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Implementation Methods




filters as they are supposed to behave.

Facts from computer implementation examples:

 When implemented in computers, the observed mean-square
estimation errors are (much) larger than the values predicted
by the covariance matrix (EVEN with simulated data);

 The variances of the filter estimation errors observed
diverge from the theoretical values;




The Kalman filter is defined in terms of the real number
system, which has infinite precision...

and then it 1s implemented on digital computers with finite
precision.

Moreover, the REAL arithmetic of computers is not the
arithmetic of the real numbers. It 1s an arithmetic of
floating-point number which are but a finite subset of the
rational numbers.




should be taken in consideration:

Numerical stability refers to robustness against roundoff
eITors;

Precision 1s also influenced by the procedural details of
the implementation method;

Implementation methods cannot always be ordered
(results can depend on the problem at hand);

Il conditioned problems, or problems where the output of
a procedure (solution) is very sensitive to noise in the




Ax=b
to uncertainties in A and b and roundoff errors is characterized by the
condition number of 4 (for nonsingular A matrices)

Ax|/|x
Ax| /x|

It also equals the ratio of the largest and smallest singular value of A.

max

cond(A) =

min_

Rule of thumb for the maximum relative error 6=||x-x||/||x||:

0 =c,econd(A)




associated Riccati equation should equal the
covariance matrix of actual estimation uncertainty.

Factors that contribute to 11l conditioning:

large uncertainties in the values of 4, O, C and R.

large ranges on the actual values of the systems matrices
due to poor choice of scaling or dimensional units;

ill conditioning of the intermediate result R*=C3C7+R;
large matrix dimensions;




b —base

sdd,--d xb*  d-digto<dzp
P p — precision

e — exponent

Intrinsic characteristics and errors associated to a representation:

o underflow limit »min”’

o overflow limit b

» rounding (to the nearest floating point number)

o= Lpir
2




Floating- Machine format
- ANSI/IEEE CRAY-1 IBM370
Singl Doubl i
Attributes ingle ouble Single Double
b 2 2 2 16 16
p 24 53 48 6 14
e, 126 1022 16384 -64 -64
€ 127 1023 8191 63 63
£ ~6x107° ~107" ~3x107" ~5x107 ~107"




V+ 0V,

The magnitude of the roundof error will be bounded by

‘5\/‘ < 8‘\/‘.

The bound also holds for a m x n matrix A if the Frobenius
norm or the 2-norm are used.
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Kalman gain computation. Its first order propagation error
1s considered next:

o = (A-KC)|&x; + 0P (CP~CT + R) ™z - Cx; )|+ Ax,,(4- KC)SP;
0P, =(A=KC)OP (A~ KC) + AP, + AOP; =B A" - (0P, - 0P, )(A-KC)"

where A refers to the roundoff error added at each recursion
step. The norm of added roundoff errors is given by:

- &[4 - KC|x;| + K]+ |AK] A + [AK](Ci | + 2]

B

‘Axkﬂ

b

OP, = ezcond(CPk'CT +R)2




where O=0 and such that F, >> R,

P, 1s so much greater than R that
R<eF,

Calculated variance equal to zero!

RR _

Actual variance

P+R

Theoretical variance in the exact case

Value
Exp
Exact Rounded
RC’ R R
CRC’ 2 2
CPC" +R P, +R P,
K, =PC"(CRC" +R)" i 1
F+R
B R
A =F -K\CF . 0




filter use one or more of the following techniques to
solve the associated Riccati equation:

Factoring the covariance matrix of state estimation into
Cholesky factors (triangular factors CC'=M);

Modified Cholesky decomposition algorithms
(M=DD_ U" or M=LD,L");

Factoring the covariance matrices of the measurement
and state noises, O and R, respectively;

Symmetric matrix square roots of element matrices (in
the form 7 -ow");

Triangularization (QR decomposition);
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where C is called Cholesky factor (not unique). If suitable constraints are used
a unique solution can be found.

Decomposition methods

Example:
' 1 T 0 07f 0 071 [ & '
P P Py Cy Ciy Ci
2 2
Dot Posn Ptli= G ConnnnlOliliGon G Ol = 161651 Cy +Cy
2 2 2
P Pn P3| |G G G|Gr G Gz Cufsy C1Ca T CxCp Gyt Cop tF C3y
Solution: C = P




where E/vwI]=R is not a diagonal matrix, but can be factored as

R=UDU",

Where D is diagonal and U is an unit upper triangular matrix.
Redefine

z = Uz —_ 7
> > R = E |_vv J
= (U [{_)X + (U V) _ E[U_leUT-l ]
= H— + _. -1
T - UEw' U’
SOIVC . U_IRUT_I




filter use one or more of the following techniques to
solve the associated Riccati equation:

Factoring the covariance matrix of state estimation into
Cholesky factors (triangular factors CC'=M);

Modified Cholesky decomposition algorithms
(M=DD_ U" or M=LD,L");

Factoring the covariance matrices of the measurement
and state noises, O and R, respectively;

Symmetric matrix square roots of element matrices (in
the form 7 -ow");

Triangularization (QR decomposition);




M =UDU"

With these constraints a unique solution can be found.

