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Implementation Methods 
Up to this point there has been presented the Kalman 

filters as they are supposed to behave. 

•  When implemented in computers, the observed mean-square 
estimation errors are (much) larger than the values predicted 
by the covariance matrix (EVEN with simulated data); 

•  The variances of the filter estimation errors observed 
diverge from the theoretical values; 

•  Solutions obtained for the Riccati equation have negative 
variance! 

Facts from computer implementation examples: 
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Implementation Methods 

A real problem: 
 
The Kalman filter is defined in terms of the real number 

system, which has infinite precision... 
and then it is implemented on digital computers with finite 

precision. 
 
Moreover, the REAL arithmetic of computers is not the 

arithmetic of the real numbers. It is an arithmetic of 
floating-point number which are but a finite subset of the 
rational numbers. 

 

Floats (4 bytes) can have a roundoff error in the order of  10-8 
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Error Analysis of Numerical Methods 

For a procedure to solve a given problem, some features 
should be taken in consideration: 

 
•  Numerical stability refers to robustness against roundoff 

errors; 
•  Precision is also influenced by the procedural details of 

the implementation method; 
•  Implementation methods cannot always be ordered 

(results can depend on the problem at hand); 
•  Ill conditioned problems, or problems where the output of 

a procedure (solution) is very sensitive to noise in the 
input data (problem). 
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Error Analysis of Numerical Methods 

Example: The sensitivity of the solution to the linear problem 
 

to uncertainties in A and b and  roundoff errors is characterized by the 
condition number of A (for nonsingular A matrices) 

 
 
 
It also equals the ratio of the largest and smallest singular value of A. 
 
Rule of thumb for the maximum relative error δ=||x-x||/||x||: 
 
 
where ε is the unit roundoff error and cA depends on the dimension of A. 
A problem is ill conditioned if   cond(A)+1=cond(A)   evaluates to true. 
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Ill conditioned Kalman Filtering problems 

For Kalman filtering problems the solution of the 
associated Riccati equation should equal the 
covariance matrix of actual estimation uncertainty.  

 
Factors that contribute to ill conditioning: 
•  large uncertainties in the values of A, Q, C and R. 
•  large ranges on the actual values of the systems matrices 

due to poor choice of scaling or dimensional units; 
•  ill conditioning of the intermediate result R*=CΣCT+R; 
•  large matrix dimensions; 
•  poor machine precision. 
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Effects of Roundoff errors on Kalman Filtering 

Floating-point Roundoff Errors 
       b – base 
       di – digit 0<di<b 
       p – precision 
       e – exponent 

 

Intrinsic characteristics and errors associated to a representation: 
•  underflow limit bemin-1 

•  overflow limit bemax 
•  rounding (to the nearest floating point number) 
 
 
•  chopping (towards zero) 
 

 
 

e
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Typical Floating-point Formats 

Machine format 
ANSI/IEEE CRAY-1 IBM370 

Single  Double Single  Double 

Floating- 
 

point 
 

attributes 

b 
 
p 
 

emin 
 

emax 
 
ε	


2 
 
24 
 

-126 
 

127 
 
	
 8106 −×≈

2 
 
53 
 

-1022 
 

1023 
 
	
 1610−≈

2 
 
48 
 

-16384 
 

8191 
 
	
 15103 −×≈

16 
 
6 
 

-64 
 
63 
 
	
 7105 −×≈

16 
 
14 
 

-64 
 
63 
 
	
 1610−≈
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Bounds on Roundoff errors 

Given a variable represented as a floating-point  
 
 
The magnitude of the roundof error will be bounded by 
 
 
The bound also holds for a m x n matrix A if  the Frobenius 

norm or the 2-norm are used. 
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Roundoff Errors Propagation in Kalman Filters 

Data flow: 
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Roundoff Errors Propagation in Kalman Filters 
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Numerical Analysis 

The a priori value of the covariance P- is the one used in the 
Kalman gain computation. Its first order propagation error 
is considered next: 

 
 
 
where Δ refers to the roundoff  error added at each recursion 

step. The norm of added roundoff errors is given by: 
 
 
 
Where ε1, ε2 are constant multiples of ε (the unit roundoff error).	
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Example of filter divergence due to numerical errors 

Given the scalar system  
 
where Q=0 and such that             . 
P0 is so much greater than R that 
             .  
 
•  Calculated variance equal to zero! 

