

θ
I I

Input  
Signal 
Energy 
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Extension to non-white Gaussian noise: 
 

Theorem (Generalization of Theorem 4.1) – If the data observed can be modeled as 

 

 

where x is a N x 1 vector of observations, H is a known N x p observation matrix (with 

N>p) and rank p, θ is a p x 1 vector of parameters to be estimated, and w is an N x 1 

colored noise vector with PDF  N(0, C)  (C ≠ σ2Ι), then the MVU is 

 

       (1bis) 

and  the covariance matrix of  estimate is  

 

       (2bis) 

 x = Hθ + w

( ) 11 1ˆ T T−− −=θ H C H H C x

   
C
θ̂
= HTC−1H( )−1

.
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Extension to non-white Gaussian noise: 
 

Proof: The covariance matrix and its inverse are both positive semi-definite. Thus 

 

A noise whitening operation can be performed. For that purpose lets compute the 

covariance of 

 

If we define the new variable x’ as  

 

Applying the usual solution to this linear model (transformed) results in 

 

 

For a covariance  

 

   C−1 = DT D, where D ∈RNxN

   
E Dw( ) Dw( )T!
"#

$
%&
= DCDT = DD−1DT −1

DT = I .

  !x = Dx = DHθ + Dw = !H θ + !w .

   
θ̂ = "H T "H( )−1

"H T "x = HTDTDH( )−1
HT DTDx = HTC−1H( )−1

HTC−1x

   
C
θ̂
= "H T "H( )−1

= HT DT D "H( )−1
= HTC−1 "H( )−1

.
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Sufficient Statistics: 
 

General MVU Estimation: 

 Assume that the CRLB is not satisfied with equality! 

  There is no efficient estimator. 

   How do we find the MVU estimator (if it exists)? 

     

   

Example: To compute the value of a DC signal in noise, given n samples, i=0,…,N-1. 

Consider 

 

 

 

 

All sets are sufficient since the unknown parameter can be found. S3 is the minimal one. 

[ ] [ ] [ ]{ }
[ ] [ ] [ ]{ }

[ ]{ }

1

2

1
3 0

0 , 1 ,..., 1

0 1 ,..., 1
N

n

S x x x N

S x x x N

S x n−

=

= −

= + −

= ∑

Use  the concept of Sufficient Statistics. 
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Sufficient Statistics: 
 

Theorem 5.1 (Neyman-Fisher Factorization) – If we can factor the PDF p (x;θ) as  

 

       (3) 

where g(.) is a function depending on x only through T(x) and h (.) is a function depending 

only on x, then T(x) is  sufficient statistic for θ. Conversely, if T (x) is a sufficient statistic for 

θ  then the PDF can be factored as in (3). 

 

Proof outline (=>): 

•  p(x,T(x);θ) must have a minimum at x=x0, denoted as T(x0)=T0; 

•  If y=g(x), for the vector random variable x,  

•  Knowledge of the value of a sufficient statistics 

makes the conditional PDF not to depend on the 

parameters 

( ) ( )( ) ( ); ,p g T hθ θ=x x x

( ) ( ) ( )( ) .p y p y g dδ= −∫ x x x

( )( )0| ;p T T θ=x x
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Sufficient Statistics: 
 

Proof outline (cont): 

Using conditional  

probability definition: 

 

 

Where the factorization was used in the last step. The denominator can be written as 

 

 

 

The integral is zero in Rn  except over the surface where T(x)=T0. where it is constant. 

 

 

 

Which does not depend on θ. Hence, we conclude that T(x) is a sufficient statistic. n 

( )( ) ( )( )
( )( )

( ) ( )( )
( )( )

( )( ) ( ) ( )( )
( )( )

0 0
0

0 0

0 0

0

, ; ;
| ;

; ;

, ,
.

;

p T T p T T
p T T

p T T p T T

g T T h T T
p T T

θ θ δ
θ

θ θ

θ δ

θ

= −
= = =

= =

= −
=

=

x x x x
x x

x x

x x x x
x

( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )

0 0

0 0 0 0

; ;

, , .

p T T p T T d

g T T h T T d g T T h T T d

θ θ δ

θ δ θ δ

= = − =

= = − = = −

∫
∫ ∫

x x x x

x x x x x x x x

( )( ) ( ) ( )( )
( ) ( )( )

0
0

0

| ; ,
h T T

p T T
h T T d

δ
θ

δ

−
= =

−∫
x x

x x
x x x
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Sufficient Statistics: 
 

Proof outline (<=): 

Consider the joint PDF 

 

Because T(x) is a sufficient statistic, the conditional PDF does not depend on θ. We can 

let 

Substituting in the previous expression 

 

Setting w(x) to 

 

Allows one to write 

 

 

Thus based on the factorization a sufficient statistic can be found 

 

( )( ) ( )( ) ( )( ) ( ) ( )( )0 0 0 0, ; | ; ; ; .p T T p T T p T T p T Tθ θ θ θ δ= = = = = −x x x x x x x

( )( ) ( ) ( )( )0 0|p T T w T Tδ= = −x x x x

( ) ( )
( ) ( )( )0

,
h

w
h T T dδ

=
−∫

x
x

x x x

( ) ( )( ) ( ) ( )( ) ( )( )0 0 0; ;p T T w T T p T Tθ δ δ θ− = − =x x x x x

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( )( )0
0 0

0

; ;
h T T

p T T p T T
h T T d

δ
θ δ θ

δ

−
− = =

−∫
x x

x x x
x x x

( ) ( )( ) ( )0; ;p g T T hθ θ= =x x x n 
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Motivating Example: illustration 
 

DC Level in WGN: Assuming that we have found the sufficient statistics, the Rao - 

Blackwell-Lehmann-Scheffe Theoremcan be used to find the MVU estimator in two 

different ways: 

1) Find any unbiased estimator of A, say                , and determine      .  

The expectation is taken with respect to  

2) Find some function g(.)  so that          is an unbiased estimator of A. 

First approach: 

Let          and determine  

 

We need auxiliary results for [x y]T a Gaussian random vector with mean  µ=[E[x] E[x]] T  

 

 

 

 

(see Appendix 10A for details.) 


A= x 0!" #$ Â= E


A |T!" #$

p

A |T( ).

( )Â g T=


A= x 0!" #$   

Â = E x 0!" #$ | x n!" #$n=0

N −1
∑!