Solution:
for j=m,...,1
for i=j,...1 ) .
G_JM__ Computational complexity
=M

for k=j+1,....m i
0=0-UikDikUjk —m(m-1)(m+4) flops
if (i=j) 6

Dj=o

Uj=1




: 2
with s=20-0°p|".
The symmetric square root of a symmetric elementary matrix

(s =l-om)

with




S

so that the observation update Riccati equation can be factored as
el S S (RSN Sl e (Soul o e Wosul Sub
and define V' = (2‘ )TCT. The previous expression can be written as
o o O R A il

For the case that the measurement is a scalar , Potter was able to write this

expression as

I —v(vTv+R)_1vT =ww',

resulting that




n 2

R+h)
where v 1s a column vector, 1s obtained.

Using the results for the symmetric elementary matrices

I+ 1—44 1
_ =

CR+p[




so that the observation update equation can be factored as

v (pf -vpf-LEPY v-fcreun o}

lcuv DUV +r)

and define v = (U _)TC " as an n-vector, where n is the state
vector size.

The previous expression can then be written as

T ~-—




D =D W'D Vv+R] viD

If 1t 1s possible to write it in the form:
D -D W'D v+R)'V D =BD*B
then D™ 1s the a posteriori D factor of P, because the resulting

equation
U DU

u-(BD*BJU-J

- (B8]




D™ - D'v(vTD'v + R)_IVTD'.

Lemma —If D~ =D W'D v+R]'v' D =BD'B
then for 1= j<n andfor 1=<is<j<n,

e j—l _ — —
R+ viD ; Dvv,
+ _ k=1 k" kk B - .
Djj =DJ’J’ i 2 2 ! R+ - 2D




Kalman gain computation. Its first order propagation error
using a square root covariance factorization method is:

&¢;,, =(A-KC)|ox; + 6P (CPC” + R)(z - Cx] )|+ Ax,,, (4 - KC)oP;
o, = (4-KC)OP, (A-KCY +AR,,

b

where A refers to the roundoff error added at each recursion
step. The norm of added roundoff errors is given by:

Az, = &4~ K] + K2+ [AK A + k][] +21)

)

£, (1 +cond (CP,;C Ty RJP,;+1

b

5Pk_+1 =

|2 Cholesky |




Kalman gain computation. Its first order propagation error
1s considered next:

o = (A-KC)|&x; + 0P (CP~CT + R) ™z - Cx; )|+ Ax,,(4- KC)SP;
0P, =(A-KC)OP (A-KC)" + AR, +

where A refers to the roundoff error added at each recursion
step. The norm of added roundoff errors is given by:

Iz, |= &4 - K] + K2+ |k 2|+ [aK] [ i | + |z|)

OP, = 8200nd2(CP Cc’ +R1Pk+1
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- KF only corresponds to the optimal filtering strategy under
restrictive assumptions, and for some objectives (functionals)

- The requirement on the knowledge of the power spectral density
of the disturbances is too restrictive. The WNG assumption too.

- Unknown multimodal and/or skewed pdfs are common

However

« Optimality and stability still of great importance, in the presence of
uncertainty (robustness)

 Other functionals / objectives can be used to formulate estimation
problems. Minimization must be feasible
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Norms of Signals

L,[0,T] norm

L,[0,T] norm
(energy)

L, norm
(least upper bound) HMHOO = sup(lu(t} ) < 0
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Motivation for H,, Filtering

u €L, yEL,

G

For finite energy signals in the input of system G, how much is the
minimum energy on the output?

Possible interpretation as a Min-max Nash game in estimation:
Maximum energy in the error is minimized.

For bounded systems, the H,, norm is defined as

ngHz Denominated as the L,
induced norm.

g].. =

uEL2 Hqu;tO Hqu

For LTI systems corresponds to the peak in the Bode diagram.
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s {x(t)= Ax(¢)+ Bul(z)

Norms of Systems

LTI Continuous - time model Transfer function

G(S)= C(SI — A)_IB

y(t)=Cx(t)

g1, - (iizr(G( o) jw))dw]l 2

H ., norm Hg”w = sup O'maX[G(]CU):I
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*See [1] for details



Plant and Sensor Modeling

x(t)ERn
=C(t ) Z ))‘:V((Z)) telo,r]  y(e)er?

Wt )ER’"




H. Filtering
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Problem statement : For system G, with known (unknown)

initial conditions” and using the measurements y(t ), obtain an

estimate i(t)of z(t) that minimizes the (worst case) indeces

A2 12
- _ E-dh
| = p > or J2—Osup I , R >0.
=nhy ul #1EL [wlly +xoRx

Important questions:

« Given y>0, does there exist a filter with finite J, (or Jz)?

 Under the assumptions , does it verifies J,<y ? (or J,<y“ ) ?

« How to find a realization for such filter?

* Considered 0 without loss of generality
** R1is a covariance matrix



H,, Filtering

Theorem|2]: Let the initial conditions be known and 7" < .
1)There exist a filter such that J, < y* if and only if there
ex1sts a symmetric matrix P(t) forte [O, T ]that satisties

P(r)= A(e)P(t)+ P()A" (¢)- P(:)C” (¢ ) (e )P(¢) (2)

+%p(t)LT(t)L(f)p(mB(t)Bw) with P(0)=0.

2)Moreover, if it exists, one filter for J, < y* is given by
)é(t) = A(r)i(t)+ P(t)CT(t) [y(t) = C(t)p%(t)] with x(O) -0. 3)

Null initial conditions considered without loss of generality.