•  Actual variance 

•  Theoretical variance in the exact case 
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An Overview of Factorization Tricks 

The more numerically stable implementations of the Kalman 
filter use one or more of the following techniques to 
solve the associated Riccati equation: 

1.  Factoring the covariance matrix of state estimation into 
Cholesky factors (triangular factors CCT=M); 

2.  Modified Cholesky decomposition algorithms 
(M=DDUUT or M=LDLLT); 

3.  Factoring the covariance matrices of the measurement 
and state noises, Q and R, respectively; 

4.  Symmetric matrix square roots of element matrices (in 
the form             ); 

5.  Triangularization (QR decomposition); 
6.  Gram-Schmidt ortonormalization (ortho times triang.) 
... 

TvvI σ−
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Cholesky Decomposition Methods and Applications 

Objective: To find C such that  
 
where C is called Cholesky factor (not unique). If suitable constraints are used 

a unique solution can be found. 
 
Decomposition methods 
Example: 
 
 
 
 
Solution: 

MCCT =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++

+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2
33

2
22

2
21322231213111

2
22

2
212111

2
11

333231

2221

11

333231

2221

11

333231

322221

312111

0
00

0
00

ccccccccc
cccc

c

ccc
cc

c

ccc
cc

c

ppp
ppp
ppp T

2
2122

1121

11

31

21

11

/
cp
cp
p

c
c
c

−=

=

= ( )
2
32

2
3133

22312132

33

32 /
ccp
cccp

c
c

−−

−

=

=



09/02/15 Paulo Oliveira 17 

Decorrelating the Components of Vector-Valued Measurements 

Suppose that the observations are given by 
z=Hx+v 

where E[vvT]=R is not a diagonal matrix, but can be factored as 
 
Where D is diagonal and U is an unit upper triangular matrix. 
Redefine 
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An Overview of Factorization Tricks 

The more numerically stable implementations of the Kalman 
filter use one or more of the following techniques to 
solve the associated Riccati equation: 

1.  Factoring the covariance matrix of state estimation into 
Cholesky factors (triangular factors CCT=M); 

2.  Modified Cholesky decomposition algorithms 
(M=DDUUT or M=LDLLT); 

3.  Factoring the covariance matrices of the measurement 
and state noises, Q and R, respectively; 

4.  Symmetric matrix square roots of element matrices (in 
the form             ); 

5.  Triangularization (QR decomposition); 
6.  Gram-Schmidt ortonormalization (ortho times triang.) 
... 

TvvI σ−
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Modified Cholesky (UD) Decomposition Algorithms 

Objective: To find U (unit upper triangular matrix) and D (diagonal matrix) 
such that the mxm symmmetric matric M is factored as  

 
With these constraints a unique solution can be found. 
Solution: 

 for j=m,...,1 
       for i=j,...1 

         σ=Mij 

         for k=j+1,...,m 
             σ=σ-UikDkkUjk 

             if (i=j) 
                 Djj=σ	

                 Ujj=1 
             else 
                 Uij=s/Djj  

 

TUDUM =

Computational complexity 

flopsmmm )4)(1(
6
1

+−

No square roots! 
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Symmetric matrix square roots of elementary matrices 

The square of a symmetric elementary matrix verifies 
 
 
 
 
 
with 
 
The symmetric square root of a symmetric elementary matrix 
 
 
 
with 
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Symmetric Matrix Square Factorization* 

* Introduced by J. 
Potter in 1966. 

Define  the Cholesky factor of the covariance matrix P: 
 
so that the observation update Riccati equation can be factored as  
 
 
and define                            The previous expression can be written as    
 
 
For the case that the measurement is a scalar , Potter was able to write this  
expression as  
 
resulting that  
 
 

a Cholesky factor ! 
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Symmetric Matrix Square Factorization* 

For the scalar case, an symmetric elementary matrix of the  
form 
 
where v is a column vector, is obtained. 
Using the results for the symmetric elementary matrices 
 
                                          and  
 
The radicand verifies 
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Bierman UD Factorization 

Define the covariance matrix P using UD factors as: 
 
so that the observation update equation can be factored as  
 
 
 
and define                     as an n-vector, where n is the state 

vector size. 
 
The previous expression can then be written as    
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Bierman UD Factorization 

The following unfactored expression is present: 
 
 
If it is possible to write it in the form: 
 
 
then D+ is the a posteriori D factor of P, because the resulting 

equation 
 
 
can be solved for the a posteriori U factor as 
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Bierman UD Factorization 

It suffices to find a numerically stable and efficient method 
for the UD factorization of a matrix of the form 
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Numerical Analysis of Square Root Methods 

The a priori value of the covariance P- is the one used in the 
Kalman gain computation. Its first order propagation error 
using a square root covariance factorization method is: 

 
 
 
where Δ refers to the roundoff  error added at each recursion 

step. The norm of added roundoff errors is given by: 
 
 
 
Where ε1, ε3 are constant multiples of ε (the unit roundoff error).	
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Numerical Analysis 

The a priori value of the covariance P- is the one used in the 
Kalman gain computation. Its first order propagation error 
is considered next: 

 
 
 
where Δ refers to the roundoff  error added at each recursion 

step. The norm of added roundoff errors is given by: 
 
 
 
Where ε1, ε2 are constant multiples of ε (the unit roundoff error).	
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Theme"

•  KF only corresponds to the optimal filtering strategy under  
restrictive assumptions, and for some objectives (functionals)!