"'
#
$(

[ ] [ ] ( )
( )

[ ]( )cov ,
|

var
x y

E x y E x y E y
y

= + −
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DC Level in WGN (cont.): 

1)  Find any unbiased estimator of A, say    , and determine     .  

The expectation is taken with respect to  

Applying the previous results to x=x[0] and 

 

 

 

 

Hence the PDF of [x y]T is N(µ, C), where 


A= x 0!" #$

x
y

!

"
#
#

$

%
&
&
=

x 0!" $%

x n!" $%n=0

N−1
∑

!

"

#
#
#

$

%

&
&
&
= 1 0  0
1 1  1

!

"
#

$

%
&

L
  

x 0!" $%
x 1!" $%


x N −1!" $%

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

Â= E

A |T!" #$

p

A |T( ).
y = x n!" #$n=0

N−1
∑

[ ]

2 2

,

1 1
.

1
T

A
E A

NA

C
N

σ σ

⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

µ L x L 1

LL

Motivating Example: 
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Motivating Example: 
 

DC Level in WGN (cont.): 

1)  Find any unbiased estimator of A, say   , and determine       .  

The expectation is taken with respect to  

Hence we have finally 

 

 

Which is the MVU estimator. Usually this option is mathematically intractable. 

 

2) Find some function g(.)  so that              is an unbiased estimator of A. 

 

We need to find some function                       so that it is an unbiased estimator. 

 

That is the case of  


A= x 0!" #$ Â= E


A |T!" #$

p

A |T( ).

Â= E x | y!" #$= A+
σ 2

Nσ 2
x n!" #$n=0

N−1
∑ − NA( )

( )Â g T=

Â= g x n!" #$n=0

N−1
∑( )

[ ]1

0

1ˆ .N

n
A x n

N
−

=
= ∑

=
1
N

x n!" #$n=0

N−1
∑ .
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RBLS Theorem: 
 

Definition: a statistic is complete if there is only one function of the statistic that is 

unbiased.  

 

Theorem 5.1 (Rao-Blackwell-Lehmann-Scheffe) – If      is an unbiased estimator of θ and 

T(x) is a sufficient statistic for θ, then                               is 

1.  A valid estimator for θ	



2.  Unbiased 

3.  Of lesser or equal variance than that of     , for all θ.	



Additionally, if the sufficient statistic is complete, then     is the MVU estimator. 

 

To validate that a statistic is complete is in general very difficult, (see examples 5.6 and 

5.7). It must verify 

 

Only for the zero function and for v(T).  

Note: - For an example of an incomplete statistic check Example 5.7 
 

θ̂ = E

θ |T x( )!
"

#
$


θ


θ

θ̂

( ) ( ); 0, for all . (5.8)v T p T dTθ θ
+∞

−∞
=∫
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Methodology: 

Use Neyman-Fisher factorization  
theorem (5.1) to find sufficient statistic 

Determine if T(x) is complete 
see (5.8) 

Find function of T(x)  
that is unbiased 

T(x) 

( )( )ˆ MVU Estimatorg Tθ = =x
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Example: 
 

Mean of Uniform Noise: 

Data model:  x[n]=w[n], n=0,1,…,N-1 

Where w[n] is IID noise with PDF  U[0,β], for β>0. 

 

We wish to find the MVU estimator for the mean θ=β/2. 

 

The approach to find the CRLB can not be followed as the PDF does not satisfy the 

regularity conditions. A natural estimator is 

 

 

 

To determine if the sample mean is the MVU we will follow the methodology previously 

presented. 

  
θ̂ =

1
N

x n"# $%n=0

N −1
∑ , with var θ̂( ) = 1

N
var x n"# $%( ) = β 2

12N
.
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Example: 
 

Lets define the unit step function: 

 

 

Then,  

 

and the PDF is 

 

 

Alternative, we can write 

 

 

So that 

  

u x( ) =
1 for x > 0

0 for x < 0
.

!

"
#

$
#

  
p x n!" #$;β( ) = 1

β
u x n!" #$( ) − u x n!" #$ − β( )!
"

#
$ , where β = 2θ.

  

p x n!" #$;β( ) = 1
β N

u x n!" #$( ) − u x n!" #$ − β( )!
"

#
$n=0

N −1
∏ =

1
β N

0

0 < x n!" #$ < β

otherwise

n = 0,1,..., N −1 .
(

)
*

+
*

  

p x n!" #$;β( ) =
1
β N

0

max x n!" #$( ) < β,min x n!" #$( ) > 0

otherwise
,

&

'
(

)
(

p x n!" #$;β( ) = 1
β N

u β − max x n!" #$( )( )u min x n!" #$( )( )
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Example: 
 

Note that can be identified  

 

 

 

By the Neyman-Fisher factorization theorem, T(x)=max(x[n]) is a sufficient statistic for θ. 

Furthermore, it can be shown that the sufficient statistic is complete. We need next to find 

a function of T(x) that is not biased (denominated as order statistics). Lets write the 

cumulative distribution function 

 

 

The PDF follows as 

 

   

p x n!" #$;β( ) = 1
β N

u β − max x n!" #$( )( )
g T x( ),β( )

  
u min x n!" #$( )( )

h x( )
  

  
Pr T ≤ ξ{ } = Pr x 0#$ %& ≤ ξ,x 1#$ %& ≤ ξ,..., x N −1#$ %& ≤ ξ,{ } = Pr x n#$ %& ≤ ξ{ } =n=0

N −1
∏ Pr x n#$ %& ≤ ξ{ }N

.

  
pT ξ( ) =

d Pr T ≤ ξ{ }
dξ

= N Pr x n#$ %& ≤ ξ{ }N −1 d Pr x n#$ %& ≤ ξ{ }
dξ

.
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Example: 
 

But 

 

Integrating we obtain 

 

 

 

 

From where it results 

 

                             makes the expected value unbiased. 