Elements of Proof (l)
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The value of the functional J, can be written as

From 2, introducing 2(¢) = L(¢)%(¢)and X (¢) = x(¢ ) - (¢)
1 ~
LR -l =0

Using the L,/ 0,7] norm definition (1) we can write

} <F[x(t)T w(r)T:%L(t)TL(t) ’ -[’w)} _0 (4)

o 0 _r|e)

10
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Systems’ Theory Digression

Dissipativity [6]- The system G: w — z with supply rate S(t)is strictly

dissipative if there exists a non - negative function V: x — R such that

p (el )+ [ s(aae) (o)t > v (x(2,)

0

forall tg <4 and for all trajectories of the system.

A system is dissipative if can not provide to the environment the
same energy that was suplied by the exterior — energy losses.

Examples: electrical circuits, mechanical systems, thermodynamics...

Moreover,if V(t)is differentiable, V(t) < S(t) holds.

Fromf )+ V( ( ))dt<0, foranyt€[z,,1, .

11
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V' Lyapunov Stability — Second Method
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Lyapunov theorem (second method) - The equilibrium point

x = 01s stable1f there exists a Lyapunov function that verifies
i V(0)=0
ii) V(x)> e,
iii) V(x(t)) < 0, along allsolutions of .
* Note that V(t)-> o as lIxll, = .

« Stability of dynamic systems can be studied, whitout solving the
differential equations. Sufficient conditions.

* No systematic method to find a Lyapunov function exists.



Elements of Proof (ll)
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Re -interpreting (4) and resorting to dissipativity concepts

the Lyapunov candidate function ¥ (x)= X" (¢)P™ ()% (¢ )is used
- T ) . :
SOl PR

0 ' 0 ~1

d
— VIt
- (¢)at

=0

Y

From the definition of G and (3), the error dynamics is
% =(4-PC"CR+(B-PC"DWw

Therefore



RRRRRRRR Elements of Proof (lll)

Re-arranging the terms results

0+ | 30

0

where*

1 .
. —2LTL + APt 2c'c-pP'PP'+P'4 P'B-C'D
=1 v
BP-D'C -y

Using (25 and cancelling terms

-

il () v |

“

_CTC-PBB'P P'B-C'D - x(t)

L dt =0
BP - D'C _] w(t)

—

*Time-dependence omitted for simplicity. 14



Elements of Proof (1V)

Schur Complements - Given matrices UER™, VER™™,
WeER™, and ZER™", where Z > 0 the Schur complements

U V. "
of matrix sU-=-VZ"W.
w Z

Can be seen as a generalization to the matrix inversion lemma.

15



Visualization of the H _, Filter
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Discussion
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« Optimal structure obtained, similar to LTV Kalman filter
- Unbiased estimator obtained (otherwise J, 2 o, J, > )

-  Complete proof is out of scope, but can be obtained
i. using systems’ theory [2, 5];
ii. using estimation tools in Krein spaces [3];

- Stationary solutions can also be obtained (finite or infinite
horizon cases)

- Modified Riccati equation that
For y () 0 degenerates on the Riccati equation in KF
Provides more robust solutions, for smaller y

Unfeasible for y<y i !! -



H., Smoothing

Theorem|2]: Let the initial conditions be known and 7" < .

1)There exist a smoother such that J, < y? if and only if there
exists a symmetric matrix X (t) forte [O, T ]that satisfies

~X(t)=A"(1)x(¢)+ X (¢)A()- X (¢)B(¢)B" (¢)X (¢)
_%LT@)L(ch(t)c(t)
with X(7')=0.

2)One smoother that minimizes J, and verifies J, <y~ is

HOl [ 4l) BB ()] 3() [ 0)]y<t>

AR |CcT()e() -47() ||A()] |Cle
with £(0)=0, A(¢)=0.




Remarks
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- Proof is omitted, see [2] for detalils.

- The H, smoother structure is equal to the H.,!
- Smoothers for all 4 cases are well known.

- Much more recent results than the H, solutions

» Other functionals have already been solved, e.g. mixed H,/H ,,
Also, solutions for nonlinear cases available

- Now a couples of examples from [5] are included to document
some of the results outlined
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Examples, from [5]

Example 1: In this example, we demonstrate the reduced peak-error-
level of an H -filter, and its inherent robustness. We apply H_, -opti-

mal and L,-optimal filters on the following second order resonant
system

. 0 w, 0
x=[_w 2tw, :lx+[l]w, y=[0 1lx+n, z=[ 0]x

n
where w, and £ are not certain. The filters were designed for a nominal
system with w, = 11 and { = 0.1 . Figure 4.1 depicts the Bode magni-
tude plot of T,; of the H, and L, filters, for the nominal case, and an
envelope of T,,, for w, varying in the range [8.2-13.7] and ¢ varying in

the range [0.075-0.125]. L5 ' T T
n O

nominal

db
'
—
o
BAMSEaED B S St B RS R R

| . N
BT 100 10! 10° 10!
Frequency (Rod:Secf

Fig. 4.1: Sensitivity comparison between: (a) the A, -filter, and (b) the 5
L,-filter. 0
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Examples, from [5]

Example 2 (Deconvolution): In this example we demonstrate the tra-
deoff that exists between the L, and H,, performance in a continuous-
time, steady-state filter design. In the deconvolution problem of Fig.
4.2, we use the noise corrupted measurement of the output of a system,
to estimate a regularized version of its input. The regularizing filter is
required to make the deconvolution problem well-posed. We look for a
filter that achieves |[T,; |l, <y for the following systems:

G, (8)= G,(s)= SNR =100

100 __ ¢
52+0.45+100° 241305 +104 *
Recalling that y—>co leads to L, -estimation, we are motivated to

check few values of y. The transfer function 7, for central filters that
were designed with different values for v is depicted in Fig. 43. The
effect of the design parameter y on the performance of the above dec-
onvolutor is further emphasized in Fig. 4.4., where the H, -norm that is
actually achieved is related to the design parameter v, and the corres-
ponding L,-norm of 7,,. In this typical example, we see that y is an
effective design parameter for values that are near vy,, where a signifi-
cant improvement in the L, performance can be gained by slightly com-
promising the H_, performance.

