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Abstract

Global Positioning System (GPS) has been one of the most successful aerospace applications
invented by mankind. During the past decades, this technology has undergone stages of
development in order to improve its reliability, accuracy and widespread implementation.
Motivated by the introduction of Unmanned Aerial Vehicles (UAVs) by the military, GPS has
become an important tool in providing real-time positioning of the vehicles, enabling the ground
base headquarter to carry out direct remote control of UAVs.

The aim of this report is to summarize student’s learning outcome on Differential GPS (DGPS)
over the 17 weeks stay at Institute of Systems and Robotics (ISR), Instituto Superior Técnico
(IST), Lisboa. The report will start by presenting the fundamentals on Geodesy and GPS, and
direct implementation and development of the existing MATLAB scripts (used all over the
document), based on readily available receiver data. This provides the two main illustrations:

(1) Preliminary position estimation of IST receiver using Grid Point Method;

2) Separation of ambiguities and baseline vector estimation between the Master and
stationary Rover receivers, which uses both Bancroft and Jacobian Methods.

Due to the limiting time constraint on this project, only stationary receiver applications are
exploited and dealt with. The 7 progress reports and corresponding MATLAB scripts are attached
along with this report for completeness. At the end of this report, a brief conclusion is presented.
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1. Introduction

Global Positioning System (GPS) is one of the most innovative and practical technology
developed today. The scope of GPS is vast: from data acquisitions and processing, to detailed
computational algorithm in position estimations. The aim of this report is to describe and explain
the fundamental techniques of GPS introduced by [1] in the most clear and logical manner, and to
provide illustrations through diagrams and algebraic expressions. A number of readily available
MATLAB scripts from [1] are also studied and implemented in order to illustrate the methods,
hence enabling us to visualize the overall system relations.

The main principle of GPS in estimating the position of a stationary receiver is to acquire
accurate distances between all locked satellites and receiver, and subsequently obtain a fix on the
receiver position. This can be illustrated in the following simplistic model.

Assume the whole system is perfect (where no clock errors and other delays exist), the distance
between each satellite and the stationary receiver can be simply expressed as the difference
between signal transmission time and signal receive time, multiplied by the speed of light. These
assumed error-free distances can be visualized as ‘rigid bars’, linking between each satellite and
the receiver. Under this error-free environment, there is theoretically only one fix point where all
these ‘rigid bars’ intersect. In the 3-dimensional space where we are all accustomed to, at least 3
of these ‘rigid bars’ are required to provide this fix (i.e. at least 3 satellites are required). This fix
is the point position of the receiver (see Figure 1).

In reality errors do exist within each of these measured distances. For instant, if the satellite and
receiver clocks are offset by a small amount say 1 millisecond, the error in this measured distance
would be 1 millisecond multiplied by the speed of light, which is about 100 meters. On top of
such clock errors, there also exist other signal delays caused by the atmosphere and local
environment, which can increase this uncertainty as well.

In order to incorporate with such uncertainties, a major technique that is used within this report is
Double Difference, which uses differences of distances rather than the absolute distances. This
technique is called Differential GPS (DGPS), which largely reduces the sensitivity of methods to
the existing errors.

In this work only stationary receiver applications are considered. It starts from Chapter 2 by
introducing the fundamentals of Geodesy; moving on to GPS in Chapter 3. The report then go on
further to direct implementations of existing techniques using post-processed RINEX data and
algorithms in estimating IST receiver position using the Grid Point Method in Chapter 4. In
Chapter 5, Real-time Ashtech data from a Master and stationary Rover receivers are used to
illustrate a Baseline Estimation and Separation of Ambiguities method. In Chapter 6 a
Conclusion is presented to summarize main learning outcomes of this report.

Satellites

Receiver

Figure 1 The concept of GPS is that the distances between the satellites and receiver (measured by
the receiver) produces a ‘fix’, which determines the position of the receiver.

(Johnny) Chun-Ning Chan, Imperial College London 5
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2. Geodesy

2.1. Geodetic Reference System

There exist a number of geodetic reference systems that represent the Earth geometry as different
ellipsoidal models, for example, the Clarke 1866 (NAD 27), Geodetic Reference System 1983
(NAD 83) and World Geodetic System 1984 (WGS 84). For consistency and according to most of
the GPS applications, only WGS 84 is used throughout the whole of this report. Details regarding
the WGS 84 are described in detail in the sub-section below.

2.1.1. World Geodetic System 1984 (WGS 84)

The Earth model represented on WGS 84 is considered to be a global ellipsoid, in which the
ellipsoidal centre aligns perfectly with the Geoid centre (i.e. the real centre of mass of Earth).
This WGS 84 ellipsoidal model has the following parameters that are well defined.

The semi major axis a:
a=6378137 m (3.1)

The (dimensionless) Earth flatness parameter f :
f =298.257223563 (3.2)

The Earth Gravitational constant (including the mass of the Earth’s atmosphere) KM along with
its standard deviation oy, :

kM =3986005x10° m’/s’ (3.3)
Oy =0.6x10° m*/s* (3.4)
The Earth’s rotational rate @, along with its standard deviation o, "
@, =7292115.1467x107" rad/s (3.5)
o, =15x107" rad/s (3.6)

The Speed of Light in vacuum V,

ight *
thht =299792458 m/s (3.7)

In order to maintain consistency with GPS calculations within this project, it is re-emphasized
that only WGS 84 parameters are used.

2.2. Coordinate System

Within the GPS calculations, the position of a point in space can be expressed in different
coordinate system for suiting different types of GPS calculations. Within this project, there are
four types of coordinate systems used, namely the Solar Cartesian, Earth-Centered-Earth-Fixed
(ECEF) Cartesian, ECEF Geographical, and Topocentric coordinate systems. These four main
coordinate systems are described in detail in the following sub-sections.

(Johnny) Chun-Ning Chan, Imperial College London 6
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2.2.1. Solar Cartesian
Solar Cartesian coordinate system is an astronomical coordinate system, in which the 3 main

B

o -
reference axes are the Earth spinning axis * Zp g,

the vernal equinox ‘ X’ and the axis that is

perpendicular to the other two axes ¢y ’. The Solar Cartesian coordinate of satellite K is
expressed as follow:

k koyk ok T
X=Xy zhe (3.8)
When computing the satellite positions, the outputs are in Solar Cartesian coordinates.

2.2.2. ECEF Cartesian

ECEF Cartesian coordinate system is defined by the 3 main reference axes: the Earth spinning
axis ‘ Zp.gr ', the axis that cuts both the equatorial plane and Greenwich Meridian ‘ Xc ’, and

the axis that is perpendicular to the other two axes * Y *. The position of a point (which can be
either satellite or receiver) in ECEF Cartesian coordinate system is expressed as follow:

seer ] (3.9)

These 3 components within the ECEF Cartesian coordinate are defined in Figure 8.1.

X Z

ECEF — [XECEF Yecer

2.2.3. ECEF Geographical

ECEF Geographical coordinate is defined in terms of Latitude ‘¢’, Longitude ‘A’ and

Ellipsoidal Height ¢ h* (perpendicular to ellipsoidal surface). The position of a point (which can
be either satellite or receiver) in ECEF Geographical coordinate system is expressed as follow:

XECEF,geo:[(P A h]T (3.10)

These 3 components within the ECEF geographical coordinate are defined in Figure 8.1.

2.2.4. Topocentric

Topocentric coordinate define the position of the object K relative to the receiver i. This
coordinate system It is defined by the 3 main reference axes, with the origin being defined as the
receiver |: The axis that points to the North and parallel to the ellipsoidal surface ‘n’, the axis
that points to the East and parallel to the ellipsoidal surface ‘e’, and the axis that is perpendicular
to the other two axes (i.e. perpendicularly upwards with respect to the ellipsoidal surface) ‘U .
The position of satellite K relative to the receiver i is expressed as follow:

X-k

i,topocentric

=[e n u]T (3.11)

The plan in which both € and n lie is called the Topocentric Plane (Figure 8.1 and Figure 8.2).

The azimuth angle « is defined as the angle lying on the Topocentric plane, measured clockwise
from the axis N. The vector measured from receiver i to satellite K is denoted by O X:fECEF .

The zenith angle XZ is the angle between the spinning axis and o Xi‘fECEF. EL is the elevation

angle of satellite K seen by the receiver i. These parameters can be defined as follow:

(Johnny) Chun-Ning Chan, Imperial College London 7
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/ 2 2
zenith angle, «z = arctan (@] (3.12)
u

elevation angle, EL =90°- Xz (3.13)

. oe
arzimuth angle, o =arctan (5_j (3.14)

n

2.3. Conversions of Coordinate Systems

Within the GPS calculation, conversion of coordinate systems occurs very often in order to
satisfy the type of GPS calculation that is to carry out. The following sub-sections show the four
main conversions that are used within this report.