•  The requirement on the knowledge of the power spectral density 
of the disturbances is too restrictive. The WNG assumption too.!

•  Unknown multimodal and/or skewed pdfs are common!

However!

•  Optimality and stability still of great importance, in the presence of 
uncertainty (robustness)!

•  Other functionals / objectives can be used to formulate estimation 
problems. Minimization must be feasible!
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Norms of Signals"

L1 [0,T] norm !
!
!
!
L2 [0,T] norm !
(energy) !
!
! ! ! ! ! ! ! ! ! !(1)!

!
L∞ norm !
(least upper bound)!
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Motivation for H∞ Filtering "

For finite energy signals in the input of system G, how much is the 
minimum energy on the output? !

!
Possible interpretation as a Min-max Nash game in estimation:!
!Maximum energy in the error is minimized.!
! ! !        ! !!

For bounded systems, the H∞ norm is defined as!
!
! ! ! ! ! ! ! Denominated as the L2 !
! ! ! ! ! !  !     induced norm.!

!
For LTI systems corresponds to the peak in the Bode diagram.!
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Norms of Systems"

H2 norm!
!
!
!
!
!
!
H ∞  norm!
!
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Input-output Relations*"

Stochastic!

Stochastic! ?!

?!

?!
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Plant and Sensor Modeling "
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H∞ Filtering"
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Important questions:!

•  Given γ>0, does there exist a filter with finite J1 (or J2)? 

•  Under the assumptions , does it verifies J1<γ 2 (or J2<γ 2 )?!

•  How to find a realization for such filter?!
* Considered 0 without loss of generality!
** R-1 is a covariance matrix!
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H∞ Filtering 
Finite Horizon, Known Initial Conditions"
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Null initial conditions considered without loss of generality.!
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Elements of Proof (I)"

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )[ ] ( ) ( ) ( )
( )∫ =

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

=−

−==

=
−

T T
TT

tw
tx

I

tLtLtwtx

,T][L

wtxtL

txtxtxtxtLtzΣ

w

zz

J

0

2

2

2

2

2

22

2
2

2

2

2

1

0
~

0

01
~

can write  we(1) definition norm 0  theUsing

.0~1

ˆ~ and ˆˆ gintroducin From

.
ˆ

 as written becan   functional  theof  valueThe

γ

γ

γ

 ,G

(4) 
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Systems’ Theory Digression"

A system is dissipative if can not provide to the environment the !
same energy that was suplied  by the exterior – energy losses.!
!
Examples: electrical circuits, mechanical systems, thermodynamics...!

( )

( )( ) ( ) ( )( ) ( )( )

system.  theof ies trajectorallfor  and 10 tallfor 

such that  function  negative-non a exists  thereif edissipativ

strictly  is  ratesupply  with  system The - [6]ity Dissipativ

10
1

0

,

t

RV: x

tsz: w 

txVdttytustxV
t

t

<

→

→

>+ ∫

G

( ) ( ) ( )

( ) ( )( ) ( )( ) ].,[any for  ,0, From

.  

10
1

0

holds e,iabldifferent is  if Moreover,

tttdttxVtytus

tstVtV
t

t
∈<+−

<

∫ !

!
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Lyapunov Stability – Second Method"

•  Note that V(t)à ∞ as ||x||2 à ∞.!

•  Stability of dynamic systems can be studied, whitout solving the  
differential equations. Sufficient conditions.!

•  No systematic method to find a Lyapunov  function  exists.!

( )
( )
( )( ) S. of solutions all along ,0

0
eshat verififunction t Lyapunov a exists  thereif stable is 0

point  mequilibriu The - method) (second  theoremLyapunov

2

0

)
)
)

≤

>

=

=

txV
xxV

V

iii
ii
i

x

!
α

( ) ( ) ( ) .tx0x:,0,

 if stable is point  mequilibriuAn  -Stability  Lyapunov

0

0
εδε εδ <⇒<∃>∀ >

=

t

x
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Elements of Proof (II)"

( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( ) ( )
( )

( )∫ =
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

= −

T T
TT

T

dttV
dt
d

tw
tx

I

tLtLtwtx

txtPtxxV

0

2

1

0
~

0

01
~

used is ~~function  candidate Lyapunov the
 conceptsity dissipativ  toresorting and (4) nginterpreti-Re

γ

( ) ( )
Therefore

~~
is dynamicserror   the(3), and  of definition  theFrom

wDPCBxCPCAx TT −+−=!
G

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )txtPtxtxtPtPtPtxtxtPtx

txtPtxtxtPtxtxtPtxtV
TTT

TTT

!!!
!!!!

~~~~~~
~~~~~~
11111

111

−−−−−

−−−

+−

++

=

=
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Elements of Proof (III)"

   

Re-arranging the terms results

!x t( )T
w t( )

T!