 

The MVU estimator is  

  

d Pr x n!" #$ ≤ ξ{ }
dξ

= p
x n!" #$

ξ( ) =
1
β

0

0 < ξ < β
otherwise

(

)
*

+
*

,

  

pT ξ( ) =
0

N ξ
β

#

$%
&

'(

N −1
1
β

0

ξ < 0
0 < ξ < β
ξ > β

, and E T*+ ,- = ξN ξ
β

#

$%
&

'(

N −1
1
β

dξ
0

β

∫

/

0

1
1

2

1
1

  
E T!" #$ =

N
N +1

β =
2N

N +1
θ , thus θ̂ =

N +1
2N

T

  

θ̂ =
N +1
2N

max x[n]( )

with a variance... var θ̂( ) = β 2

4N (N + 2)
<<

β 2

12N
(sample mean var) for large N!
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Syllabus: 
 

Classical Estimation Theory 
… 

Chap. 4 - Linear Models in the Presence of Stochastic Signals [1 week]  

Stationary and transient analysis; White Gaussian noise and linear systems;  Examples; 
 

Chap. 5 - Best Linear Unbiased Estimators [1 week]  

Definition of BLUE estimators;  White Gaussian noise and bandlimited 

systems; Examples; Generalized MVU estimation;  

 
Chap. 6 - Maximum Likelihood Estimation [1 week] 

The maximum likelihood estimator; Properties of the ML estimators; Solution for ML 

estimation; Examples; Monte-Carlo methods; 

 
 

continues… 
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An alternative strategy: 
 

FACT: 

It occurs that the MVU estimator, if it exists, can not be found. 

 

e.g. the PDF for the data is not known, the user would not like to assume a 

model for the PDF, or the problem can be mathematically untreatable. 

 

An alternative strategy can be pursued is to study the class of 

Best Linear Unbiased Estimators 

Only suboptimal performance can be achieved. 

 

The performance degradation, relative to the MVU estimator, is unknown but 

the resulting performance can be enough for the problem at hand. 
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BLUE structure: 
 

 
The Best Linear Unbiased Estimator consists of restrict the estimator to be a linear 
function of the data, i.e. 
 
 
where the an’s are constants to be determined. 
 
Optimality in general is lost. 
 
Examples revisited: 
 
DC level in  
WGN 
 
 
 
 
 
 

                  Mean of 
                  Uniform noise 

  
θ̂ = anx n"# $%n=0

N −1
∑

All unbiased  
estimators 

  θ̂ = x

Linear 

Nonlinear Nonlinear 

MVU=BLUE 
  θ̂ = x

Linear 

BLUE 

  
θ̂ =

N +1
2N

max x n( )
MVU 
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Finding the BLUE: 
 

 
To find the BLUE we constrain the estimator  
 

•  to be linear  

•  to be unbiased 

•  to minimize its variance 

  
θ̂ = anx n"# $%n=0

N −1
∑

  
E θ̂"# $% = an E x n"# $%"# $%n=0

N −1
∑ = θ (6.2)

  
var θ̂( ) = E anx n"# $%n=0

N −1
∑ − E anx n"# $%n=0

N −1
∑"#(

$
%)( )

2"

#
(

$

%
)

 
Defining a=[a0 a1 … aN-1]T and x=[x0 x1 … xN-1]T this last expression can be simplified: 
 
 
 
 
 
 
The problem of finding the BLUE can be stated as, for 

   

var θ̂( ) = E aT x − aT E x#$ %&( )2#
$'

%
&(
= E aT x − E x#$ %&( )( )2#

$'
%
&(
=

= E aT x − E x#$ %&( ) x − E x#$ %&( )T a#
$'

%
&(
= aTCa. (6.3)

   

min aTCa
subject to  aT E x!" #$ = θ

  a ∈RN
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Finding the BLUE: 
 

 
 Given the scalar parameter θ, the expected value of the samples can be assumed as  

    E[x[n]]=s[n]θ, 
 
where s[n] is known.  
 
 
 
Thus the previous problem can be stated as  
 
 
 
 
The method of Lagrangian multipliers can be used to solve this problem. Define the 
Lagrangian function as 
 
 
 
The gradient of J relative to a is  

   

min aTCa
a ∈RN s.t. aTs = 1

  
an E x n!" #$!" #$n=0

N −1
∑ = ans n!" #$n=0

N −1
∑ θ = θ , (from 6.2)

   
J a,λ( ) = aTCa + λ aTs −1( ), λ ∈R

   

∂J a,λ( )
∂a

= 2Ca + λs = 0
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Finding the BLUE: 
 

 
Solving for a produces 
 
 
Using the constrain as 
 
 
 
Finally, the solution is 
 
 
 
 
 
Taking into account that E[x]=sθ, finally the estimator 
 
 
 
 
Thus it is unbiased, as required.  

  
a = − λ

2
C−1s

   
aTs = − λ

2
sTC−1s = 1, or λ = −

2
sTC−1s

.

   

aopt = −
C−1s

sTC−1s
, with a variance var θ̂( ) = aT

optCaopt =
sTC−1CC−1s

sTC−1s( )2 =
1

sTC−1s
.

   
θ̂ = aT

optx =
sTC−1x
sTC−1s

, Its expected value is E θ̂( ) = sTC−1E x#$ %&
sTC−1s

=
sTC−1sθ
sTC−1s

= θ !
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Example: 
 

 
Example (DC level in white Gaussian noise revisited): 
 
Model of signal: 
 
Where w[n] is zero mean white noise with variance σ2 (and an unspecified PDF), the 
problem is to estimate A. 
 
Because E[x[n]]=A, we have s=1, where 1=[1 1 … 1]T. 
 
 
 
The BLUE is     and the variance is  
 
 
 
Hence the sample mean is the BLUE independent of the PDF of data. It is the MVU 
estimator for the Gaussian case. 
 
 
And in general: is it optimal?...  

  
x n!" #$ = A+ w n!" #$ , n = 0,..., N −1

   

Â =
1T 1
σ 2 Ix

1T 1
σ 2 I1

=
1
N

x n"# $% = x
N =0

N −1
∑ ,

   

var Â( ) = 1

1T 1
σ 2 I1

=
σ 2

N
.
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Example: 
 

 
Example (DC level UNCORRELATED noise): 
 
Model of signal: 
 
Where w[n] is zero mean uncorrelated noise with var(w[n])=σ2. Once again, the 
problem is to estimate A. 
 
We have again s=1, and C=diag(σ0

2 σ1
2…σN-1

2), and C-1=diag(1/σ0
2 1/σ1

2…1/σN-1
2).. 