2.3.1. Solar Cartesian to ECEF Cartesian
To convert Satellite Solar Cartesian coordinate X* to ECEF Cartesian coordinate X ECEF, first
define the Third Rotational Matrix R;:
cos(a)erik) sin(a)erik) 0
R¥ = —sin(a)erik) cos(a)erik) 0 (3.15)
0 0 1

where @, is the WGS 84 rotational speed of Earth (Chapter 2.1.1); rik is the Corrected Signal

Travel Time (will be discussed later) from Satellite K to Receiver i. The ECEF Cartesian
coordinate of satellite K is defined as follow:

Xl};CEF = Rsxk (3.16)
2.3.2. ECEF Cartesian to ECEF Geographical

To convert from ECEF Cartesian coordinate X ... to ECEF Geographical coordinate XECEF,geo

an iterative approach as suggested by [1] is used. First, the Longitude A can be computed
directly, which is the final value:

A = arctan (@j (3.17)
ZECEF
Define the planar distance p :
2 2
P = Xecer T Yecer (3.18)

Define the distance between Earth spinning axis and X ;. :

r =4 p2+ZéCEF (3.19)

(Johnny) Chun-Ning Chan, Imperial College London 8
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Initial guess of Latitude ¢, :

. z
@, = arcsin [ﬂ] (3.20)
r
Initial guess of ellipsoidal height h, :
h, =r —af (l—sin2 (po) (3.21)

where @ and f are the WGS 84 Earth semi-major axis and Flatness parameter respectively

(Chapter 2.1.1). Now define a reasonable tolerance &, for iteration purpose:

&y =1x107 (3.22)

Initialization of parameters for the iteration:
Poa = Po (3.23)
N,e =hy (3.24)

The iteration process is summarized between (3.25) and (3.31), with the stopping criterion
defined in (3.32):

a

R = (3.25)

\/a— f(2-f )sin2 Do
dp=p—(R+hy)cosp,, (3.26)
Zpcpe = Zocge —(R(1= F(2= 1))+, )singy, (3.27)
Poew = Do +(8in 9,40z, +cOs @,,dP) (3.28)
Pren = s+ ¢°‘ddZF§ij1:m PuP (3.29)
hya = Noey, (3.30)
Dotg = Pocw (3.31)

where dp and dz.; are respectively the residues in the planar distance and Z g direction; R
the Radius of Curvature. The Stopping Criterion for the above iteration is defined as:

dp? +dzg ey < &, (3.32)

When this Stopping Criterion is reached, the final iterative values for latitude ¢ and ellipsoidal
height h are therefore respectively the values as defined in (3.31) and (3.30).

(Johnny) Chun-Ning Chan, Imperial College London 9
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2.3.3. ECEF Geographical to ECEF Cartesian
To convert from ECEF Geographical coordinate XECEF’geo to ECEF Cartesian coordinate X gy,
first, define the Radius of Curvature R as:
a
R (3.33)

:\/1— f(2—f)sin’ ¢

where @ and f are the WGS 84 Earth semi-major axis and Flatness parameter respectively
(Chapter 2.1.1). The three components of the ECEF Cartesian coordinate can be computed:

Xecer =(R+h)cospcos A (3.34)
Yecer =(R+h)cosgsin 4 (3.35)
Zocer = ((1— f) R+h)sing (3.36)
2.3.4. ECEF to Topocentric

To convert from ECEF Geographical coordinate X and ECEF Cartesian coordinate

ECEF,geo

Xgcgr to ECEF Topocentric coordinate X
Matrix F :

first define the Topocentric Transformational

topocentric *

F=[e n d] (3.37)

where €, N and U are the Topocentric unit vectors in the direction of East, North and Vertical
Upward respectively. These unit vectors are defined as follow:

€= [—sinxi cos A O]T (3.38)
N=[-singcos —singsini cos q)]T (3.39)
a= [cos @cos cos@sind  sin (p]T (3.40)

The vector from the Receiver 1 to Satellite K is defined as:

k k
§Xi,ECEF = XECEF - Xi,ECEF (3.41)

where XECEF and X; ;o are the ECEF Cartesian coordinates of Satellite K and Receiver i
k

i,topocentric

=FT5Xk

i,ECEF

respectively. The Topocentric coordinate X can be computed directly as follow:

Xk

i,topocentric

(3.42)

(Johnny) Chun-Ning Chan, Imperial College London 10
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3. Global Positioning System (GPS)

3.1. Post-processed RINEX Format data

Post-processed Receiver Independent Exchange (RINEX) format data files are recorded in text
file format, which is explained in full in [1]. Data in RINEX format is highly accurate due to
exchange of data from many GPS receivers. i.e. data from only one epoch is sufficient. Below are
two sub-sections that discuss the main forms and outputs of data in RINEX format.

3.1.1. Ephemeris data

Ephemeris data of a Satellite provides the parameters that can be used to derive the location of
that corresponding satellite (will be discussed later). By using the readily available MATLAB
code rinexe.m in conjunction with get eph.m, the Ephemeris Matrix (of size ‘21° by ‘total
number of ephemeris epoch’, see Figure 8.7) can be obtained. Note that by inputting satellite
number and epoch time to the MATLAB code find_eph.m, only the ephemeris data immediately
before that epoch time is extracted for that satellite. A RINEX ephemeris file name has the
extension ‘yyn’, where ‘yy’ is replaced with the last 2 digit of year; ‘n’ represents ephemeris file.

3.1.2. Observation data

Each row of the observation data records the measured Single Epoch Variables at each epoch
such as Raw Pseudoranges (on both L1 and L2 codes, in meters), Raw Phases (on both L1 and L2
codes, in cycles), Epoch Time (in second). These variables will be discussed later. A RINEX
observation file name has the extension ‘yyo’, where ‘yy’ is replaced with the last 2 digit of year
and ‘0’ represents observation. Figure 8.8 shows a typical RINEX observation data file with
explanations.

3.2 Real-time Ashtech Format data

Real-time Ashtech format data files are recorded in binary format. The term ‘real-time’ implies
that the observables obtained here are not refined. i.e. they are not post-processed. When using
real-time data, data from lots of epochs are needed to refine the raw measurements. Below are
two sub-sections that discuss the main form and outputs of data in real-time Ashtech format.

3.2.1. Ephemeris data

An Ashtech format ephemeris file name has the format that looks like ‘€0005a94.076°, where the
‘e’ represents Ashtech ephemeris data, ‘0005’ represents the site number, ‘a’ represents the
version, ‘94’ represents the 2 digit year, and *.076’ represents the type of Ashtech receiver used.
The readily available MATLAB scripts edata.m and get_eph.m work together to extract the
ephemeris parameters from ephemeris data in Ashtech format. This creates an ephemeris matrix
(Figure 8.7) that is similar to the one described previously in Chapter 3.1.1.

3.2.2. Observation data

Each row of the observation data records the measured Single Epoch Variables at each epoch
such as Raw Pseudoranges (on both L1 and L2 codes, in meters), Raw Phases (on both L1 and L2
codes, in cycles), Epoch Time (in second) and Elevation Angle of the observed satellite in degree.
These variables will be discussed later. Figure 8.9 shows a typical Ashtech format observation
data file. An Ashtech format observation file name has the format that looks like ‘b0005a94.076°,

[P}

where the ‘b’ represents Ashtech observation data, ‘0005’ represents the site number, ‘a
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represents the version, ‘94’ represents the last 2 digit of year, and *.076” represents the type of
Ashtech receiver used.
3.3. Time System

Within GPS calculations, ‘time’ is an important parameter. It can be expressed as either Universal
Time or GPS Time. These are described in the following sub-sections.

3.3.1. Universal Time
Universal Time is expressed in Year, Month, Day, Hour, Minute and Second. This is the type of
time format recorded in a Receiver Independent Exchange (RINEX) format observation file.

3.3.2. GPS Time

GPS Time is expressed in the seconds of week. There are up to 60x60x24x7 =604800
seconds in a week. When carrying out any GPS calculations, the parameter ‘time’ must be
expressed in GPS time. This is the type of format recorded in an Ashtech format observation file.

3.3.3. Convert Universal Time to GPS Time

To convert from Universal Time to GPS Time, the following procedure by [2] is used. First,
convert Universal Time (in Year, Month, Day, Hour, Minute, Second) into decimal hour:

hour, .. =hour + minute N second @
- 60 3600

Define Julian Day, JD , which is the number of days counting from 4713 B.C., January, day 1,
12:00:00. This can be computed as follow, with conditions defined in (4.3):

hour, ..
JD = floor (365.25K )+ floor (30.6001(K,, +1))+ day+(Wj +1720981.5  (4.2)

If month<2 then K, =year ; K =month
43
If month>2 then K, =year—1; K =month+12 *3
where ‘floor’ is a MATLAB function in rounding down numbers. Define the coefficients K_,

K,. K., K, , K; and K as follow:

K, =floor(JD +0.5) (4.4)
K, = floor (K, +1537) (4.5)
K. = floor M (4.6)

365.25

K, =floor(365.25K ) (4.7)

K, = floor| Ko —Ke (4.8)
30.6001
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K, = K, — K, —floor(30.6001K, ) + rem (JD +0.5,1) (4.9)

where ‘rem’ is a MATLAB function that computes the remaining of a division. GPS Time in days
of the week is expressed as follow:

TS day of week = T€M ( floor(JD+0.5), 7) (4.10)

Define GPS Standard Epoch as the Julian Day of 1980 AC, January, day 6, 00:00:00.
JD = 24442445 (4.11)

GPS_standard_epoch

Define the GPS week counting from the GPS Standard Epoch:

JD -JD,
tgpsiweek — ﬂOOI‘( GP;fstandardfepoch j ( 4.1 2)
Finally, the GPS time in seconds of the week can be computed directly:
tGPS_second_of_week = (rem( Kd H 1) + tGPS_day_of_week + 1) x 86400 (4 1 3)

3.4. Four Dimensional Space System

Within this report, only stationary receiver applications are dealt with. The Four-dimensional
Space System of a Static Receiver can be visualized in the following fundamental figures. These
figure forms the basis of the Code Equations that will be presented later on.