Measurement nolse

Fig 4.2 The deconvolution scheme

dh

T 10 0
Frequency [RadSec|
Fig 4.3: The Bode plot of T, for: (a) y=yq; () y=1.02v;
()y=L.lyg; (d)y=c».

12— -~ _—

10! s

=) f
\ ‘
8] \_ 1
I
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(b)) 1

/
2 / l

8550 055 TTUe 062 Ost 066 068 07 om
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Fig 4.4: The tradeoff between L, and H,, performance: (a) |[T,, b (b) 21
Y-
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Key Challenges in Estimation
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Characteristics of the envisioned Estimator Stabil ity

Reduced computational requirements
Causal (to be used during the mission)
Possible to be refined in post-processing

RObust‘ney \

In the linear case, all relevant features
are obtained together: exponential stability, Performance

optimal performance and robustness
(gain and phase margins).

In the nonlinear case no optimal common
solution is available.

(e.g. EKF is the performance tentative solution).
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- Stochastic H, filtering, prediction, and smoothing problems are
only optimal for linear time-varying systems under Gaussian
disturbance assumptions with known power spectral densities

« H,, allows to lift the noise assumptions for LTV systems
- Real world systems are nonlinear!

- In general, EKF does not guarantee stability, performance, nor
robustness

* Nonlinear observers can outperform linear or linearized versions
of observers (EKF / SOF), both for structured and unstructured
disturbances [1, 2]



Il Exponential Observers
for Linear Systems

Consider the linear system

: x(t)ERn
_ x(t)=Ax(t)+ Bu(t) e
) N

where the pair (A, C )is observable.
The Luenberger observer, in a deterministic setup, is given by

£(¢)= 4%(c)+ Bu(t)+ K(y(¢)- c2(r))
Exponential stability can be proven resorting to the Lyapunov equation
(4-kC) P+P(4-KC)=-20

That is, for a positive definite matrix Q there exists a unique positive
definite P, such that the above equation is verified.



Observers for Nonlinear Systems
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Consider the class of affine nonlinear systems

= :{§<z>= ()

wheref(.),g(.), and h() are known.

The suggested Luenberger-like nonlinear observer would be
¥{2)= 7 (%(e))+ g3 )ule) + K (e) - (3(2))

What fails in the stability proof
for this nonlinear observer?
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Thau’s Observers @ 1973
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(1

5* sl

A,C, and f () are known; the pair (A,C ) 1S observable, u 1s a

sl )

cx () ) W

deterministic input, and f () 1s a Lipschitz time-invariant

| (xle))- 1 ()] = 2]ele)- 2
Proposed observer (motivated by Luenberger’s and Kalman’s work)

t{e)= axle)+ £ (3 (0))+ K () - C5(0) )

function, 1.e.



Thau’s Observers @ 1973
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Proposition : Given the observability condition for systems of
class (1) for any positive definite matrix Q, there exists a unique

positive definite matrix P, such that the Lyapunov equation
Ay P+ PA, = =20, (3)
1s verified, where 4, = A - KC.

Main result:

Theorem|2]: For the class of systems (1), 1f the gan K 1s selected

such that 1t can make the solution of the Lyapunov equation to satisfy

—mn =7 s [ (4)
|17

for all x then the Thau observer (2) 1s assymptotically stable.



Elements of Proof (l)
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Defining x (t) = x(t) - fc(t ), and for the Lyapunov candidate
function V(t) = %(¢ )TPBF (t), where P > 0 is a symmetric

constant matrix, lets apply Lyapunov's second method

V'(z)=%[z(t)fpz(f)L;@)Tpx(t)ﬁ@)w;(t)

The error dynamics is given by

x(e)= (4~ KCR + f(x(t))- £ (3(0)) = 4% + £ (x(0))- £ ((0)),

and

()= 5 (e (45 P+ Pay o)+ 2% Py (x(0)) - 1 (3()]



Elements of Proof (ll)
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From the Lyapunov equation (3) one can write

P(e)==23(c) 0% () + 25 () PLr(x(0))- £ (3())]

From the Lipschitz condition
V()= —2%(e) ox(t)+ 2L)x (¢ | 2% (2 )|
< =22, (QIF ()" + 2L[x (Y|Pl (e)

< 2|, (0)- L]
if A, (0)> L|P| then ¥ (¢)< 0, i.e.it is enough that
(4) be verified.

_10




Visualization of the Filter

RRRRRRRR

f(x(t))
: < y(t)
ﬁ A > C() >
Al) REAL
NLO
f(X(t))
y(t) . X(t) .




Example with difficulties [4]
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Example 1 nonlinear system

T (0 1] [ 2y ) 0
: = + . + U
9 0 0] | a9 — SIn &g ()
R
=l | 7|
| )
Lipschitz constant for f (x) =sinxiis L=1.y =sinx




Example with difficulties [4]
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The minimum occurs when Q=l.