 
The BLUE is     and the variance is  
 
 
 
 
 
 
The BLUE weights those samples more heavily with smallest variances, in an attempt to 
equalize the noise contribution from each sample… 
 
Is it optimal? In what cases?...  

  
x n!" #$ = A+ w n!" #$ , n = 0,..., N −1

   

Â =
1T C−1x
1T C−11

=

x n"# $%
σ n

2N =0

N −1
∑

1
σ n

2N =0

N −1
∑

  

var Â( ) = 1
1
σ n

2N =0

N −1
∑
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Extending BLUE to a Vector Parameter: 
 

 
To find the BLUE for a p x 1 vector parameter, we constrain the estimator  
 

•  to be linear  

•  to be unbiased 

•  to minimize its variance 

   
θ̂i = ainx n"# $%n=0

N −1
∑ i = 1,2,..., p or θ̂ = Ax, A ∈R p  x N

   
E θ̂"# $% = AE θ̂"# $% = θ

  
var θ̂i( ) = E ainx n"# $%n=0

N −1
∑ − E ainx n"# $%n=0

N −1
∑"#(

$
%)( )

2"

#
(

$

%
)

The problem of finding the BLUE can be stated as, for 
 
 
 
 
 
 
where  

   

min var θ̂i( ) = a i
TCa i

subject to  a i
T E x"# $% = θ

  
E x!" #$ = Hθ.
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Extension to non-white Gaussian noise: 
 

Theorem 6.1(Gauss-Markov Theorem) – If the data observed are of the general linear 

model form 

 

 

where H is a known N x p observation matrix (with N>p) and rank p, x is a N x 1 vector of 

observations, θ is a p x 1 vector of parameters to be estimated, and w is an N x 1 noise 

vector with zero mean and covariance C (for an arbitrary PDF), then the BLUE is 

 

       (1bis) 

and  the covariance matrix of  estimate is  

 

       (2bis) 

 x = Hθ + w

( ) 11 1ˆ T T−− −=θ H C H H C x

   
C
θ̂
= HTC−1H( )−1

.
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Syllabus: 
 

Classical Estimation Theory 
… 

Chap. 5 - Best Linear Unbiased Estimators [1 week]  

Definition of BLUE estimators;  White Gaussian noise and bandlimited systems; 

Examples; Generalized MVU estimation;  

 

Chap. 6 - Maximum Likelihood Estimation [1 week] 

The maximum likelihood estimator; Properties of the ML estimators; 

Solution for ML estimation; Examples; Monte-Carlo methods; 
 

Chap. 7 - Least Squares [1 week] 

The least squares approach; Linear and nonlinear least squares; Geometric 

interpretation; Constrained least squares;  Examples; 
continues… 
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Motivating example: 
 

 
Example (DC level in white Gaussian noise modified): 
 
For this example the methods previously introduced will not work… 
 
Signal model: 
 
Where A is the unknown level to be estimated and w[n] is zero mean white Gaussian with 
unknown variance A. 
 
First, lets try to find the CRLB. The PDF is: 
 
 
 
The derivative of the log-likelihood function is  
 

  
x n!" #$ = A+ w n!" #$ , n = 0,..., N −1

   

p x; A( ) = 1

2π A( )N / 2
exp −

1
2A

x[n]− A( )2

n=0

N −1
∑

$

%&
'

()
(1)

   

∂

∂A
ln p x; A( ) = − N

2A
+

1
A

x[n]− A( ) +n=0

N −1
∑

1
2A2 x[n]− A( )2

n=0

N −1
∑

=
?

I A( ) g x( ) − A( ) It appears that it is not possible… 
So, an efficient estimator does not exist. 
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
However, from the second derivative, it is possible to compute the CRLB to be  
 
 
 
 
Secondly, to find the MVU estimator based on the theory of sufficient statistics, one must 
factorize (1) in the form 
 
 
It is possible, if one considers 

  
var Â( ) ≥ A2

N A+1 / 2( )
.

    

p x; A( ) = 1

2π A( )N / 2
exp −

1
2

1
A

x2[n]+ NA
n=0

N −1
∑

$

%&
'

()
$

%&
'

()

g x2[n], A
n=0

N −1
∑( )

  

exp x[n]
n=0

N −1
∑( )
h x( )

  

( ) ( )( ) ( ); ,p g T hθ θ=x x x
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
So a sufficient statistics is 
 
 
 
It is required to find a function of the sufficient statistics that produces an unbiased 
estimator, i.e. 
 
 
 
 
Taking into account the auxiliary result 
 
 
 
 
We have that 

  
E g x2[n]

n=0

N −1
∑( )#

$%
&
'(
= A

   
T x( ) = x2[n]

n=0

N −1
∑

  
var x n!" #$( ) = E x n!" #$ − E x n!" #$( )( )2!

"&
#
$'
= E x2 n!" #$!" #$ − 2E x n!" #$( )E x n!" #$( ) + E2 x n!" #$( )

  
E x2 n!" #$!" #$ = var x n!" #$( ) + E2 x n!" #$( ) (in our case E x2 n!" #$!" #$ = A+ A2 )
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
Since 
 
 
 
 
It is impossible to find a solution for a generic unknown parameter A, i.e. 
 
 
 
A final alternative is to find the optimal estimator would be to determine 
 
 
 
 
That appears to be a formidable task! 
 
We exhausted the optimal approaches studied… We can propose other estimators, but 
without any guarantee of optimality.    

  
E x2[n]

n=0

N −1
∑#$%

&
'(
= NE x2[n]

n=0

N −1
∑#$%

&
'(
= N var x n#$ &'( ) + E2 x n#$ &'( )#

$
&
' = N A+ A2#$ &'!

  
N A+ A2!" #$ ≠ A!

  
E Â | x2[n]

n=0

N −1
∑#

$%
&
'(
= ???
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
Those estimators should be at least approximately optimal, i.e. 
 
 
For instance, lets consider the estimator (why? explanation will be provided next…) 
 
 
 
 
This estimator is biased, since 
 
 
 
 
 
 
But it can be verified that is is consistent, i.e.  

  

E Â!" #$→ A

var Â( )→ CRLB

  
Â = −

1
2
+

1
N

x2[n]
n=0

N −1
∑ +

1
4

  

E Â!" #$ = E −
1
2
+

1
N

x2[n]
n=0

N −1
∑ +

1
4

!

"
'
'

#

$
(
(
≠ −

1
2
+ E

1
N

x2[n]
n=0

N −1
∑

!

"
'

#

$
( +

1
4
=

= −
1
2
+ A+ A2 +

1
4
= A!