Figure 8.3 shows the Four-dimensional Space System of a Static Receiver in satellite frame of
reference. The first 3 dimensions are Xgepp, Ygpege and  Zpepe. The forth dimension is

uncertainty, denoted by Dik. In a Satellite Frame of Reference, the satellite position is always

assumed to be absolute. i.e. the error in distance measurement caused by delays only affect
position of receiver.

Figure 8.4 describes the Four-dimensional Space System in terms of the relationships between
Pseudorange and other important GPS variables (will be discussed later).

Figure 8.5 describes the Four-dimensional Space System in terms of the relationships between
Phase Distances and other important GPS variables (will be discussed later).
3.5. Code Frequencies and Wavelengths

Within this report, double frequency codes are used. These two code frequencies are namely L1
(denoted by f,) and L2 (denoted by f,), with the corresponding values as follow:

on L1 code: f, =1575.42x10° Hz (4.14)
on L2 code: f, =1227.60x10° Hz (4.15)
The corresponding Wavelengths for L1 and L2 codes are defined as:
on L1 code: A =V / (4.16)
on L2 code: 2 =V / T (4.17)
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where V), is the WGS 84 speed of light (Chapter 2.1.1).

3.6. GPS — Raw Observables

Raw GPS observables, such as Pseudorange (in meters) and Phase (in cycles) are obtained
directly from observation files, which can be either in RINEX or Ashtech format. The following
sub-sections define these raw GPS observables.

3.6.1. Epoch Time

Epoch Time is the instant of time (so called an epoch) when the signal by satellite K is received
k
i,epoch *
GPS Time (Chapter 3.3.2). If it is in Universal Time, convert to GPS Time with (Chapter 3.3.3).
Epoch Time can be obtained from observation files (either in RINEX or Ashtech format).

by receiver 1. It is the time recorded on receiver clock and is denoted by t It is expressed in

3.6.2. Raw Pseudorange

For every single epoch, two Raw Pseudoranges (in meters) are obtained: one on L1 code, denoted
by P¥  the other one on L2 code, denoted by szi,raw. (See Chapter 3.5 for definition on L1

li,raw

and L2 codes). These Raw Pseudoranges do not take Clock Delay into account and therefore must
be corrected before being used in any GPS calculations (will be discussed later).
3.6.3. Raw Phase and Phase Distance

For every single epoch, two Raw Phases (in cycles) are obtained: one on L1 code, denoted by
¢ﬁﬂmw ; the other one on L2 Code, denoted by ¢zki,raw~ (See Chapter 3.5 for definition on L1 and

L2 codes). Raw Phase Distances (in meters) on L1 and L2 codes, denoted respectively by OR

li,raw

and CD;LMW , can be calculated directly:
on L1 code: CDfi,raw = ¢1‘§,mwﬂl (4.18)
on L2 code: CI)';,raW = ¢2ki,raw/12 (4.19)

where A, and A, are respectively the wavelength of the signal code L1 and L2.

3.6.4. Elevation Angle of Satellite

Only the file with data in Ashtech format records the Elevation Angle (Chapter 2.2.4) of the
Satellite. It is expressed in degrees.

3.7. GPS — Computed Variables

This section acts as a link between the Raw GPS Observables and other core GPS computations
that will be discussed later on in this report. It should be re-emphasized that GPS works under a
Four-dimensional Space System (Chapter 3.4). The fundamental big picture as presented in
Figure 8.3 and Figure 8.4 should therefore be referred to constantly in order to maintain the
sense of logic.
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3.7.1. Range

Recall from (3.41) that define the vector & XileCEF from receiver i to satellite K :
k k
§Xi,ECEF = Xgcgr — Xi,ECEF (4.20)

The Range ,oik is defined as the modulus of & XileCEF .i.e. It is the length between receiver | and

satellite K . This can be seen in Figure 8.4 and is defined as:
k k
P = “5Xi,ECEF“ (4.21)

In addition, from Figure 8.4, the relationship between Raw Pseudorange Pk

i,raw

Range pik and
k

P-atm

Pseudorange Atmospheric Delay D (will be discussed later) can be derived directly:

Al =Pl ~Dram (4.22)
3.7.2. Troposphere Delay

The troposphere is the lower part of the atmosphere, thickest over equator. Within this report, an
empirical model as suggested in [1] is used to model this delay:

140.0026 cos (29, +0.00028H
Tk =0.002277 05 (29 )(PO+(12T55 +o.05Je0] 4.23)

cos(£2) .

where Tik is the troposphere delay in meters; XZis the Zenith Angle in degrees; ¢, is the
Latitude in degree; T, is the temperature in Kelvin; €, is the partial pressure of water vapour in
millibar; P, is the atmospheric pressure measurement at height H in millibar. H is the height of
P, measurement in kilometer

This report implements the MATLAB script tropo.m directly to obtain this delay, which is not
exploited in detail. The following parameters are assumed in the script for illustration purpose:

e Zenith angle in degree = obtained from Chapter 2.2.4 (4.24)
e Height of receiver = obtained from Chapter 5.4 (4.25)
e Atmospheric pressure in millibar = assume 1013 millibar (4.26)
e Surface Temperature in Kelvin = assume 293 Kelvin (4.27)
e Humidity in % > assume 50 % (4.28)

e Heights where the inputs (4.26), (4.27), (4.28) are measured = assume 0 meters (4.29)

It should be noted that, the smaller the Zenith Angle, (i.e. larger the elevation angle), thus smaller
the troposphere delay. It is therefore wise to use the information from the satellites with elevation
higher than a certain value (i.e. cutoff angle). In this report this value is set to be 15 degrees.

3.7.3. lonosphere Delay

The Tonosphere Delay, 1/ depends on the L1 and L2 code frequencies, denoted by f, and f,
respectively (Chapter 3.5). It is inversely proportional to code frequency squared. This effect on
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(will be discussed later) and phase distance ®F  (will be

i,corr

the Corrected Pseudorange =}

i,corr
discussed later) are opposite in sign. The effect of this delay is thus dispersive. The relationship
between Ionosphere Delays based on L1 and L2 codes is express as:

2
Iilsz = (%] Iilfu (4.30)
2

3.7.4. Multipath Delay

The Satellite GPS signals may reach the receiver by several possible paths. Multipath delay is
zero when this path is least distance. The signals that travel via other paths are considered to
contain Multipath delay, which usually occur due to signals bouncing off walls or other local
medium. To avoid or minimize this delay, it is desirable to position the receiver antenna at a clear
surface where signals can be received in the most direct path. Within this report, Multipath delay
is not modelled. It is included in the systematic error term (will be discussed later).

3.7.5. Ambiguities

When tracking is continued without loss of lock the fractional part and the integer number of
phase (in cycles) since the initial epoch is recorded. However, the integer part of phase (in cycles)
of this initial epoch is not provided from the epoch. This un-provided integer is thus the
ambiguity of the epoch. Ambiguities on L1 and L2 code between receiver i and satellite K are

denoted by Nllfi and N*

,i respectively.

3.7.6. Systematic Errors

Any delays on the signals that are not modelled within the GPS calculations are all grouped
together as Systematic Errors. The idea of GPS calculation is to find the best guess of receiver
position base on the assumptions that minimize this systematic error term. As this term gradually

reduces, the result becomes more accurate. Systematic errors are respectively denoted by eik and

&! for Pseudorange and Phase Distance measurement, between satellite K and receiver i .