1 > 1
P]
IPI® = 308, = (TP

i.j=|

1 1
we select P = { 2, 14] P =P >0, ||P| =0.68 < 1, but

13
Ag no exists. If we select

Amax (P) = 1.809 > 1, the condition is not satisfied. So the
method is difficullt.



Exponential Observers @ 1975

Consider the class of nonlinear systems

- {x(f)=f(X(t)) {er”

VO-160)  f)er? ®

where f () and h() are continuously differentiable.

The proposed observer has the structure

x(t)= f(&(0)+ g(p(0) (5(0))) (©)

where g() is also continuously differentiable.

14
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Exponential Observers @ 1975

Theorem|3]: Given the nonlinear autonomous systems (5) and (6)
and some function g(.)satisfying (7),1f there exists a scalar function
(%), whereX = x— X and p > 1such that

a) V(%)= c|x|, forall X ER", 7(0)=0

bV (%)= —ﬂV(%), forall x € R" and for some A4 > 0.
then the observer (6) 1s exponentially stable and

Hx(t)— fc(tm < ke~ M

The generic proof for autonomous systems is an immediate
consequence of the Lyapunov second method.

15



Exponential Observers @ 1975
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Main result:
Theorem|3]: Given the nonlinear autonomous system (5) and the

proposed observer (6) with g( (¢ )h(fc(t ))) = K( y(t) — h()%(t ))),
if there exists an # x m gain matrix K, that, given O > 0 there
exits P > 0 such that

(Vf (%)~ KVg(x))" P+ P(Vf(x)- KVg(x)) = -20 (8)
From any fc(to ), an exponential observer (6) 1s obtained verifying
1/2

Hx(t)_;c(tx\s(ﬁ) o~ M=t )= 36 )

q
forallt > ¢,, where ¢, and ¢, are the smallest and largest

eigenvalues of O, respectively.

16



Elements of Proof (l)
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Defining X(¢)= x(¢)- %(¢), the error dynamics is given by

x(e)= £ (xl0)- £ (3(e)) - K (ole) - n(3(0))
For the Lyapunov candidate function V(t)=%(¢)' Px(¢),

where P > 0 is a symmetric constant matrix (2" method)

V'(t)%z(t)fpz(t):x(t) PE(e)+ % (Y P (e)
= (f(x(t)- £(&)- K (hlx)-n(%)) PX

* Explicit dependence on t will be omitted.
17



Elements of Proof (ll)
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Resorting to the fundamental theorem of integral calculus
1

£ )= (%)= K (alx) = hl&)) = [(Vf (w, )~ KV(w, )Feds

0
for w, = sx + (1-s)x. Therefore

7(0)= " (57w, )~ KVhw, ) P+ PV o, ) K9G, s 7

Using (8) and the fact that X' PX > &[X H2 results

V(f)<—2¢97TQ%<—2@€V(t), fore > 0.
q,

18



Examere 1. Consider the following nonlinear system:

=X, .t,=x1—2x,+a"‘*.

then the gradients of f and h are

VE = [{ —23¢-‘~] scd. NE w1 1)

= ¥ 1 %

Lee Bbe a2 x 1 constant matrix with elements by , 33 to be determined, then

e [ =
vi— BV = ||~ -—2—-:""—6,]'

The symmetric part of Vf — BV is

1—8 Xl — b, — 1]]

(V€ — BVE)gyns = [;(1 RIS P

Thus, if the matrix is selected 10 be [_]] then
(VE — BVh)ym = [-Ol 1 _0_8-@,]- (16)

In{16), the two eigenvalues are —1 and —1 — ¢, so the maximum eigen-
nule & —1, i.e.,

wI(VE — BUA)w = w'(Vf — BVA)mw < (—1) - Tw]k

New by Theorem 2 we have that

2 = £(z) + [ 2| hix) — bz

& =x+2y "'(ﬁ‘i‘*’:]]
fp=2— 28+ — [y — (1 + 29)

ian exponential observer with 2,(0), 2(0) arbitrarily given for the system of
the example.
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Thau’s Observers @ 1975

Consider the class of autonomous nonlinear systems

Zg:4

= Ax+4(x, v, 7) x:x(t)ER" (9)

\y =Cx y: y(t)E R?

where 4 and C are known and ¢() is Lipschitz in its arguments

and verifies

#x,,5)=,(0)+ Ve, (»)i + ¢ (x) (10)

where ¢, ( ), o, ()E C',9, ()E C* and such that

CV g, (y)y =0.

20



Exponential Observers @ 1975
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Theorem|3]: For the nonlinear autonomous systems (9),
verifying (10) if

a) the pair (4,C) 1s observable

b) there exist P > 0, O > 0, and a gain vector K
such that

(4-kC) P+P(4-KC)=-20

and

A (0) _
A (P) [V, (11)

max

then there exist an exponential observer for system (9).

21



Elements of Proof (l)
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Define the new variablew = x — ¢, (y), and note that

¢2 =Vg, (y)y

The dernivative, relative to time, of this new signal verifies

W= Ax+¢(r)+ Ve, (v)y+4,(x)- Ve, ()i
That can be simplified to

W= Aw+ ¢1(J/)+ A¢2<y)+ ¢3(W+¢2)
Considering that y, =Cw =y - C¢, ( ¥ ), the observer

W= AVA"+¢1(J/)+A¢2(y)+¢3(w+¢z)_K<Y1 _CVAV)

1s proposed.