  

1
N

x2[n]
n=0

N −1
∑ → E x2[n]$% &' = A+ A2 and therefore Â→ A
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
Consider that      and lets linearise this function,  
near u0=E[u]=A+A2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus this estimator is asymptotically unbiased. 

   
And what about its variance?… 

  

g u( ) ≈ g u0( ) +
dg u( )

du
u=u0

u − u0( ) (using Taylor's series expansion)

Â ≈ A+

1
2

A+
1
2

1
N

x2[n]
n=0

N −1
∑ − A+ A2( )$

%
&

'

(
)

E Â$% '( ≈ A.

  
Â = g u( ), where g u( ) = − 1

2
+ u + 1

4
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
It is given by 
 
 
 
 
 
 
But var(x2[n])=4A3+2A2, so that 
 
 
 
 
 
 
Thus this estimator asymptotically equals the CRLB!!! 

  

var Â( ) ≈
1
2

A+
1
2

"

#

$
$
$

%

&

'
'
'

2

var
1
N

x2[n]
n=0

N −1
∑ − A+ A2( )*

+
,

-

.
/ ≈

1
4

N A+
1
2

"

#$
%

&'

2 var x2[n]( )

  

var Â( ) ≈
1
4

N A+ 1
2

"

#$
%

&'

2 4A2 A+ 1
2

"

#$
%

&'
≈

A2

N A+ 1
2

"

#$
%

&'

Discuss the impact of one such methodology that provides asymptotic  results. 
The value for science and for engineering 
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An asymptotically optimal solution: 
 

 

What to do, if the MVU estimator does not exist or can not be found? 

 

An alternative consists of exploiting the… 

 
Maximum Likelihood Principle. 

It can be understood as a “turn the crank” method. 

 

Only suboptimal performance can be achieved. 

 

It is the most popular approach to obtaining practical estimators.  

Its optimality is verified  for large enough data sets. 
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Motivating example revisited: 
 

 
Example (DC level in white Gaussian noise modified): 
 
The method consists only on the computation of the maximum of the (log) likelihood 
function. In our case, it is required to solve: 
 
 
 
 
 
 
 
 
 
 
 
 
 
From where our previous unexplained estimator results  

   

∂

∂A
ln p x; A( ) = − N

2A
+

1
A

x[n]− A( ) +n=0

N −1
∑

1
2A2 x[n]− A( )2

= 0
n=0

N −1
∑

  

= −
N
2A

+
1
A

x[n]−
1
A

NA+
n=0

N −1
∑

1
2A2 x2[n]− 2Ax[n]+ A2( ) =n=0

N −1
∑

= −
N
2A

+
1
A

x[n]− N +
n=0

N −1
∑

1
2A2 x2[n]−

1
2A2 2A x[n]+

1
2A2 NA2

n=0

N −1
∑ =

n=0

N −1
∑

= −
N
2A

−
N
2
+

1
2A2 x2[n] = −

A2 + A−
1
N

x2[n]
n=0

N −1
∑

2A2 N
= 0

n=0

N −1
∑

  
Â = −

1
2
+

1
N

x2[n]
n=0

N −1
∑ +

1
4
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Maximum Likelihood Principle: 

In practice it is seldom known in advance how large N must be. 

 

Analytical expression for the PDF of the MLE is usually impossible to derive. 

 

Thus, to assess the MLE performance, computer simulations are usual. 

   
θ̂ ~

a

N θ , I −1 θ( )( )

 

Theorem 7.1 (Asymptotic Properties of the MLE) – If the PDF p(x;θ) of the data x 

satisfies some regularity conditions, then the MLE of the unknown parameter is 

asymptotically distributed (for large data records) according to 

 

where I(θ) is the Fisher information evaluated at the true value of the unknown parameter 
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Properties of MLE: 
 

Proof outline: 

 

The following regularity conditions are assumed: 

1)  The first and second-order derivative of the log-likelihood are well defined. 

2)    

First, it is required to show that the MLE is consistent. Related with the Kullbak_Leibner 

information (and also with measure of the difference between two probability 

distributions) 

 

 

 

Where equality occurs for θ1=θ2. 

  

E
∂ ln p x n"# $%;θ( )

∂θ

"

#

'
'

$

%

(
(
= 0

  

ln
p x n!" #$;θ1( )
p x n!" #$;θ2( )

!

"

&
&

#

$

'
'

p x n!" #$;θ1( )dx[n]∫ ≥ 0 (1)



PO 1213 

Properties of MLE: 
 

Proof outline: 

 

Now, maximizing the log-likelihood 

 

Where the last relation is due to the fact that, by the law of large numbers, it converges to 

the expected value. The MLE is consistent and is maximized for             , i.e. 

 

 

Moreover is the maximum, due to suitable continuity argument and the  relation (1). Using 

the Taylor series expansion, one obtains 

 

 

 

Where the last quantity is approx. 0 if near an maximum.  

   

1
N

ln p x;θ( ) = 1
N

ln p x n"# $%;θ( )n=0

N −1
∑ → ln p x n"# $%;θ( ) p x n"# $%;θ0( )dx[n]∫

   

∂ ln p x;θ( )
∂θ

θ=θ̂

≈
∂ ln p x;θ( )

∂θ
θ=θ0

+
∂2 ln p x;θ( )

∂θ 2

θ=θ0

θ̂ −θ0( ) ≈ 0

  
ln p x n!" #$;θ0( ) p x n!" #$;θ0( )dx[n]∫ ≥ ln p x n!" #$;θ1( ) p x n!" #$;θ0( )dx[n]∫

 θ̂ = θ0
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Properties of MLE: 
 

Proof outline: 

This relation can therefore be approximately written as 

 

 

 

 

 

 

From where it can be concluded, using the law of large numbers and the IID of the 

samples, that  

    

N θ̂ −θ0( ) =

1
N

∂ ln p x;θ( )
∂θ

θ=θ0

−
1
N
∂2 ln p x;θ( )

∂θ 2

θ=θ̂

→

1
N

∂ ln p x n%& '(;θ( )
∂θ

θ=θ0

n=0

N −1
∑

−
1
N

∂2 ln p x n%& '(;θ( )
∂θ 2

θ=θ̂

n=0

N −1
∑

 N 0,i−1 θ0( )( )

   
θ̂ ~

a

N θ0 , I −1 θ0( )( )
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MLE PDF: 
 

 

In general is very difficult (or impossible) to obtain the PDF of the MLE.  