3.7.7. Pseudorange Clock Delay

The Pseudorange Clock Delay DilfP_clock accounts for the clock offset distances of satellite K and

receiver | that are excluded from the Raw Pseudorange measurements. This is defined as:

DX . =Dk D

i,clock P-clock

4.31)

i,P-clock

where D, and D are respectively the satellite and receiver clock offset distances:

i,P-clock

D¥ . . =V, dtf (4.32)

P-clock light

=V,

light

D dt, (4.33)

i,P-clock

where V,,, is the WGS 84 speed of light (Chapter 2.1.1); dt“ and dt, are the clock offsets (in

seconds) of satellite K and receiver i respectively.
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3.7.8. Phase Clock Delay

The Phase Clock Delay Df . accounts for the initial phase offset distances of satellite K and

i, -clocl
receiver 1 that are excluded from the Raw Phase Distance measurements. This is defined as:
Df =D} D

i,d-clock ®-clock

(4.34)

i,d-clock

k
where Dg ., and D

Distances, defined as:

Lok are respectively the Satellite and Receiver Initial Phase Offset

Dycocc = A4y (4.35)
Di,dJ-clock = /1¢0,i (436)

where A is the Wavelength of the signal (Chapter 3.5); ¢(§( and ¢,; are the initial phase recorded

at satellite K and receiver I respectively.

3.7.9. Pseudorange Atmospheric Delay
The Pseudorange Atmospheric Delay D¥

i p.m accounts for all atmospheric delays and systematic

errors that are included in the Raw Pseudorange Measurement. This is defined as:

k
Di ,P-atm

=T +1f (4.37)

where Tik and Iik are respectively the Troposphere Delay and Ionosphere Delay between satellite

k and receiver i.

3.7.10. Phase Atmospheric Delay
The Phase Atmospheric Delay Df

L o-am accounts for all atmospheric delays and systematic errors

that are included in the Phase Distance measurement. This is defined as:

Dk

i,0-atm

=T =1+ AN (4.38)

where Tik , Iik , A and Nik are respectively the Troposphere Delay (Chapter 3.7.2), Ionosphere
Delay (Chapter 3.7.3), Code frequency (Chapter 3.5) and Ambiguity (Chapter 3.7.5).

3.7.11. Corrected Pseudorange

From Figure 8.4, one can deduce the relationship between the Raw Pseudorange =}

i,raw °

Corrected Pseudorange = Pseudorange Clock Delay Dilfclock and systematic error eik

i,corr
directly. This is summarized as follow:
P =P* +Df e (4.39)

i,corr i,raw i,P-clock i

By expanding terms in (4.39) gives the General Single Epoch form for P

i,corr *

k
Pi,corr

= P T+ 1V (dt —dt ) - e (4.40)
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k
Pi Jraw

. . K - C . Kk . .
is known (from observation files); € is assumed zero initially; D/, is required to

calculate P

i,corr *
clock offset time is zero (i.e. it is embedded into the systematic error term, and hopefully to be
recovered in the end). This Initial Assumption for GPS calculation is shown as follow:

In this report, a main initial assumption is made, which is to assume the receiver

Initial Assumption: dt, =0 (4.41)

The value of satellite clock offset time can be derived using coefficients a$, ai and ag

obtained from ephemeris data (see Figure 8.7 for definition), expressed as follow:

dt =af (t,, ) +al (t,, ) +al (4.42)

k

where t*_ is the Raw Satellite Ellipse Time (in seconds), calculated using the epoch time b epoch

j.raw

and the Raw Pseudorange (Chapter 3.6), which are known from the obtained observation file:
trkalw = tik,epoch - ( Pi,kraw /Vlight ) (443)

By knowing dt*, Dilfclock can be computed (Chapter 3.7.8). i.e. Pif‘m can be computed.

3.7.12. Corrected Phase distance

k

I,raw 2

From Figure 8.5 , one can deduce the relationship between the Raw Phase Distance @

Corrected Phase Distance @~

I,corr 2

Phase Clock Delay Di'fq)_clcck and systematic error gik directly:

ch = CDk + Dilfd)—clock + D'ITP—clock - gik (444)

I,corr I, raw I

k
i,corr *

By expanding terms in (4.44) gives the General Single Epoch form for @

OF = P+ TS = 1+ ANK 4V, (dt* —dt, )+ (g - g, )- &F (4.45)

i,corr

3.7.13. Corrected Signal Travel Time

The Corrected Signal Travel Time Tik taken from Satellite K to Receiver i is based on the

Corrected Pseudorange =} (Chapter 3.7.11). It is defined as follow:

i,corr ?
z-ik = Pi,kcorr /Vlight (446)

3.7.14. Corrected GPS Transmission Time

The Corrected GPS Transmission Time is the corrected time in which the signal is transmitted
from the satellite. It is an important parameter in computing satellite position that will be

discussed later. It is denoted by téps and expressed as follow:

thps = t¢ ¥ (4.47)

i,epoch ~ ‘i

where tilfepoch is the Epoch Time (Chapter 3.6.1); Z'ik the Corrected Signal Travel Time (Chapter
3.7.13).
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3.8. Code Equations

In this report, two main sets of equations are used in the GPS computations. These are namely the
Single Epoch Equations and Double Differenced Equations. They provide the global relationships
between the Corrected GPS Observables (i.e. Pseudoranges and Phase Distances) in terms of the
GPS variables as introduced earlier in Chapter 3.6 and Chapter 3.7. It should be emphasized that
these two sets of equations share the same general form derived from (4.30), (4.40) and (4.45).
These two sets of equations are presented in Least Squared form in the following sub-sections.

3.8.1. Single Epoch Equations
The Full set of Single Epoch Equations is defined as follow:
1 1 0 0] .

Pl:‘ 1 -1 A4 0 pik +Tik +Vlight (dtk _dti) e1:(

q’uk f 2 I 51?
- ( 1f) 0 0 ) N )

Py 2 Nl,i + & _¢o,i &
k 2 k k k

q)zi corr 1 _( fl f j 0 /12 L N2,i +¢0 _¢0,i | &
b S ? > X" €&

A

where the subscripts ‘1’ and ‘2’ represent L1 and L2 codes respectively; The definitions of these
Single Epoch Variables have been defined previously in Chapter 4.

3.8.2. Double Difference Equations

Double difference calculations involve two satellites K and |, and two receivers i and | (see
Figure 8.6). A Double Difference Variable, denoted by dil;' here, is defined as:

di =(df —df)—(d! -d}) (4.49)

where the symbol d in (4.49) can be of any Single Epoch Variables described previously in
Chapter 4. When carrying out Double Differencing using (4.49), all clock related terms (such as
the Pseudorange Clock Delay and Phase Clock Delay) disappear. This can be proved easily using
satellite clock offset time as an example:

()" :((dtk)ik _(dtk)j)_((dtk): —(dt")lj)

=(dt* —dt*)—(dt' —dt') =0

(4.50)

Similarly, all other clock errors are zero. Base on this fact in accordance to (4.39) and (4.44), two
extra facts are also deduced:

Picor = P — €5 4.51)
(Dii}l,corr = (DEI,raw - 8i|;I (452)

The full set of Double Difference Equations can be defined as follow:
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1 1 0 0]
Py L A O | P2 Pl
o = o e
i | () 0 o) N | e
D, f /Y N2 _SZEI i
\_ﬁr_ﬂn; 1 — 1 O /12 T -
bkl fz kI ki
i S > X &;
A

where the subscripts ‘1’ and ‘2’ represent L1 and L2 codes respectively.

3.9. Computation of Satellite Positions
This section aims to show the method in obtaining satellite position in Solar Cartesian coordinate
(Chapter 2.2.1) with the given ephemeris matrix (obtained in Chapter 3.1.1 for RINEX and

Chapter 3.2.1 for Ashtech data files), satellite ID and epoch time t:poch. The MATLAB script

satpos.m carries out the following computation. First, define the satellite elapse time t;( :

t = check_t(tfps —t (4.54)

epoch )

where téps is the corrected GPS transmission time (Chapter 3.7.14); check_t is the MATLAB
function to ensure the GPS time is between 0 and 604800 seconds of the week.. All variables are
defined in Figure 8.7, and the WGS constants in Chapter 2.1.1.

Compute Mean Anomaly ,u;( :

GM
,U;( = IUO + W +Ank th (455)
a

Compute Ejk iteratively (see Chapter 3.9.1), followed by True Anomaly fjk :

Ef = u +e“sinEf (4.56)
K\ . =k
x 1/1—(@ ) sin Ej 457
. = arctan .
! cos Ejk —eX

Compute Longitude for ascending node Q'j‘ and Argument of perigee a);( :

Q;( =Qf +(Qg —a)e)t;( — ot (4.58)
ol =o' + £X+Cl, cosz(a)k + fj")+CU‘js sin2(a)k + fjk) (4.59)
Compute Radial Distance I‘jk :
r =a (l—ek cos E!‘)+Ck cos2(a)k + f.k)+Ck sin2(a)k + f.k) (4.60)
] ] rc ] s ] °
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Compute Satellite Inclination i f :
i =iy +i't’ +C cosZ(a)k + fjk)+ CX sir12(a)k + fjk) (4.61)

The position of satellite K on the elliptical orbital plane in X™, y*™ (with X™ pointing towards
the Perigee of the elliptical Orbital Plane) can be computed:

K k k . wk ko k
X" =1 cos o, ; y =1l sinw; (4.62)

The Satellite Position in Solar Cartesian coordinate z* can now be computed directly as follow:

x“ = x™ cos Q;‘ —y*cos ij!‘ sin Q'j‘ (4.63)
y* = x"™sin Q;‘ —y" cos i;‘ cos Q;‘ (4.64)
ZECEF = y*k sin i}( (4.65)

It is re-emphasized here that the Solar Cartesian Coordinate must be converted into ECEF
Cartesian before being used in any of the GPS Calculations (Chapter 2.3.1).