"
#

$

%
&P

!x t( )
w t( )

!

"

#
#
#

$

%

&
&
&

'

(
)

*
)

+

,
)

-
)

dt
0

T

∫ = 0,

where*

P =
1
γ 2

LT L + AT P−1 − 2CTC − P−1 "PP−1 + P−1A P−1B − CT D

BP − DTC − I

!

"

#
#
#

$

%

&
&
&
.

   

Using (2) and cancelling terms

!x t( )T
w t( )

T!

"
#

$

%
& −CTC − PBBT P P−1B − CT D

BP − DTC − I

!

"
#
#

$

%
&
&

!x t( )
w t( )

!

"

#
#
#

$

%

&
&
&

(

)
*

+
*

,

-
*

.
*

dt
0

T

∫ = 0

*Time-dependence omitted for simplicity.!
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Elements of Proof (IV)"

  

Using Schur complements 

−CTC − PBBT P−1 + B − CT D( ) BP − DTC( ) = 0

−CTC − PBBT P−1 + PBBT P−1 − P−1BDTC − CT DBT P−1 + CTC = 0
using the noises independence and normalization assumptions 

0 = 0 . q.e.d.

. is  matrix  of

 scomplementSchur   the0 Z where,R Zand  ,RW
,RV ,R UmatricesGiven  - sComplementSchur 

1

mxmmxn

nxmnxn

WVZU
ZW
VU −−⎥
⎦

⎤
⎢
⎣

⎡

>∈∈

∈∈

Can be seen as a generalization to the matrix inversion lemma. !
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Visualization of the H ∞ Filter"

B(t) w(t) x(t) x(t) Δ y(t) C(t) 

A(t) 

r (t) x(t) x(t) z(t) 
C(t) 

A(t) 

y(t) 

- 

. 

^ ^ ^ . 

H ∞ gain 

REAL 

H ∞  

Δ P(t)CT(t) 

D(t) 
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Discussion"
•  Optimal structure obtained, similar to LTV Kalman filter!

•  Unbiased estimator obtained (otherwise J1 à ∞, J2 à ∞)!

•  Complete proof is out of scope, but can be obtained !
i.  using systems’  theory [2, 5]; !
ii.  using estimation tools in Krein spaces [3]; !
!
•  Stationary solutions can also be obtained (finite or infinite 

horizon cases)!

•  Modified Riccati equation that!
For γ ◊ ∞ degenerates on the Riccati equation in KF	

Provides more robust solutions, for smaller γ	

Unfeasible for γ< γ min !!!
!
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H∞ Smoothing 
Finite Horizon, Known Initial Conditions"

( ) [ ]

is   verifiesand  minimizeshat smoother t One)2

satisfies that 0for  matrix  symmetric a exists
  thereifonly  and if such that smoother  aexist  There)1

. andknown  be conditions initial  Let the

2
11

2
1

γ

γ

<

∈

<

∞<

JJ

,TttX
J

T :Theorem[2]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) .0with 

1
2

=

+−

−+=−

TX

tCtCtLtL

tXtBtBtXtAtXtXtAtX

TT

TT

γ

!

( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( )

( )

( ) ( ) .0 ,00ˆwith 

0ˆˆ

==

⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡

tλx

ty
tCt

tx
tAtCtC
tBtBtA

t
tx

TT

T

λλ !

!

!

!
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Remarks"

•  Proof is omitted, see [2] for details.!

•  The H ∞  smoother structure is equal to the H2!!

•  Smoothers for all 4 cases are well known.!

•  Much more recent results than the H2 solutions!

•  Other functionals have already been solved, e.g. mixed H2/H ∞ 
Also, solutions for nonlinear cases available!

•  Now a couples of examples from [5] are included to document 
some of the results outlined!
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Examples, from [5]"
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Examples, from [5]"
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Key Challenges in Estimation!

Characteristics of the envisioned Estimator!
!
•  Reduced computational requirements!
•  Causal (to be used during the mission)!
•  Possible to be refined in post-processing!
!
In the linear case, all relevant features !
are obtained  together: exponential stability, !
optimal performance and robustness !
(gain and phase margins).!
!
!