 

How to study its performance? 

 

Use Monte Carlo Method 

 

1 . Simulate the noise characteristics, the signal model, and compute the estimates. 

2. Repeat M times these realizations. (How to select M?) 

3. Compute the experiments ensemble mean and covariance, using 

 

 

 
   

E Â!" #$


=
1
M

Âii=1

M
∑

var Â( )
=

1
M

Âi − E Â!" #$
'

(
)
*i=1

M
∑

2
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Invariance Property: 

  
α̂ = g θ̂( )

 

Theorem 7.2 (Invariance Property of the MLE) – The MLE of the parameter α=g(θ), 

where the PDF p(x;θ) is parameterized by θ, is given by 

 

Where    is the MLE of θ. The MLE is obtained by maximization of p(x;θ), If g is not a one-

to-one function,  then      maximized the modified likelihood fuction 

 

 

Proof outline (simple case: g() one to one WGN, IID, expected value): 

The MLE for the transformed parameter can be found minimizing the log-likelihood, i.e. 

 

 

Thus 

 

 θ̂

 α̂

   

pT x;α( ) =
θ : α = g(θ ){ }

max p x;θ( ).

  

∂

∂α
x[n]− g−1 α( )( )2

n=0

N −1
∑ = k + k ' x[n]− g−1 α( )( )n=0

N −1
∑

∂

∂α
g−1 α( ) = 0, k,k ' > 0 .

  
x[n]

n=0

N −1
∑ − Ng−1 α( ) = 0, g−1 α( ) = 1

N
x[n] = x

n=0

N −1
∑ α = g x( ).
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Numerical Determination of the MLE: 
 

The MLE in general can not be found in close form. 

 

But it can be found numerically. Grid search, gradient or Newton methods can 

be used.  

 

Conditions for nonlinear optimization methods are central to that discussion. 

 

For different data-sets, the target function changes and thus also the 

maximum changes. 

 

In general there is not or maximum, but a number of local maxima. 

 

How to avoid attraction to local maxima? Regions of attraction?... 
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Motivating example: 
 

 
Example (Exponential  in white Gaussian noise): 
 
Signal model: 
 
Where w[n] is zero mean white Gaussian noise with variance σ2 and the exponential 
factor r is to estimated. 
 

For the likelihood function, the MLE is the value of r that maximizes is : 
 
 
 
Or, equivalently, the value that minimizes 
 
 
Differentiating J(r) and setting to zero produces 
 
 
 
 
It is a nonlinear  equation in r and cannot be solved directly. 

  
x n!" #$ = rn + w n!" #$ , n = 0,..., N −1

   

p x; A( ) = 1

2πσ 2( )N / 2
exp −

1
2σ 2

x[n]− rn$
%&

'
()

2

n=0

N −1
∑

$

%
&

'

(
) (1)

  

∂J r( )
∂r

= 2 x[n]− rn#
$%

&
'(

nrn −1
n=0

N −1
∑ .

  
J r( ) = x[n]− rn"

#$
%
&'

2

n=0

N −1
∑ .
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Numerical Solution (basics): 
 

The use of iterative methods to maximize the log-likelihood function is an example of 

application of nonlinear optimization methods. See a good book (or class) on the field… 

 

 

 

For instance, one of the most basic method, is the Newton-Raphson method. From an 

initial guess Θ0, and from a Taylor series expansion results 

 

 

The following recursion resultsθ 

 

 

 

   

∂ ln p x;θ( )
∂θ

= g θ( ) = 0

  

g θ( ) ≈ g θ0( ) +
∂g θ( )
∂θ

θ=θ0

θ −θ0( ) ≈ 0

   

θ
k +1

= θ
k
−

∂2 ln p x;θ( )
∂θ 2

θ=θk

$

%

&
&
&

'

(

)
)
)

−1

∂ ln p x;θ( )
∂θ

θ=θk

θ0 θ1 θ2 

g(θ) 
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Motivating example: 
 

 
Example (Exponential  in white Gaussian noise): 
 
Computer simulation 
 
N=50, r=0.5, and σ2=0.01 
 
Maximum at r=0.493 
(a specific realization) 
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Numerical Solution (basics): 
 

The importance of 

 

 stability conditions,  

 

 convergence rates, and  

 

 domains of attraction  

 

can hardly be overemphasized. Engineering/scientific content… 

 

Other methods mentioned:  

 Scoring 

 Expectation / maximization (nice term paper subject) 
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Theorem 7.5 (Optimality of the MLE for the Linear Model) – If the observed data x are 

described by the general linear model 

 

where H is a known N x p matrix with N>p and of rank p, θ is a p x 1 parameter vector to 

be estimated, and w is the noise vector with PDF N(0,C), the the MLE of θ is  

 

And is also an efficient estimator in that it attains the CRLB and hence is the MVU 

estimator. The PDF of θ is 

Invariance Property: 

 x = Hθ + w

  
θ̂ = HTC-1H( )-1

HTC-1x.

   
θ̂  Ν θ, HTC-1H( )-1( ).
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Method of Scoring: 
 

The method of scoring is based on the approximation for one element found also in the 

Newton-Raphson method. Note that for IID samples we have 

 

 

 

So the iterations on NR method can be transformed in 

 

 

 

 

Resulting in a method that is  more stable. However it suffers from the same convergence 

problems as the NR method. 

   

θ
k +1

= θ
k
− I −1 θ( )

∂ ln p x;θ( )
∂θ

θ=θk

   

∂2 ln p x;θ( )
∂θ 2 =

∂2 ln p x[n];θ( )
∂θ 2n=0

N −1
∑ = NE

∂2 ln p x[n];θ( )
∂θ 2

%

&
'
'

(

)
*
*
= −Ni θ( ) = − I θ( ).
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Maximum Likelihood Principle: 

In practice it is seldom known in advance how large N must be.  

 

In the cases where the number of parameters increases, relative to the 

number of samples available, the assumptions fails and the MLE estimator 

can provide very poor estimates.  