3.9.1. Iterative Solution for EJ.k

This sub-section aims to solve the iterative solution E J!( that appears in (4.56). The first step is to

initialize the ‘old” E; , and ‘new’ EX  with the calculate Mean Anomaly ,u;( :

j,new 2
koo k k
Eia =44 Ejpew = #; +0.001 (4.66)
The iteration defined below continues until the stopping criterion in (4.69) is reached.
k k
Einew = Ejoua (4.67)
Efa = +e sinE (4.68)
The Stopping Criteria is defined as:
k k -12
Eiod = Ejpew | <1x10 (4.69)

When this Stopping Criterion is reached, the corresponding E jk,old is the final value of E J!( .

3.9.2. Visualization of Satellite Trajectory

See Figure 8.18: For the sake of visualization of a typical satellite trajectory, a MATLAB script
‘jc_ist10641_orbit_in_c2gm.m’ is written to plot the trajectory of a satellite around the WGS 84
Ellipsoidal Earth Model in an inertial Earth Frame of Reference. The plot is in Solar Cartesian
Coordinate System and plotted over duration of 24 hours with 1 hour intervals.

It can be clearly seen that, a satellite typically orbit around the Earth about twice per day, with
small disturbance in trajectory.
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4. Grid Point Method - to estimated receiver position

In this Chapter, the preliminary position of the static IST receiver is estimated in terms of ECEF
Geographical Coordinate (Chapter 2.2.3) using Grid Point Method. This method only finds the
Longitude and Latitude of the receiver, but not the Ellipsoidal Height. To illustrate this method,
post-processed RINEX data (Chapter 3.1) obtained from the IST receiver is used throughout the
whole of this Chapter. The main MATLAB script ash_base.m computes this.

4.1. Extract Post-processed RINEX Data

Post-processed RINEX Data (Chapter 3.1) from the stationary IST receiver is obtained. The
Ephemeris and Observation data files used are respectively ‘ist1064a.08n" and ‘ist1064a.080°.
The final results are presented in at the end of this chapter.

4.2. Main Initial Assumptions

To begin the Grid Point Method, major initial assumptions are made. Since the Raw Observables
have already taken some delays into account, the delays terms in (4.40) can be assumed zero:

I =T =0 (5.1

By also realizing the initial assumptions made on embedding the receiver clock offset distance
into the systematic error term, and include only the satellite clock offset distance in the
calculation, as described in Chapter 3.7.11, the Corrected Pseudorange can be summarized as:

Pi,kcorr = I:)i,kraw +Vlightdtk (52)
k=1,2,3..m (5.3)

where dt*is defined in (4.42). By carrying out (5.2) for all m satellites, all Piim are obtained.

4.3. Model Grid Hemisphere

The purpose of the Grid Hemisphere is to provide the 2™ imaginary receiver (i.e. receiver j) for
double differencing. Based on the epoch time in Chapter 4.1, calculate the satellite positions
(Chapter 3.9) for all m satellites and covert to ECEF Cartesian Coordinates (Chapter 2.3.1).
Obtain also the Geographical Coordinates (Chapter 2.3.2). The first guess of receiver position in

Latitude ¢, ; and Longitude A4, ; can be computed:

Po,i = Z¢ECEF /m ; ﬂ“o,j = Z%CEF/m (5.4
k=1 k=1

where (/)'ECEF and ﬂEkCEF are the satellites ECEF latitude and longitude respectively. Note that the

Ellipsoidal Height h is always assumed to be zero for each grid point receiver. Using this first
guess as the central point, the Grid Hemisphere can now be modelled in the Azimuth direction,
which assume to range from 0 to 360 degrees, with intervals of 20 degrees. This gives

N = (360 / 20) =18 number of grid points in the Azimuth directions at each contour (i.e.

azimuth —
the central point is the top of the hemisphere, if look from above the hemisphere, one can see
elliptical ring shaped contours). The central point of the hemisphere has a contour angle of zero
degree; at the bottom 90 degrees. Each interval can be assumed say 11.25 degrees. This gives
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N

centre point), at each azimuth angle. The total number of grid points N, (i.e. the total number

=(90/11.25) =8 number of points in the changing contour direction (excluding the

contour

of computation on the grid hemisphere), including the ‘1’ centre point, is therefore expressed as:

N ow = [( N i % Neontour ) + 1} (5.5)

See Figure 8.10 for definition of the variables used in modeling the Grid Hemisphere. Note that

there are up to N :[(18x8)+1]:l45 grid points in total based on the modelling

total
assumptions. The incrementing procedure in the azimuth angle «; direction for ALL iterations

(Chapter 4.6) is summarized as follow:

a;(alliterations) = 09: 20° :340° (5.6)
start  interval end

The incrementing procedure in the contour angle (0; direction in the 1* iteration only (i.e. the

very initial stage where the first guess obtained in Chapter 4.4 is used) is summarized as follow:

@'; (Ist iterations)=_?j::ll.1215°:9g(f);° (5.7)
star interval en
4.4. First guess of receiver position

Starting with the ECEF geographical coordinate of the centre point:

T
j,ECEF,ge():I:(PO,j lo,j O] (5.8)

Convert (5.8) into ECEF Cartesian Coordinate X .. (Chapter 2.3.3). The Pseudorange ij

measured between each grid point | and satellite K, based on the assumption of zero delay in

X

(5.1), can be assumed to be the same as the range p:-( (Chapter 3.7.1).
kK _ k
|:Jj =p| (5.9)
k=1,2,3...m (5.10)

The Grid Point method essentially utilizes the double difference method (Chapter 3.8.2), where |
corresponds to the actual receiver and | corresponds to the grid point. The reference satellite is

the 1% satellite (denoted by the superscript ‘1°); all the other satellites are non-reference satellite
(denoted by the superscript ‘| °, where | runs from satellite 2 to m). If the grid point ] overlaps

with the actual receiver location | perfectly (i.e. J = 1 ), then theoretically the following
expression should be true:

P! =(Plow =2} )= (Pl —£}) =0 (5.11)

| =2,3...m (5.12)

However, equation (5.11) can never be true due to the existence of any un-modelled delays that
are embedded inside the systematic error term. There will therefore be a Double Differenced

Residue term, RESi}I instead of the ‘perfect’ zero. This is expressed as:
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P = (Plaon = £7) = (Pleon = £} ) = RES}] (5.13)
| =2,3...m (5.14)

The corresponding Sum of Square of this Residue term, Silj' is expressed as follow:

m 2

si' =" (RES}') (5.15)

p1 P

The first best guess of receiver position is defined in (5.8), with its corresponding Si}' in (5.15).

4.5. Routine Updates for best guess

The main principle of the Routine Update Process is to move from one grid point to the other one,
and so on. Starting with the first guess (Chapter 4.3), repeat the process as described in (5.9),

(5.13) and (5.15) for all other grid points. The best guess would produce the minimum Silj' . This

gives the new estimate in terms of Grid Point Latitude ¢, ; and Longitude A, ., a Spherical

e
Triangle (see Figure 8.11) is used along with the following equations:

P, = arcsin(sin @, €OS go} +cos ¢, sin go} cos aj) (5.16)
sina; sin @'
AA; = arcsin| ————= % (5.17)
oS, ;
Ay = +A4 (5.18)

By incrementing the azimuth angle ¢ (at constant contour angle ¢);) and repeat the same for all

contour angle q); , based on the previous guess ¢, ; and A, :» all the unknowns in the above

0.j°
equations (5.16) to (5.18) are solved easily. The now solved ¢, andﬂ,z, j are therefore

respectively the new estimate Latitude and Longitude of the receiver position, which are used as
the ¢, ; and Ao, j in the next updating process. This process moves on to the next grid points.

During this updating process, only explicitly record the value of the new estimate (i.e. ¢, ; and

A, ;) if the corresponding Si}' turns out to be lesser than the one before. Otherwise, keep the

previous explicitly recorded value. Once all the grid points have been used for the computation,
the grid point with the final explicitly recorded ¢, ; and ﬂ,z j 1s therefore the best guess of the

receiver position compare to all other grid points.