Stability 

Performance 

Robustness 

In the nonlinear case no optimal common!
solution is available.!

!(e.g. EKF is the performance tentative solution).!
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Theme!

•  Stochastic H2 filtering, prediction, and smoothing problems are 
only optimal for linear time-varying systems under Gaussian 
disturbance assumptions with known power spectral densities!

•  H∞  allows to lift the noise assumptions for LTV systems!

•  Real world systems are nonlinear!!
!
•  In general, EKF does not guarantee stability, performance, nor 

robustness!

•  Nonlinear observers can outperform linear or linearized versions 
of observers (EKF / SOF), both for structured and unstructured 
disturbances [1, 2]!
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Exponential Observers  
for Linear Systems!

Consider the linear system !
!
!
!
!
!
The Luenberger observer, in a deterministic setup, is given by !
!
!
Exponential stability can be proven resorting to the Lyapunov equation!
!
!
That is, for a positive definite matrix Q there exists a unique positive 

definite P, such that the above equation is verified.!

( )
( )

( )
( )

( ) ( )
( )
( )

( ) .observable is pair   thewhere

:

A,C

mRtu

pRty

nRtx
tBu

tCx
tAx

ty
tx

∈

∈

∈
+

=

=
Σ

⎩
⎨
⎧ !

L

( ) ( ) ( ) ( ) ( )( )txCtyKtButxAtx ˆˆˆ −++=!

( ) ( ) QKCAPPKCA T 2−=−+−
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Observers for Nonlinear Systems!

Consider the class of affine nonlinear systems!
!
!
!
!
!
!
!
The suggested Luenberger-like nonlinear observer would be!
! ( ) ( )( ) ( )( ) ( ) ( ) ( )( )( )txhtytutxgtxftx ˆˆˆˆ −++= K!

( )
( )

( )
( )

( ) ( ) ( )
( )
( )

( ) ( ) ( ) are known.where 

mRtu

pRty

nRtx
tuxg

xh
xf

ty
tx

 . h, .,g.f and

:
∈

∈

∈
+

=

=
Σ

⎩
⎨
⎧ !

N

What fails in the stability proof 
for this nonlinear observer? 
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Thau’s Observers @ 1973!

Consider the class of autonomous nonlinear systems !
!
!
!
!
!
!
!
!
!
!
Proposed observer  (motivated by Luenberger’s and Kalman’s  work)!
!

    

ΣG :
!x t( )
y t( )

=
=

Ax t( )
Cx t( )

+ f x t( )( )"
#
$

%$

x t( )∈Rn

y t( )∈R p

A,C,  and f .( )  are known; the pair A,C( )  is observable, u is a 

deterministic input, and f .( )   is a Lipschitz time-invariant 

function, i.e.

( ) ( ) ( )( ) ( ) ( )( )txCtyKttxAtx xf ˆˆˆ ˆ −++=!

(1) 
 
 
 
 
 
 
 
 
(2) 

( )( ) ( )( ) ( ) ( )txtxLtxftxf ˆˆ −≤−
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( )

stable.cally assymptoti is (2)observer Thau   then the allfor 

satisfy oequation t Lyapunov  theofsolution   themakecan it such that 
 selected is gain   theif (1), systems of class For the

min

x

L
P
Q

K

>
λ

 :Theorem[2]

.  where verified,is
,2

equation  Lyapunov thesuch that  ,matrix  definite positive
 unique a exists  there,matrix  definite positiveany for  (1) class

 of systemsfor condition ity observabil Given the 

0

00

KCAA
QPAPA

P
Q

T

−=

−=+

:nPropositio

Main result:!

(3) 
 
 
 
 
 
 
(4) 

Thau’s Observers @ 1973!
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Elements of Proof (I)!