22
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Elements of Proof (ll)

Defining e = w—w, the error dynamicsis given by

€= (A —KC)6+¢3(W+¢2)—¢3(W+¢2)
For the Lyapunov candidate function V(t) = ¢’ Pe,
where P > 0 is a symmetric constant matrix (2" method)

V(t)=¢é" Pe+e Pé
= -2e' Qe +

(¢3(W+¢2)_¢3(ﬁ’+¢2))TPe+eTP( 3(W+¢2)_¢3(VA‘/+¢2))

23



Elements of Proof (lll)
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T

V=22 (Q)+ fV¢3 (ws + ¢, (y))dse Pe

+e'P| [V, (w, +¢2(y))dse)

<|-24,.(0)+ 2PV e Jef

From this relation (11) is immediate.



ExampLE 3. We consider a simple pendulum with viscous damping and
without driving torque.

X+ a,x - aysinx = 0,

l

(28)

where @, , a, arc constants.
Let us rewrite Eq. (28) as a vector differential equation

s [g —-I(l;z] Lt ['—03(‘;“ xl]‘
o=l T

Now the linear part of this system is observable and we denote the nonlinear
part by

¢(x)=[ 3 ] 50 \"qS{x)--[ : O].

—'03 Sin .\‘1 —‘03 © COs ~\.~| 0

ifa, = %, a; = { then the following matrices

2 » I I 0
- & - x 2
B i] 0 [l 2] and P 0 l] (29)
atisfy Condition (b) of Theorem 3. So the observer (23) with B given by

(29) and ¢, = 0, ¢, == 0 is an exponential observer and the e of (27) s
06 =(5)42) = 0.

25



Lipschitz Observers @ 1998
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Consider the class of non-autonomous nonlinear systems

()=o) R,
5 { o) W )ER
4 u(t)E R™ (12)
A,C,and f () are known; (A, C)is observable,ui1s a
deterministic input, and ¢() is a Lipschitz time - invariant

function, 1.e.

Joelehule)) - e kaule))] = () () (13)

Proposed observer (motivated by Luenberger’s and Kalman’s work)

t{e)= (o) p(x(e)u(e)) + K((e) - (o)) (14)

26



Lipschitz Observers @ 1998
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%(0)= (4= KO () [plxlehule)) - o(2le)ulc)]

and the following major result holds:

Theorem [5] : For the nonlinear non - autonomous systems
(12), verifying (13),1f the observer given by (14) satisfies
a) the pair (4,C) is observable
b) the gain K can be chosen such that as to ensure
mino_. (4-KC - [jw)>y (15)

wER"

then 1t 1s asymptotically stable.

27



Elements of Proof (l)
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The proof is done in three parts (see [5] for details):

) If mino,, (4 - KC - jol )> y, then there exits
g

£ > 0 such that the matrix
(A-KC ) al
—I-¢l -(4-KC)

has no imaginary eigenvalues.

H=

) If (4 — KC)is stable then there exists a P > 0

such that there exits a solution to the equation

(4-KCY P+P(A-KC)+y*PP+1+¢el =0

28



Elements of Proof (ll)
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cont...
iy Defining x (t) = x(t) — fc(t ), the error dynamics is given by

%(e)= (4= KCJR(e)+ [plxle) ule)- plile)ule)]
For the Lyapunov candidate function V(t)=X(¢)" PX(¢),

where P > 0 is a symmetric constant matrix (2" method)

V(t)= %%(t)TP)Z(t) =x(¢) Px(t)+x(¢) Px(¢)

= (4-KC) P% +3ETP(A KC+

)
2% Plp(e(e)ule) - ol Lu)]
)+

Using the properties introduced before results

V()= 5" [(A—KC) P+P(A-KC)+y*PP+1|3

29
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Theme
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Consider the class of non-autonomous nonlinear systems
X = f (x,u)
2
Gl = hlx)
where x(t)E R" is the vector of system states, u(t)E R"

are the iputs, and y(t)E RPare the system outputs expressed

as a column vector and abb. as x,u, and y.

The search for a “very special” property...

Given a nonlinear system,with nonlinear measurements of the
state available, find a coordinate transformation that renders
the dynamics and the output linear on the new coordinates!!!

(except for a nonlinear output injection term)



Theme
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- Challenge for the control problem set at IFAC 1978 (Helsinki) by
Roger Brockett to Arthur Krener [1]

«  Control problem well understood (during the 80s), see [1, 2] for
a survey on the new techniques: feedback linearization, input-
output linearization, backstepping , zero dynamics, ...

« Harder to be solved for nonlinear observers

Relevant questions:
« (Conditions for the existence of such transformation

« Synthesis methods (complexity)

- Robustness relative to unmodelled dynamics...



Krener and Isidori @ 1983
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1) Find {X=f(x,u)/\{z’ = Az + Bu +a(y,u)!