4.6. Iteration to refine the best guess

The grid point that represents the best guess of receiver position, obtained from Chapter 4.5, is
now used as the centre point of a new grid ‘hemisphere’. This new ‘hemisphere’ has the same
total amount of grid points as before (Chapter 4.3). The intervals (i.e. grid spacing) in the contour
angle direction is however now modeled as 10 times smaller then before, with the spacing in the
azimuth angle remains the same (i.e. this is basically a small surface of the grid hemisphere). This
setting for the 2™ iteration and onwards can be expressed as follow:
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a;(alliteration) = 0° : 20° : 340° (5.19)
st inerval ond
@'; (2nd iteration) = (T):; :1.125°: &: (5.20)
sta interval eny
@'; (3rd iteration) = (?):; 0.1 1215O : g%f’ (5.21)
sta interva en

Notice the values of the go} ‘interval” and ‘end’ become 10 times less in each iteration. This trend

of (og continues for the 4" iteration and onwards. The best guess therefore becomes more

accurate. i..e. each iteration gives an extra decimal accuracy. Base on this setting, repeat the
procedure in Chapter 4.5 for more updated best guesses. Figure 8.14 illustrates the combined
effects of the routine update process and iteration in improving the estimation of IST receiver
position. The guess that is computed at the end of iteration is the final best guess.

4.7. Discussion on results

This section discusses the computed ‘best estimates’ of IST positions in terms of latitude and
longitude, base on Grid Point Method. To illustrate this method, post-processed RINEX data
obtained from the IST receiver has been used (Chapter 4.1). The ephemeris and observation files
used are respectively ‘ist1064a.08n’ and ‘ist1064a.080’. From below, it should be noted that both
Pseudorange measurement on L1 and L2 codes give near the same sets of results.

Latitude: see Figure 8.12 - Fluctuation within the first 40 minutes is seen. This is due to the
initial automatic data refinement. The result after this point has a stable value of 38.7374 degrees
North. (i.e. 38° 44' 14,53420" North ), which corresponds to the value provided by IST exactly.
This value should stay constant from this time onwards.

Longitude: see Figure 8.13 - Fluctuation within the first 40 minutes is seen. This is due to the
initial automatic data refinement. The result after this point has a stable value of 350.8601 East
degrees. (i.e. 9° 8' 23,81196" West), which corresponds to the value provided by IST exactly. This
value should stay constant from this time onwards.

4.8. Comment on Grid Point Method

Grid Point Method as already described above implements post-processed data in RINEX format.
i.e. GPS observables from one epoch is usually accurate enough to yield good results. It should be
recalled that the Ellipsoidal Height has been assumed to be zero throughout the Grid Point
Method. Hence, if one would like to obtain parameters such as altitude, Grid Point Method is
irrelevant. Nevertheless, this method has shown high accuracy in estimating Latitude and
Longitude, with an error of nearly zero within the stable region. An alternative method that is
capable of computing ellipsoidal height, as well as longitude and latitude is a method developed
in [3]. i.e. The Bancroft Method. This method will be discussed later on.
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5. Baseline Estimation and Separation of Ambiguities

The Aim of this Chapter is to illustrate a computational method for finding out the positions of 2
Real-time Ashtech Receivers. The First one is called Master, in which the Ashtech data (Chapter
3.2) from ‘site 810’ is used. The latter one is called Rover, in which the Ashtech data from ‘site 5’
is used. In general, the Master represents a stationary object, while the Rover represents a moving
object. In this report, however, both Master and Rover are used as stationary objects. By taking
this into account, the baseline, which is defined by the vector that measures from Master to
Rover, will be calculated at the end of this Chapter. It should be noted that this Chapter
implements double difference method (Chapter 3.8.2).

5.1. Extract Real-time Ashtech Receiver Data

First, prepare the 4 sets of matrices based on the receiver data from the two sites (i.e. Master and
Rover sites), with respect to the reference satellite and non-reference satellites. The whole data
extraction process and outputs are presented in Figure 8.9 in detail. Note that some filtering
based on elevation angles and total number of epochs has been used in obtaining these matrices:

[datar] - Rover observables (relating to all non-reference satellites). i.e. d}
[datam] - Master observables (relating to all non-reference satellites). i.e. diI
[datarref] - Rover observables (relating to the reference satellite). i.e. d;(

[datamref] - Master observables (relating to reference satellite). i.e. dik

where the subscripts ‘i’ and ¢ | * respectively represent Master and Rover; the superscripts ‘K’

and ‘|’ respectively represent the one reference satellite and all non-reference satellites. The
variable ‘d’ can be the Raw Pseudorange (in meters) based on L1 and L2 codes, denoted
respectively by P

1,raw

and P, _; Raw Phase (in cycles) base on L1 and L2 codes, denoted

2,raw °

respectively by ¢1’raw and ¢, . ; Elevation Angle (in degrees) of the satellite with respect to the
receiver, denoted by EL ; Epoch Time (in GPS seconds), denoted by t
and @

and (4.19); By using some of these Raw single epoch variables from these 4 matrices above, the
double differenced forms of these variables can be computed easily using (4.49).

ie. (F’LraW ):I , (szmw )EI , (q)l,mw ):I and (q)z,raw ):I are known.

Note that the observables that are obtained here are ‘real-time’. i.e. they are not post processed,
unlike the post-processed RINEX data (Chapter 3.1). This implies no delays or errors have been
taken into account in the publishing of the Ashtech data. Fortunately, these delays or errors are
correlated from one epoch to the others. Hence by using the whole epochs of data, this correlation
can be estimated. Delays and uncertainty due to Ionosphere, Troposphere, clock offsets and
Ambiguities can therefore be recovered and included in the computation.

epoch - NOte that ¢ - and

¢2Jaw can be converted into Phase Distances (in meters) @ directly using (4.18)

1,raw 2,raw

5.2. Double Differenced True Ambiguities

The initial approach is to assume the Double Differenced Ilonosphere Delay Term Ii?' is zero:
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I =0 (6.1)

By substituting (6.1) into the Double Difference Code Equation (4.53) in conjunction with the
facts in (4.51) and (4.52), the Double Difference Code Equation becomes :

Kl R
P 1o 0 15;' +Tijkl
O _|L A O
P Lo ol N (©2)
. j Kl
Y 1o Al N
6.k| A43 )A(EI

This above equation (6.2) express the relationship between the raw double differenced
observables bi'j(I (Chapter 5.1), in terms of the unknown )A(i';I . The 4 by 3 Design Matrix A,; is
defined above based on assumptions made in (6.1). The above is a system of 4 equations with 3

. oAkl . . . ~kl
unknowns in X; . i.e. must use least square method in solving X; :

-1

)A(i? = ALWz A AI3W2 bilj(I (6.3)
—
3by3 3byl

where W, is the weighted matrix, which can be defined as follow:

1/0,> 0 0 0
0 1/o,> 0 0
W, = ) (6.4)
0 0 1/o,> 0
0 0 0 g,

where o is the standard deviation: the subscripts P, P,,®,,®, represents respectively the

Pseudorange on L1 and L2, Phase Distance on L1 and L2. Reasonable values of the
corresponding standard deviations are defined as follow in meters:

oy =0, =03

(6.5)
O, =0y, =0.005

Now define N,, as the bottom right (2 by 2) matrix of ALW,A,,; RS as the bottom (2 by 1)
vector of AI3W26;'. The detailed algorithm in solving N

shown, starting from the earliest to last epoch’s data. First, initialize the matrices:

0 0 0
RS, i = 0 > Ny, initial = 0 0 (6.6)

K L .
1 and Nz,ij for all epochs is now
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ki

A Kl _ A N A A
-2 - -2 -2 -2 2
d)la®lﬂ1 Ol (PIUPl +®,0,, + on'P2 +®,0,, )
F..= — (6.7)
RS ) 0—222 -2 -2 -2 -2 ’
(D20q>2/7'z ) | Oo, Oy +0g, +0p +0g, )
1J,raw ij,raw
Kl
-2
Oo
1 -2 -2
- I:O-ml 4 O, ﬁz}
Oy, 4
Fo. = (6.8)
22 -2 —2 -2 -2
(O'p] +O—<I>1 '|'O'p2 +O—<I>2)

ij,raw

where the standard deviation terms ¢ can be obtained from (6.5); A, and A, are the wavelengths
of the L1 and L2 code respectively (Chapter 3.5). The combined subscripts and superscripts
‘ :(J-',mw > represents raw double differenced variables (Chapter 5.1). Starting with the first epoch’s

data, define the variables RS and N,, from (6.6):

Rspreviousiepoch = Rsim'tial (69)
22,previous_epoch = 22, initial (610)
bilj(I = biij({lstiepoch (61 1)

The updating process to determine better values for le:j and I\Al;'IJ can be summarized as follow

between (6.12) and (6.14) proceeding from 1% to last epoch’s data:

Rsthisiepoch = previous_epoch + FRS,thisiepoch (612)
NZZ,[hisﬁepoch = N22,previousfepoch + FN22 ,this_epoch (6 1 3)
Kl
N Lij -1
I\"I Kl = I: N 22,this_epoch ] I: RSthis_epoch :I (6 14)

2j this_epoch 2by 1

kI ol
Li and Nz,ij
Note the subscripts ‘previous epoch’ and ‘this epoch’ corresponds to the data used for that epoch,
purely to emphasize the logic within the ‘Epoch Loop’ procedure carried out in MATLAB. Once

the end of the Epoch Loop is reached, the best estimated le:J and I\AlédIJ are obtained:

By repeating (6.12) to (6.14), the corresponding N at each epoch can be solved.