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )[ ]txftxfPtxtxPAPAtxtV

and
txftxfxAtxftxfxKCAtx

txPtxtxPtxtxPtx
dt
dtV

PtxPtx

txtxtx

TTT

TTT

T

ˆ~2~~

,ˆ~ˆ~~
by given  is dynamicserror  The

~~~~~~

method second sLyapunov'apply  lets matrix,constant 
symmetric a is 0  where,~~tVfunction 

 candidate Lyapunov for the and,ˆ~  Defining

00

0

−++=

−+=−+−=

+==

>=

−=

!

!

!!!
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Elements of Proof (II)!

( ) ( ) ( ) ( ) ( )( ) ( )( )[ ]

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )[ ] ( )
( ) ( )
 verified.be (4)

t enough tha isit  i.e. ,0 then  if

~2

~~2~2

~~2~~2

condition Lipschitz  theFrom
ˆ~2~~2

can write one (3)equation  Lyapunov  theFrom

min

2
min

2
min

<>

−−≤

+−≤

+−≤

−+−=

tVPLQ

txPLQ

txPtxLtxQ

txPtxLtxQtxtV

txftxfPtxtxQtxtV

T

TT

!

!

!

λ

λ

λ

results. veconservati very  toleadcan it  Moreover,  process.error 
and  triala sconstitute and on y indirectel impacts  of choice The PK
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Visualization of the Filter!

x(t) 
x(t) 

Δ y(t) 
C(t) 

A(t) 

r (t) x(t) x(t) 
z(t) 

C(t) 

A(t) 

y(t) 

- 

. 

^ 
^ 

^ . 

Gain 

REAL 

Δ L 

f(x(t)) 

f(x(t)) ^ 
NLO 
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Example with difficulties [4]!
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The minimum occurs when Q=I.!

Example with difficulties [4]!

The method is not effective, however given L and P,  
is of some use to proove stability of the observer. 
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Consider the class of nonlinear systems !
!
!
!
!
!
The proposed observer  has the structure!
!

( )
( )

( )( )
( )( )

( )
( )

( ) ( ) able.differentily continuous are    and where

:

 .h.f

pRty

nRtx
txh
txf

ty
tx

∈

∈
=

=
Σ

⎩
⎨
⎧ !

K

( ) ( )( ) ( ) ( )( )( )
( ) able.differentily continuous also is  . where

ˆ,ˆ ˆ
g

gxf txhtyttx +=!

(5) 
 
 
 
 
(6) 
 
 
 
 
(7) 

Exponential Observers @ 1975!

( ) ( )( )( ) ( )( ) ( )( )
( ) ( ).00ˆ that guarantee  toimpossible isit however 

ˆ     if     0ˆ,
 thatgeneralin  verify shouldobserver An 

xx
txhtxhtxhtyg
=

==
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Exponential Observers @ 1975!

( )
( ) ( )
( ) ( )

( ) ( ) tketxtx

RxxVxVb

VRxxcxV
xxxxV
g(.)

n

n

λ

λλ

ρ

−≤−

>∈−≤

=∈≥

>−=

ˆ

 and stablelly exponentia is (6)observer  then the
.0 somefor  and ~ allfor  ,~~)

00,~ allfor  ,~~ a)
such that 1 and ˆ~   where,~

functionscalar  a exists  thereif (7), satisfying function  some and
(6) and (5) systems autonomousnonlinear  Given the

!

 :Theorem[3]

The generic proof for autonomous systems is an immediate 
consequence of the Lyapunov second method.!
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Exponential Observers @ 1975!

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( ) ( ) ( ) ( )

 ly.respective , of seigenvalue
largest  andsmallest   theare  and   where, allfor 

ˆˆ

  verifyingobtained is (6)observer  lexponentiaan  ,ˆany  From
2

 such that  0 exits
 there0given   that,,matrix gain   x an  exists  thereif

 ,ˆˆ with (6)observer  proposed
 theand (5) system autonomousnonlinear  Given the

210

00
0

2/1

1

2

0

Q
qqtt

txtxtte
q
qtxtx

tx
QxgKxfPPxgKxf

P
QKmn

txhtyKtx,htyg

T

>

−
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤−

−=∇−∇+∇−∇

>

>

−=

λ

 :Theorem[3]
Main result:!

(8) 
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Elements of Proof (I)!

( ) ( ) ( )
( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )xhxhKxfxfPx

xPxhxhKxftxf

txPtxtxPtxtxPtx
dt
dtV

txPtx

txhtyKtxftxftx

txtxtx

T

T

TTT

T

ˆ(ˆ~
~ˆ(ˆ

~~~~~~

method) (2matrix constant  symmetric a is 0P where
 ,~~tVfunction  candidate Lyapunov For the

ˆ(ˆ~
by given  is dynamicserror   the,ˆ~  Defining

nd

−−−+

−−−=

+==

>

=

−−−=

−=

!!!

!

* Explicit dependence on t will be omitted. !
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Elements of Proof (II)!

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) .0for ,2~~2

results ~~~ fact that   theand (8) Using

~~

Therefore .ˆ1for  

~ˆˆ

calculus integral of  theoremlfundamenta  the toResorting

1

2

2

1

0

1

0

>−<−<

>

∇−∇+∇−∇=

−+=

∇−∇=−−−

∫

∫

εεε tV
q
qxQxtV

xεxPx

xdswhKwfPPwhKwfxtV

xs)(sxw

dsxwhKwfxhxhKxfxf

T

T

ss
T

ss
T

s

ss

!