   
θ̂ ~

a

N θ , I −1 θ( )( )

 

Theorem 7.1 (Asymptotic Properties of the MLE – Vector Parameter) – If the PDF 

p(x;θ) of the data x satisfies some “regularity” conditions, then the MLE of the unknown 

parameter θ is asymptotically distributed (for large data records) according to 

 

where I(θ) is the Fisher information evaluated at the true value of the unknown parameter 
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Least Squares Approach: 

Signal 
Model 

θ 

θ 

Perturbations 

Noise Model 
inaccuracies 

 
s n!" #$  

x n!" #$

 
s n!" #$

+
−

 Error 
ε n"# $%

Signal 
Model 

  
J θ( ) = x n"# $% − s n"# $%( )2

n=0

N −1
∑ = ε 2 n"# $%n=0

N −1
∑
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Least Squares Approach: 

  
J θ( ) = x n"# $% − s n"# $%( )2

n=0

N −1
∑ = ε 2 n"# $%n=0

N −1
∑

 
 
The least squares estimator (LSE) is obtained minimizing the LS error criterion 
 
 
 
where the dependency on θ is via s[n]. 
 
Note: 
 

 No probabilistic assumptions have been made about the data x[n]; 
 

 Method valid both for Gaussian and for non-Gaussian disturbances; 
 

 Performance optimality of the LSE can not be guaranteed; 
 

 Method applied when: 
   
  a precise statistical characterization of the data is unknown; 
  
  optimal estimator can not be found; 
  
  … 
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It is immediate that      With a solution given by 
 
 
 
 
Thus the minimum cost of the criterion verifies 

Linear Least Squares: 

Signal 
Model 

θ 

θ 

Perturbations 

Noise 
Model 

inaccuracies 

 
s n!" #$  

x n!" #$

 
s n!" #$

+
−

 Error 
ε n"# $%

Signal 
Model 

  
J θ( ) = x n"# $% −θh n"# $%( )2

n=0

N −1
∑

 
 
The least squares approach for 
a scalar parameter, we must 
assume 
 
 
The criterion to minimize is 

  
s n!" #$ = θh n!" #$.

  

∂J θ( )
∂θ

= −2 x n$% &' −θh n$% &'( )n=0

N −1
∑ h n$% &' = 0

  

θ̂ =
x n"# $%h n"# $%n=0

N −1
∑

h2 n"# $%n=0

N −1
∑

.

  

0 < Jmin θ( ) = x2 n"# $%n=0

N −1
∑ −

x n"# $%h n"# $%n=0

N −1
∑( )2

h2 n"# $%n=0

N −1
∑

< x2 n"# $%n=0

N −1
∑ .
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The gradient is      With a solution given by 
 
 
 
 
The minimum cost of the criterion verifies 

Linear Least Squares: 

   
J θ( ) = x n"# $% − s n"# $%( )2

n=0

N −1
∑ = x − Hθ( )T x − Hθ( ) = xT x − 2xT Hθ + θ T HTT Hθ.

 
 
The extension of the least squares approach for a vector parameter is immediate. 
 
For the signal s =[s[0] s[1] … s[N-1]] 
The criterion to minimize is 

   

∂J θ( )
∂θ

= −2HT x + 2HTT Hθ.
   
θ̂ = HTT H( )−1

HT x

   
0 < Jmin θ( ) = xT x − xT H HTT H( )−1

HT x < xT x.
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Geometrical Interpretation: 

   
θ̂ = HTT H( )−1

HT x

 
 
Note that the solution obtained 
 
can be rewritten as 
 
 
 
 
 
 
Denoting as the error vector    , the previous expression can be interpreted as  
that the error vector must be orthogonal to the columns of H. 

   

HTT H( )θ = HTT H( ) HTT H( )−1
HT x

HTT H( )θ = HT x

HTT Hθ − x( ) = 0

 ε = Hθ − x

h1 

h2 

ε 

x 

  ε ⊥ S 2

  S 2
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Extensions to Least Squares: 
 

 
Other extensions of the least squares approach are also very popular 
 
Weighted Least Squares: 
 

 criterion 
  
 solution 

 
 minimum  

 
 W can be set as the inverse covariance matrix, leading to an  
   optimal solution in the  case of correlated Gaussian noise. 

 
 
Order-recursive Least Squares (see pp. 232) 
 

 same criterion but the observation and parameter matrices vary their length  

  
JW θ( ) = x − Hθ( )T W x − Hθ( )

   
θ̂ = HTT WH( )−1

HT Wx

   
0 < Jmin θ( ) = xT W − WH HT WH( )−1

HT W( )x < xT Wx.

   
Hk+1 = Hk hk+1

!
"

#
$
= N  x k N  x 1!" #$
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Extensions to Least Squares: 
 

 
Order-recursive Least Squares (cont.) 

 solution 
 
 
 
 
 
 
 
 
 
 

 minimum  
 
Example:  
Line fitting 

   

θ̂ k+1 =
θ̂ k −

Hk
TT Hk( )−1

HT
khk+1h

T
k+1Pk

⊥x

hT
k+1Pk

⊥hk+1

hT
k+1Pk

⊥x
hT

k+1Pk
⊥hk+1

$

%

&
&
&
&
&
&

'

(

)
)
)
)
)
)

= k  x 1
1 x 1

$

%
&

'

(
)

where Pk
⊥ = I − Hk Hk

TT Hk( )−1
Hk

T

   
Jmin θk+1( ) = Jmin θk( ) −

hT
k+1Pk

⊥x( )2

hT
k+1Pk

⊥hk+1

   

s1 n!" #$ = A1 s2 n!" #$ = A2+Bcn H1 =

1
1

1

!

"

%
%
%
%

#

$

&
&
&
&

H2 = H1

0
1


N −1

!

"

%
%
%
%
%

#

$

&
&
&
&
&
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Example: 
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Sequential Least Squares: 
 

 
In many estimation, detection, or identification problems data are obtained as samples of 
the output of a process. 
 
It would be advantageous that the least squares solution could be written as a recursive 
solution. 
 
Lets revisit our old DC level in Gaussian noise example: 
 
At time N-1, the data set available is x=[x[0] x[1] … x[N-1]] and the MVU estimator 
solution is given by 
 
 
If a new sample is obtained, i.e. x[n] is available, the estimator is given by 
 
 
 
That can  be rewritten as  
 
 
 
Much remains to be said, see next chapters… 

  
Â N −1"# $% =

1
N

x n"# $%n=0

N −1
∑

  
Â N!" #$ =

1
N +1

x n!" #$n=0

N
∑ =

1
N +1

x n!" #$n=0

N −1
∑ + x N!" #$( ) = N

N +1
Â N −1!" #$ +

1
N +1

x N!" #$

  
Â N!" #$ = Â N −1!" #$ +

1
N +1

x N!" #$ − Â N −1!" #$( ).
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Sequential Least Squares: 
 

 
 
 
Recursive solution 
 
Correction term, reflecting that with more one sample more is known on the parameter. 
 