Kl J Kl
Nl,ij _ Nl,ij (6 15)
Kl Kl ’

20 Jpest 24 last_epoch

where the subscript ‘best’ stands for ‘best estimate’; ‘last epoch’ stands for the result obtained at
the end of iteration. Note that (6.15) is the estimated solution. The procedure below illustrate the

computational method that determines the ‘true’ values (Nkl ) and (N;'ij) , which are
true > Jtrue

1,ij

integers. First, compute the two constants Klk!j and K;'ij :
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K :round(Nk' - N¥, )b (6.16)
’ est

Lij Lij

KY, = round (60N — 77N

" ) (6.17)

where ‘round’ is a MATLAB function in rounding down numbers. Now, the true double

differenced Ambiguities (le:j ) and (I\Al;'ij ) can be computed directly (which are integers):
’ % Jtrue

(N5) = round (60K} ~ K1) /17) (6.18)
(le:J )t = round(l\]é‘"u + Kllf'ij) (6.19)
5.3. Double Differenced lonosphere Delay

From (4.53), the second and forth equations are taken out and rearrange to make the Tonosphere
term Iilj‘I the subject. The least square solution form is expressed as follow:

(P (M), (@t -2 (M), )
ij 1 —( fl/ f2 )2

are the raw double differenced Phase Distances on L1 and L2 code

(6.20)

and ®X

ki
where @ 2w

1,ij,raw

respectively, obtained from Chapter 5.1 for each epoch; A, and A, are the wavelengths on L1
and L2 code respectively, obtained from Chapter 3.5; f, and f, are the frequencies on L1 and

L2 code respectively, obtained from Chapter 3.5. (le:j) and (l\] é"ij) are the True Double
> Jtrue % Jtrue

Differenced Ambiguities on L1 and L2 code respectively, obtained from Chapter 5.2. Since all
these variables are known, ”;I can be computed directly for each epoch.

5.4. Bancroft Method — to estimate Master position

From Chapter 4.8 a comment is made regarding to the fact that Grid Point Method is not able to
compute ellipsoidal height h of the receiver. In this section, a new method called the Bancroft
Method will be used in obtaining the preliminary ECEF Master receiver location X; = Xi,ECEF

(drop the subscript ‘ECEF’ for simplicity within this section. Note that all coordinates in this
section are represented in ECEF), which calculates h as well as longitude A and latitude ¢ ..
First, define the Minikowski function taken from [3]:
g=[9, 9, 95 9]
f=[f f, f f,] (6.21)
<9, f>: 9,f+9,f,+9,f,—0,f,

Minikowski function

Define the following matrices and vectors (superscript K represents satellites, from 1 to m):
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T
k k k k k 1 2 m
= X z P :| . A = [ . :| 22
a =[xy e s A=[a a a (6.22)
Satellite k's ECEF positions & raw pseudoranges m by 4
k=1,2...m (6.23)

where the first three components in a“ correspond to satellite K position in ECEF Cartesian
coordinate system based on the first epoch time: I:’ik is the pseudorange measurement based on
L1 code, based on the same first epoch time. The above matrices are constructed based on the

data from all m satellites. Now, define more matrices as follow based on the inputs a“ and A :

ak,a
rk=—< . > Cig=[1 - 1] r=[r - r’“]T (6.24)
T m by 1
B=(ATA) AT ; u=Bi, ; v=Br (6.25)
4 bym

The following coefficients can be computed directly:
E=(uu) ; F=(uv)-1 ; G=(wv) (6.26)

Solve the following quadratic would give two roots ¥, and 7, :

Ey’+2Fy+G =0 (6.27)
-F+JF>*-EG -F-JF?-EG
= E ; V= E (6.28)

The two possible Master ECEF positions Y,and Y, can be computed directly in the four
dimensional space form (Chapter 3.4). See Figure 8.15 for clarity regarding to these solutions:

Y, E[xi Y Z Dfoum ]1 =yu+v (6.29)

Y, = [xi Yi Z Dfum ]2 =yu+v (6.30)

where the first three components in the above solutions corresponds to the possible Master
k

positions in ECEF Cartesian coordinate system. The forth component Dy, -

is the Atmospheric
Delay (Chapter 3.7.9) and it is recalled below, with assumption of insignificant ionosphere delay:

Dk

i,P-atm

=1f+T" ; assume 1f~0; T*=0 (6.31)

Note: Troposphere Delay Tik (Chapter 3.7.2) can be computed using the ellipsoidal height h
recovered here (by converting the first 3 components of the solution into ECEF Geographical
coordinate), in conjunction with the Elevation angle EL from Chapter 5.1. (TijkI is known also).

Now include the clock delay Di‘fP_clock
X and X.

i,raw,2

as well, obtained from Chapter 3.9. The Master positions

are now based on the corrected pseudorange (Figure 8.15):

iraw,1
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Xirawi = |:Xi Yi % (DiifP—atm + DiifP-clock )]raw,1 (6.32)

Xi,raw,2 = |:Xi yi Zi ( D-k + Dk

i,P-clock i,P-atm ):|
raw,2

(6.33)

The principle in determining the better solution between (6.32) and (6.33) is that the ‘better’

solution should give a smaller absolute error ‘ei"‘ in comparison to the other one:

k| _ k k
‘el ‘ - ‘_Pi,raw + H(XECEF - Xi,raw,l)

‘ (6.34)

‘ezk‘ = ‘_F:,kraw + H( XleCEF - Xi,raw,z )m (6-35)

Since a set of satellites are used here, it would be more fair to calculate the ‘norm’ of all these

‘eik‘ instead of only just one of them. These norms of errors, E; and E, are defined below:

El:norrn([ell elm]T) ; Ezznorm([e; e;”]T) (6.36)

The final Master position can therefore be selected based on smaller systematic error:

if E <E, then X, =X otherwise X; =X (6.37)

i,raw, 1 i,raw,2

Summary: Troposphere Delay TijkI and ECEF Master Position X; ;.. = X; are now known.

5.5. Jacobian Method —to estimate Rover position

This section aims to estimate the Rover ECEF Position X | = X (drop the subscript ‘ECEF’

for simplicity within this Chapter. Note that all coordinates in this Chapter are represented in
ECEF). Iteration Loop and Epoch Loop are used to compute this. First, let the first guess of Rover

position X as the same as Master position X;:

j.ECEF

Ist iteration only: X; = X; =X (6.38)

j,this iteration j,previous iteration

Also, start from using the information of the first epoch only, define the double frequency (i.e. L1

and L2 code) Design Matrix A and Constant Noise Vector b ; Rover Position Updating Vector
dX.:

i

J de Xj,previous iteration Xj, this iteration é Kl
) =|dy; (= A g &
A= |: :| 5 dX i dy] = yj,previous iteration yj, this iteration 5 b = | au (639)
this iteration A B .
de z j,previous iteration z i, this iteration
2(m-1) by 3 ‘ | e
3byl

K and ék' are the Constant Noise Vector

where J is the Jacobian Matrix, define as follow él i 2

for L1 and L2 code respectively:
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J=[u —uj]
_ (XI_Xi)‘k(Xk‘XJ‘) (y"yi)‘k(yk‘yj) (ZI‘Zi)‘k(Zk‘Zi) (6.40)
Pi Pi Pi
uf—u¥: x compnent uf—u¥:y compnent uf—u¥:z compnent ECEF
(m-1) by 3
L1 code: élk'u = [(Di'ij —TijkI —/LNI'f!j —pi‘;'] (6.41)
| (m-1) by 1 '
L2 code: é;'” = [d)g',ij —TijkI —@N;'ij _Piﬂ (6.42)
(m-1) by 1

Note that the single epoch range pik and double differenced range ,0:;I can be computed directly

based on all the variables obtained from Chapter 5.1. d)i(,'ij and CI);',ij
5.1; Tijkl from Chapter 5.4 and Nllf'ij and N;'ij from Chapter 5.2; and finally, 4 and A, from
Chapter 3.5. i.e. Both élk'” and é;'u are now known (i.e. b also), over all iterations; J in this
iteration is known (i.e. A also) based on the first guess defined in (6.38).

are known from Chapter

Now define the Double Differenced Variable Weighted matrix W, , which is (m-1) by (m-1):

-1

4 2 -2
20 e e

w,=|T (6.43)
P2
2 ... 2

The Double Frequency Weighted Matrix W,,,, is expressed as:

For thi h: W W, 0 (6.44)
or this epoch: = .
P d22 0 W,
-
(ms-1) by (ms-1)
The Information Matrix N,, and General Right Side Matrix RS;, are defined below:
N,,=AW,,A ; RS, =AW,b (6.45)

N,, and RS;, update themselves as the first to last epoch’s data (Chapter 5.1) are run through.
At the beginning of the Epoch Loop for each iteration, N,, and RS;,, must be initialize.