!
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Example, from [3]!
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Thau’s Observers @ 1975!

Consider the class of autonomous nonlinear systems !

( ) ( )
( )

( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) .0
.,..

,,

 

2

2
2

1
31

321

such that and , where

  verifiesand
arguments itsin  Lipschitz is andknown  are  and  where

:

:,,
:

=∇

∈∈

+∇+=

⎪⎩

⎪
⎨
⎧

∈

∈+

=

=
Σ

yy
CC

xyyyyyx

.

C

CA

pRtyy

nRtxxyyx
Cx
Ax

y
x

!

!!

!!

φ

φφφ

φφφφ

φ

φ
G (9) 

 
 
 
 

(10) 
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Exponential Observers @ 1975!

( ) ( )

( )
( )

(9). systemfor observer  lexponentiaan exist  then there

and

such that 
r gain vecto a and ,00exist   there)

observable is pair   thea)
if (10) verifying

 (9), systems autonomousnonlinear  For the 

3
max

min

2

∞
∇>

>>

−=−+−

φ
λ
λ

P
Q

K, QPb
(A,C)

QKCAPPKCA T

:Theorem[3]

 
 
 
 
 

(11) 
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Elements of Proof (I)!

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) observer   the, that ideringCons

 tosimplified becan That 

 verifiessignal new  thisof   time, torelative ,derivative The 

 thatnote and ,y  variablenew  theDefine

21

2321

2321

22

2

yCyCwy
wyAyAww

yyxyyyAxw

yy

xw

φ

φφφφ

φφφφ

φφ

φ

−==

++++=

∇−+∇++=

∇=

−=

!

!!!

!!

( ) ( ) ( ) ( )wCyKwyAywAw ˆˆˆˆ 12321 −−++++= φφφφ!

proposed. is



23!

Elements of Proof (II)!

( ) ( ) ( )
( )

( )

( ) ( )( ) ( ) ( )( )23232323

nd

2323

ˆˆ

2

method) (2matrix constant  symmetric a is 0P where
 ,tVfunction  candidate Lyapunov For the

ˆ
by given  is dynamicserror   the,ˆ  Defining

φφφφφφφφ

φφφφ

+−+++−+

+−=
+=

>

=

+−++−=

−=

wwPePeww

Qee
ePePeetV

Pee
wweKCAe

wwe

TT

T

TT

T

!!!

!
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Elements of Proof (III)!

( ) ( )( )

( )( )

( )[ ] 2
3min

1

0
23

1

0
23min

22

2

ePQ

dseywPe

PedseywQV

s
T

T

s

∞
∇+−≤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∇+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∇+−≤

∫

∫

φλ

φφ

φφλ!

From this relation (11) is immediate.!
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Example, from [3]!
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Lipschitz Observers @ 1998!

Consider the class of non-autonomous nonlinear systems !
!
!
!
!
!
!
!
!
!
!
Proposed observer  (motivated by Luenberger’s and Kalman’s  work)!
!

( )
( )

( )
( )

( ) ( )( ) ( )
( )
( )

( ) ( )
( )

i.e. function,
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27!

( )

stable.ally asymptotic isit then 

min
ensure  toassuch that chosen  becan  gain   the)

observable is pair   thea)
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systems autonomous-nonnonlinear  For the 

min γIjωKCAσ
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Rω
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:[5] Theorem  
 
 
 
 

(15) 
 

Lipschitz Observers @ 1998!

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )[ ]tutxtutxtxKCAtx ,ˆ,~~ φφ −+−=!

The estimation error dynamics is!
!
!
!
and the following major result holds:!
!
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Elements of Proof (I)!

The proof is done in three parts (see [5] for details):!
i)!
!
!
!
!
!
!
!
ii) !
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Elements of Proof (II)!

cont...!
iii)!
!
!
!
!
!
!
!
!
!
Using the properties introduced before, results:!
!
!
!
!
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Theme!

The search for a “very special” property... 
 

Given a nonlinear system,with nonlinear measurements of  the 
state available, find a coordinate transformation that renders 
the dynamics and the output linear on the new coordinates!!!  

(except for a nonlinear output injection term) 

( )
( )

( ) ( )
( )

. and ,, as abb. andtor column vec a as
 expressed outputs system   theare and inputs,  theare

  ,states system of vector  theis  where

,
:

yux

pRty

mRtunRtx

xhy
uxfx

∈

∈∈

=

=
Σ

⎩
⎨
⎧ !

G

Consider the class of non-autonomous nonlinear systems !



3!

Theme!

•  Challenge for the control problem set at IFAC 1978 (Helsinki) by 
Roger Brockett to Arthur Krener [1]!