W= Cz

y=h(x)
2) Design an observer of the form
Z=A%+Bu+ a(y,u)+ K(w— Cé).
3)Error dynamics Z = z - z (assume observability of (4,C))
Z=(4-KC)

First systematic approach [3] that resorts to a nonlinear state
transformation to linearize the original system up to an
additional output injection term



Krener and Isidori @ 1983
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The proposed solution proposed is composed of three steps (see
[1, 3] for details):

1) A set of partial differential equations (PDE) must be solved to
find y(y)

2) The integrability of conditions for this PDE involve the vanishing
of a pseudo-curvature

3) A coordinate transformation z=¢(x) can be obtained after a set
of PDEs is solved, resorting to conditions on the Lie derivatives
of the outputs

“The process is more complicated then feedback linearization and
even less likely to be successful...” in [1]
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Kazantzis and Kravaris @ 1997

Slitghly different objective:

Given a nonlinear system, with nonlinear measurements of its
state available, find a nonlinear state transformation that
renders the observer error dynamics linear!!!

(except for a nonlinear output injection term)

Consider the class of autonomous nonlinear systems
%= /()
{y = h(x)
where f : R"— R", h: R" — R" are analytic vector fields.
The origin x = 0 is an equilibrium point, f (O) =0, and h(O) = 0.

(2)



Kazantzis and Kravaris @ 1997
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Motivated by Luenberger's original ideas on the linear observer

design problem, the proposed approach will try to reconstruct a

nonlinear invertible function z = H(x).

with time derivative that verifies

._aﬁdx 06

°T ox dt B ax)'c=Az—/9’(y)

Using the definition of the system (2) and for the intended

dynamics, the following PDE must be verified

D e)1(x)- a6s)- ) - - ) 3



Kazantzis and Kravaris @ 1997
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Assumption Al : The Jacobian F of the vector field f(x)
evaluated at x = 0 has eigenvalues k;, i =1,..., n with

0¢ ConvexHull{k,.. .k, }

T T
Assumption A2 : Denoting the m x n matrix # - il (0) .. Wy (0)
0x 0x

1t 1s assumed that the m x n matrix

H

HF
O = , has rank n.

HFn—l

A2 essecially states that (3) s locally stable.



Kazantzis and Kravaris @ 1997
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Lyapunov's Auxiliary Theorem: Consider the first - order system

0
of quasi - linear differential equations G_W gp(x, w) = (x, W) (4)
X

0
with (0,0) = 0,(0,0) = 0, and a—(p (0,0)= 0, where wis the
w
unknown. Under assumptions A1, A2, and independence of the

i, 0
eigenvalues of a—w (0,0) relative to the ones of a—w (0,0), then
X w

the above system of PDEs admits a unique analyticsolution, in the
neighborhood of x = 0.

The novelty in [4] was the use of this result app to (3) to guarantee
the existence and uniqueness of solutions. 9



Kazantzis and Kravaris @ 1997
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00
Solution for the system of PDEs o (x) f (x) = 4 H(x) -p ( y)
X
, ow . .
Linear Method : For . qp(x, w) =y (x, w), consider the linear case
X
qp(x, w) = Fx
z/J(x, w) = Aw — BHx
. p . .
with F, A, B = - (0), and H constant matrices. Then the unique
X
solution of (3)1s w = Tx, where T 1s the solution of
TF + AT = BH. (5)

Unique solution when F" and 4 do not have common eigenvalues.
10



Kazantzis and Kravaris @ 1997
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Theorem: Consider that for the dynamicsystem (2) A1 and A2
hold and the n - th order dynamic system of the form

2= 4z Bly)
: : I :
where 4 1s Hurwitz, B = o (0), and (4,B)1s controlable.
X

Then there exists a locally invertible nonlinear map z = 6(x)

that makes the dynamic system above a full order observer.

Why is this method or structure acttractive?...

11



Kazantzis and Kravaris @ 1997

RRRRRRRR
CCCCCCC

Theorem: Let z = Q(x)be an nvertible solution of (3). The system
-1

fc=f<fc>-[ﬁ<fc>] (Bly)- BlH()) (3)

0X
1s an asymptotic full - order observer for (2) such that

(2 -2) =< (6(5)-6(x)) = 4(0(3)- 0x)) = a2 -2)

dr dr
Proof (brief) :
L (ogsy-0(x))- 225205 w(( )—[5 o [ a0t )—3—ff(x)=

a0(2) - 812 )- (B -8 (1 £))) - 40(+) + 5() - A(e(x)—ew )

12
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Kazantzis and Kravaris @ 1997

Observer design

{x=f(X) it ;*c=f(fc)—[%(i)l_l(/ﬁ’(y)—/?’(h(f)))

0X

Observer in new coordinates

z=dz-Bly) < ?

2= 42-p(
— .mm.

Linear error dynamics

y)

13
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Visualization of the Filter

h(.)

REAL

NLO

14



Krener and Xiao @ 2002 [5]
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Converse Theorem: Consider the class of nonlinear systems
2= g(2)

v =h(z)
where g and / are continuous vector fieldsand g(0)=/(0)=0.

If there exists a nonlinear observer z = g(é, y) such that the error

dynamics z = z-z islinear,1.e. Z = Az, then there exists a

continuous vector field f: RP — R™ such that
glz)= 4z - p(n(2))
g(2)=4z-B(y)

15
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Example | from [5]

3. Examples. As discussed in the introduction, there are distinct advantages to
considering nonlinear output injection 3(y). It is desirable that # be a diffeomorphism
over as large a range as possible, for this is the domain of convergence of the observer.
Nonlinear output injection can make 6 a global diffeomorphism.

To illustrate this, we consider a Duffing oscillator

)

y =,

which 1s equivalent to the planar system

€T 0 1 €L 0
1 0 €L f

)
|
~

Yy =L1.