The gain is decreasing thus preserving a memory on the past samples. 
 
The value of the criterion can also be written recursively, i.e. 
 
 
 
Seems a paradox, but if our fitting is parfait does not increases…  
 
More points to be fitted with the same number of parameters.  
 

 

  
Â N!" #$ = Â N −1!" #$ +

1
N +1

x N!" #$ − Â N −1!" #$( )

  
Jmin N( ) = Jmin N −1( ) + N

N +1
x N"# $% − Â N −1"# $%( )2
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Sequential Least Squares: 
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Estimator Update: 
 
 
 
Where 
 
 
 
 
Covariance Update: 
 
 
 
 

Sequential Least Squares: 
 

 
The optimal solution, in the case where a Gaussian noise occurs, with time varying 
variance 
 
Signal Model  x[n]=h[n]θ,  n=0,…,N-1,… 

   

θ̂ n"# $% = θ̂ n −1"# $% +K n"# $% x N"# $% − hT n"# $%θ̂ n −1"# $%( )

K n"# $% =
Σ n −1"# $%h n"# $%

σ n
2 + hT n"# $%Σ n −1"# $%h n"# $%

   
Σ n"# $% = I −K n"# $%hT n"# $%( )Σ n −1"# $%
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Sequential Least Squares: 
 
 
The signal model and the parameter estimation problem can be interpreted resorting to the 
dynamic model 

  

   

θ n +1"# $%

x n"# $%

=
=

θ n"# $%

hT n"# $%θ n"# $% + w n"# $%

 
x n!" #$

+
−  Error

 
ε n"# $%

K[n]  
θ n"# $%

+
z-1 

+

hT[n] 
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Constrained Least Squares: 
 
This alternative method can be very useful if the problem at hand verifies some properties. 

  
 criterion 

 
 

  
 solution 

 
The constrained LSE is a corrected version of the unconstrained LSE. 
 
It can also be interpreted as the constrained signal estimate to be the projection of the 
unconstrained solution onto the constrained subspace. 

   

JC θ( ) = x − Hθ( )T x − Hθ( )
s.t. Aθ = b

   
θ̂C = θ̂ − HTT H( )−1

AT A HTT H( )−1
AT( )

−1

Aθ̂ − b( )

x 

s 

x 

s sc 

Constrained  
subspace 
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Extensions to Least Squares: 
 
Other extensions: 
 
Total Least Squares (errors in variables, or orthogonal regression) 
 
 
 
 
 
 
 
 

 When could also be errors in the independent variables. 
 
Lasso – Least Absolute Shrinkage and Selection Operator 
 

 criterion 
  

 
 

 solution 

h 

x 

h 

x 

   

θ̂ = HTT H + λW−( )−1
HT x

W diagonal matrix with elements θ̂ i ,and W−  is the generalized inverse.

   

J θ( ) = x − Hθ( )T x − Hθ( )
s.t. θ ≤ t, with t > 0

j
∑
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Nonlinear Least Squares: 
 
In general the signal model is 
 

 model  
 
where s() is in general a nonlinear function of the unknown parameters. The criterion to be 
minimized can be written as (if a quadratic error is selected) 
 

 criterion 
 
termed also as nonlinear regression problem, in statistics.  
 
 
Solution is general is not available, except if resorting to numerical methods. 
 
  
Two methods than can reduce the complexity can be identified:   
 

 1 – Transformation of parameters; 
 

 2 – Separability of parameters; 

  
J θ( ) = x − s θ( )( )T x − s θ( )( )

  
x = s θ( )T + w
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Nonlinear Least Squares: 
 
Transformation of parameters 
 
We seek a one-to-one transformation that produces a linear signal model in the new space: 
 
 
Where g() is a p-dimensional function of the unknown parameters, with inverse: 
 
 
 
Then the solution is 
 
 
 
The transformation g(), if it exists, is usually quite difficult. 
 
Only a few nonlinear least squares problems may be solved in this manner. 

 
α = g θ( )

  
s θ α( )( ) = s g−1 α( )( ) = Hα.

   
θ̂ = g−1 α( ) = g−1 HT H( )−1

HT x( )
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Nonlinear Least Squares: 
 
Separability of parameters 
 
Assume that the model is nonlinear but still is linear in some of the parameters. Thus 
 
 
Where  
 
 
 
 
The criterion 
 
 
 is linear in β and nonlinear in α. For a given α can be minimized, with (partial) solution 
 
 
 
 
The problem now reduces to the maximization of 
 
 
over α. 

 
s = H α( )β

  
θ =

α
β

$

%
&
&

'

(
)
)
=

( p − q) ×1
q ×1

$

%
&
&

'

(
)
)

   
β̂ = HT α( )H α( )( )−1

HT α( )x

   
J α ,β( ) = x − H α( )β( )T x − H α( )β( )

   
J α , β̂( ) = xT I − H α( ) HT α( )H α( )( )−1

HT α( )$
%

&
'

x
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Nonlinear Least Squares: 
 
General case 
 
When all the other methods fail, a Taylor series expansion can be used. The criterion 
 is then approximated… 
 
  
 
 
If we set up an iterative procedure (as in the Newton-Rawphson case) 
 
 
 
 
Where 
 
 
 
The solution can be trivially generalized to the vector case: 

  

J θ( ) = x n"# $% − s n;θ"# $%( )n=0

N −1
∑

2
≈ x n"# $% − s n;θ0"# $% −

ds n;θ"# $%
dθ

θ0

θ −θ0( )
)

*

+
+
+

,

-

.

.

.
n=0

N −1
∑

2

   
θ

k +1
= θ

k
+ HT

θk
"
#$

%
&' H θk

"
#$

%
&'( )−1

HT
θk
"
#$

%
&' x − s θk

"
#$

%
&'( )

   
θ

k +1
= θ

k
+ HT

θk
"
#$

%
&' H θk

"
#$

%
&'( )−1

HT
θk
"
#$

%
&' x − s θk

"
#$

%
&'( )

  

H θ( )"# $%ij
=
∂s i"# $%
∂θ

j
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