•  Control problem well understood (during the 80s), see [1, 2] for 
a survey on the new techniques: feedback linearization, input-
output linearization, backstepping , zero dynamics, …!

•  Harder to be solved for nonlinear observers!

Relevant questions:!
•  Conditions for the existence of such transformation!

•  Synthesis methods (complexity)!

•  Robustness relative to unmodelled dynamics...!
!
!
!
!
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•  First systematic approach [3] that resorts to a nonlinear state 
transformation to linearize the original system up to an 
additional output injection term!

Krener and Isidori @ 1983!

( )
( )

( )

( ) ( )

( )zKCAz

BuzAz
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uyBuAz

w
z
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uxf

y
x
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.zCwKuy

~~

ˆˆ

form  theofobserver an Design  2)

!
,,

 Find )1

) ofity observabil (assume z-ẑz~ dynamicsError )3
ˆ,

−=

++=

++

=

=

=

=

=

−+

⎩
⎨
⎧

⎩
⎨
⎧

!

!

!!

α

α

( )
( )yw
xz

γ

ϕ

=

=
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Krener and Isidori @ 1983!

The proposed solution proposed is composed of three steps (see 
[1, 3] for details):!

!

1)  A set of partial differential equations (PDE) must be solved to 
find γ(y)!

2)  The integrability of conditions for this PDE involve the vanishing 
of a pseudo-curvature!

3)  A coordinate transformation z=φ(x) can be obtained after a set 
of PDEs is solved, resorting to conditions on the Lie derivatives 
of the outputs!

“The process is more complicated then feedback linearization and 
even less likely to be successful...” in [1]!



6!

Kazantzis and Kravaris @ 1997!

Slitghly different objective: 
 

Given a nonlinear system, with nonlinear measurements of its 
state available, find a nonlinear state transformation that 
renders the observer error dynamics linear!!!  

 
(except for a nonlinear output injection term) 

( )
( )

( ) ( ) .00
 :,:

 and ,00 point, mequilibriuan  is 0origin  The
fields. vector analytic are where

systemsnonlinear  autonomous of class heConsider t
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⎩
⎨
⎧

==

=

=

h
RRhRRf

fx

xhy
xfx

mnnn

!
(2) 
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Kazantzis and Kravaris @ 1997!

  

Motivated by Luenberger's original ideas on the linear observer 

design problem, the proposed approach will try to reconstruct a

nonlinear invertible function      z = θ x( ).

( )

 verifiedbemust  PDE following  thedynamics,
intended for the and (2) system  theof definition  theUsing

fies that veriderivative with time

yAzx
xdt

dx
x

z β
θθ
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∂
=

∂

∂
= !!

( ) ( ) ( ) ( )( ) ( ),yAzxhxAxfx
x

ββθ
θ

−=−=
∂

∂ (3) 
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Kazantzis and Kravaris @ 1997!
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Kazantzis and Kravaris @ 1997!

( ) ( )

( ) ( ) ( )
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The novelty in [4] was the use of this result app to (3) to guarantee 
the existence and uniqueness of solutions.!

(4) 
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Kazantzis and Kravaris @ 1997!

( ) ( ) ( ) ( )yxAxfx
x
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Kazantzis and Kravaris @ 1997!

( )

observer.order  full a above system dynamic  themakesthat 
  mapnonlinear  invertiblelocally  a exists Then there

 e.controlabl is  and ),0( Hurwitz, is  where

form  theof system dynamicorder th -n  theand hold
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∂

∂
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Why is this method or structure acttractive?...!
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Kazantzis and Kravaris @ 1997!

(3) 
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Kazantzis and Kravaris @ 1997!
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Observer design!
In original coordinates!

Observer in new coordinates!

Linear error dynamics!
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Visualization of the Filter!
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Krener and Xiao @ 2002 [5]!
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Example I from [5]!
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Example I from [5]!
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Example I from [5]!

Run demo! 
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Example II from [5]!
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Example II from [5]!
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Example II from [5]!
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Krener and Xiao @ 2002 [5]!
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Krener and Xiao @ 2002 [5]!
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Krener and Xiao @ 2002 [5]!
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Krener and Xiao @ 2002 [5]!
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•  Other methods to solve the PDE could be used [5]!

•  Design method easier to be accomplished than [3]!

•  The authors of [4] claim “to be able to do so for all linearly 
observable, real analytic systems whose spectrum of the linear 
part lies wholly in the right half complex plane”.!

•  Krener and Xiao extended the method to arbitrary specta [5] 
(the Siegel domain) and showed that the sufficient conditions 
were also necessary.!

•  Discrete time [6] and state and disturbance estimation design [7] 
versions became available!

Krener and Xiao @ 2002 [5]!
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