16
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Example | from [5]

This system is trivially transformed into a linear system with output injection (1.2)
?1 _ -2 1 1 B —Qy
Z9 -2 0 Z9 —3y + 2

by

a( —2y
W= sy |

Notice that & is nonlinear and # is trivially a global diffeomorphism. The observer

(1.4) 1s
-'i?l . -2 1 T _2.!:/

and the error dynamics
.‘i’l -2 1 T
T o -2 0 T

1s linear and exponentially stable with poles at —1 + 7.

~
o

b
3
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Example | from [5]

The example is trivial but illustrates two important facts. The first is the advan-
tage of allowing nonlinear 3. We could take it to be linear,

| —2

and still solve the PDE (1.3) for #. But the solution might be hard to find, it could
have an infinite power series expansion, and it might not be a global diffeomorphism.
The second point is that the Duffing oscillator is truly nonlinear; it has three
equilibria and two homoclinic orbits, and the rest of the trajectories are limit cycles.
Yet it is possible to build a globally convergent error with linear error dynamics.

Run demo!

18
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a

Next we consider a Van der Pol oscillator.

T

y =,

which is equivalent to the planar system

;i‘l . [ 0 1 I
;i?-g - i -1 1 9

y=[1 0]

Now we have

| S

Example Il from [5]

—(z% = 1) — =z,

[ i) N
fla) = | 1 + 19 — 1?%.‘1?2 :| h(z) =z,
0 1
F=-_11] H=[1 0]

19
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Example Il from [5]

We look for a nonlinear coordinate transformation z = #(x) such that in the new
coordinates z, the system can be described in the form

z=Az — B(y).

Let us choose A and /3 to be

3

bl 1 ] bl'l/ -+ EA

A= L B =] YT
[ by -1 1 boy + &

where by, by are constants such that 1 +b; < 0, by — ba +1 > 0. Clearly, A is stable
since trace(A) = 14+ by < 0 and det(A) = by — by +1 > 0. Moreover A = F + BH
with B = [by, bs]’. The solution of (1.3) in this case is given by

Note that # is polynomial and globally invertible on R?. This is because we chose a
nonlinear 3. The resulting observer is again globally convergent with exponentially
stable linear error dyvnamics in z coordinates despite the nonlinearities of the Van der
Pol oscillator. See Figure 1.
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solution x2

Example Il from [5]

Observation of the state of van der Pol equation, x1

1 1
— actual state
— — estimated

solution x1

0 5 10 15
timet

Observation of the state of van der Pol equation, x2

—— actual state
| = — estimated T

-10 ! !
0

timet

F1G. 1. Observation of Van der Pol oscillator.

21



Krener and Xiao @ 2002 [5]
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Consider the class of non - autonomous nonlinear systems
x=f (x, u)
{y = h{x,u)
where f : R"— R", h: R" — R" are analytic vector fields.
The origin x = 0is an equilibrium point, f (O) =0, and h(O) = 0.

Assume that the following relations are verified

flwu)= fo(x)+ i (wu)
{h(x,u)= ho( )+h (x u)

where £,(x,0)= 0,4 (x,0)= 0 and £, (0)
9

,(0)=0
oh,

)
_ Yo (o) = b
Let /7= 0x (O)’H_ ax( )andB_ 0x ( ) 22



Krener and Xiao @ 2002 [5]
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Applying the previous results, under the same technical
conditions to the pair f,,4,, and for the nonlinear coodinate

transformation z = gp(x), i.e

(1)1, (s) - ole)- Al (<)

requires the solution of the equation
TF =TA- BHT.

The following nonlinear observeris obtained

;C=f<;c,u>_[aq'l(ﬁ(y)-ﬁ(h(x,u)»

0X

23



Krener and Xiao @ 2002 [5]
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Lete = go(fc )—(p(x ) Then e verifies the differential equation
e= 22 f(e)-(By)- BlH(2w)) - 22 f(v.0)
- 2210+ £ (Fe)) = B(3)= B h(50))| = 22 (£, () + f(x0)

Given the relations verified for the pairs f,,/, in PDE form, 1.e
0 09 ( . . . .
22y (x)= Ag(x)- Al 2221 (5)= Ag(&)- (0 ()

e = Ae+ N(%,u)- N(x,u)

where N(x,,10) = 2 (x,)f;(x,.10) + B((x,.10)) - B (x, )



Krener and Xiao @ 2002 [5]
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If we further assume that f, 1s locally Lipschitz then
HN(xl,u)— N(xz,um < L(u)‘xl - xz”
A design similar to the ones introduced in the previous lesson is

possible, 1.e. for 4 Hurwitz, then for any O = 0 then there exista P = 0
such that

A"P+PA=-20
And for the Lyapunov candidate function V(e) = ¢’ Pe we have that
V(€)= (=22 (Q)+ 2L )2 ()]

i (g) > L(u)

max

then e = 01s locally asymptotically stable. 25

Hence if



Krener and Xiao @ 2002 [5]
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Other methods to solve the PDE could be used [5]
Designh method easier to be accomplished than [3]

The authors of [4] claim “to be able to do so for all linearly
observable, real analytic systems whose spectrum of the linear
part lies wholly in the right half complex plane”.

Krener and Xiao extended the method to arbitrary specta [5]
(the Siegel domain) and showed that the sufficient conditions
were also necessary.

Discrete time [6] and state and disturbance estimation design [7]
versions became available
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