0 0 00
For Ist epOCh always: RSSl,previous_epoch =10 > N33,previous_ep0ch =0 0 0 (646)
0 0 00
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In addition, the sum of Variance of dX i denoted by Yo’ 4x. must also be initialize:

For Ist epoch always: 207”4 revious epoen = 0 (6.47)

The Epoch Loop is executed only if either (6.48) , (6.49) as shown below is met:

This is the first iteration, or... (6.48)
dej,thisfepoch, this_iteration < l 5 X dej ,average, previous iteration (649)
individual standard deviation from this epoch and this iteration average standard deviation from previous iteration

The updating process within the Epoch Loop is summarized between (6.50) and (6.53):
Epoch Loop start from: 1st epoch to last epoch (6.50)
N33,nextﬁepoch = N33,previousfepoch + N33,thisﬁepoch (651)
Rs3l,nextfepoch = RSSl,previousfepoch + RS3l,thisfepoch (652)

2 _ 2 2

ZG dX;this_epoch - ZG dX;,previous_epoch +o dX;,this_epoch (653)
At the end of the Epoch loop (i.e. with subscript ‘this iteration’): define dX; ;i icruion @S the

change of Rover position relative to value from previous iteration. This value is based on N,

and RS;, of the final epoch only:

dX j,this_iteration (( N33 )71 RS31 ) (6.54)

this_iteration

as the resultant resides of the new result dX j his_iteration -

Define RES

this_iteration

RES =|AxdX  ~b

(6.55)

this_iteration this_iteration

2(m-1) by 1

Define Oy s iermion @S the standard deviation of the new result dX This value is
jothis_

J,this_iteration *
based on the residue RES calculated earlier:

this_iteration

( RES )T Won ( RES )
(o) dX this_iteration 2(m-1)

(6.56)

this_iteration

lbyl

. This value is

j,this_iteration

2 , A
Define Oy average his iteration 88 the average variance of the new result dXx

based on the final sum of variance Zazdx_ his computed at the end of epoch loop:
jthis_

iteration

2(72 L
dX; this_iteration
2 = J , (6.57)
total number of executions

O-dX j-average,this_iteration
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Define Oy average.his_iteration 85 the average standard deviation of the new result dX

j,this_iteration *

This value is based on de,- averagehis iteration COMputed previously:

_ 2
O-dXJ- ,average,this_iteration \/O-de ,average,this_iteration (658)

A new estimate of the Rover Position from this iteration, X can finally be computed.

j,this_iteration

X oo =X. . 4dX

J,this_iteration j,previous_iteration j,this_iteration

(6.59)

An extra piece of information is the Covariance Matrix of this newly calculated X ;i iieration :

-1
CX j-this_iteration = Gaverage,thisiiteration ( N33 ) (660)

%\/—J
Covariance_Matrix

This is the end of the Epoch Loop. If the following Stopping Criteria is met, shown in (6.61), then
the whole Iteration process ends, and the final value of X would be X

J,this_iteration *

<0.5 (6.61)

de j-average, this iteration

average standard deviation from this iteration

If (6.61) is not satisfied, then all the newly calculated variables from this iteration, with subscript
‘this iteration’, will be used in the next Iteration Loop with subscript ‘previous iteration’. Note

that the Average Standard Deviation of dX of the iteration, denoted by O X ; averagethis_iteration is
used in the next for testing the condition (6.49). The reason for (6.49) is purely for extra filtering

of outlier results obtained from the epoch within the iteration (i.e. with subscript
‘this_epoch_this_iteration”). This speeds up the convergence process.

Summary: the ECEF Rover Receiver position X | ECEF = X ; is now known.

5.6. Baseline Estimation Vector — Master to Rover

5.6.1. Without Ashtech Antenna Corrections
As Master position Xi scpr  (from Chapter 5.4) and Rover position X j.ecer (from Chapter 5.5)

are known, the baseline without Ashtech Antenna Correction X is computed directly:

ij,ECEF,raw

X = X perr — X ppr (6.62)

ij,ECEF,raw J,ECEF

5.6.2. With Ashtech Antenna Corrections

In this Chapter, the Antenna files used for the Master and Rover receiver are respectively:
‘s0005a94.076’ and ‘s0810a94.076°, which provide the Slope Distances hs’i (Master) and hs’ i

(Rover). The expression of Antenna Heights ha’i (Master) and ha, j (Rover ) due to vertical

supports is represented through the trigonometric relation:

h, =hei— hy =i — (6.63)

ashtech > ashtech
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where I =0.135 m, which is the antenna radius for an Ashtech antenna. The Final baseline

ashtech

estimation incorporating with the Ashtech Antenna Correction X is expressed as:

ij,corr

Xij,ECEF,raw =X j,ECEF — Xi,ECEF - U(ha,i - ha,j ) (6.64)

where Master position X; ppe  (from Chapter 5.4) and Rover position X ;. (from Chapter

5.5) are known; U is the vertical upward Topocentric unit vector, which can be computed using
(3.40) with the ECEF Geographical Coordinates of X; ..., and X .. as inputs.

5.7. Discussion on results

5.7.1. Real-time Ashtech Data Extraction

Figure 8.17 shows a part of the Real-time Ashtech data extraction process as described in
Chapter 5.1. Due to the Cut-off Elevation Angle setting of 15 degrees, one could see that, out of
the 11 satellites, 5 of these are eliminated. i.e. only data from 7 satellites is used. It should be
noted that only satellite 19 shows near zero elevation angles, while the other 4 (i.e. satellite 7, 12,
17 and 31) are around 10 degrees. If found to be appropriate, one should lower the cut-off angle
and accept data from more satellites (say, to change the cutoff angle to 10 degrees instead). i.e.
this provides a larger number of data sample for the least square computation, which would
reduce the variance and increase the reliability of the results. The Right figure counts the total
number of epochs received from each satellite, that has been used to select the reference satellite.

5.7.2. Wide-lane Ambiguities and lonosphere Delays

In Figure 8.19, the Right figures show the plots of Ionosphere Delays for all epochs. It is clearly
seen that the delay calculated here on this regard is very small (in millimeter level). Hence the
assumption of zero Ionosphere Delay made in Chapter 5.4 and Chapter 5.5 is reasonable. The

Left figures show the Wide-lane Ambiguities Ny, (in cycles) plots for all epochs. The Wide-

lane ambiguities plots can be analyze as follow. First, define the Wide-lane wavelength A, as:

1 2

Vlight

The uncertainty due to both L1 and L2 ambiguities in meters Dy, can be calculated directly:

Dy = Ny X Ay (6.66)

For example, if Ny, is 0.1 cycles, Dy, =0.1x0.862=0.0862 m=8.62 cm. It should be

noted that, both Master and Rover are stationary. Each Ambiguities plot should therefore
theoretically be flat. (e.g. 0.1 cycles constant). The fluctuation that is observed in the plot
suggests that there might be some other sources of error (e.g. Multipath delay, lonosphere Delay,
Ephemeris error, etc.) that exist but was not included in the computation. i.e. Systematic Error.

5.7.3. Final Baseline Estimation

The Master Position X, and Rover Position X j are found to be as follow (in meters):
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X; 3436371.8091 X; 3435430.6126
y, | =| 603277.4117 ; y; | =| 607773.8144 (6.67)
Z, 5321426.0092 Z; 5321537.9527

[e—] [——

Xi: Master Xj: Rover

And the final Baseline Estimation, with and without antenna Corrections are:

X; -941.270 X; -941.196
Vi = |4496.359 | Yi|  =|4496.403 (6.68)
Z; 111.977 Z; 111.943

With antenna correction no antenna correction

It should be noted that the impact on the baseline vector due to Antenna Correction is very small
(7.4 cm, 4.4 cm and 3.4 cm in the ECEF x, y and z direction respectively). It is therefore up to the
user to decide whether to include this small correction in the computation.
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6. Conclusion

In Chapter 2, the definitions of relevant GPS coordinate systems have been defined. These are
the so called Solar Cartesian, ECEF Cartesian, ECEF Geographical and Topocentric coordinate
systems. The relevant conversion techniques among these 4 coordinate systems have been
defined. Throughout the whole of the report, the ellipsoidal Earth Model assumed is based on
WGS 84 solely, where all relevant geodetic parameters on this regard are clearly defined.

In Chapter 3, all relevant definitions regarding to GPS are defined and explained. GPS
computation assumes a 4-dimensional space, where the first 3 components belong to the ECEF
Cartesian coordinates; the 4™ component corresponds to the uncertainty in the direction of signal.
In term of GPS data acquisition, it can be either the post-processed data in RINEX format, in
which the variables are well refined and published; or the Real-time Ashtech data, in which the
data contain more noise. In this report, double frequency (L1 and L2) data are used. Uncertainty-
wise, the components that have been taken into account are due to atmospheric effects such as
ionosphere delay and troposphere delay, clock offsets and systematic errors. Any un-modelled
uncertainties are all embedded in the systematic error term, which have been used in the least
square estimation process. Aspect regarding to finding the ‘corrected’ variables such as GPS
transmission time, Pseudorange and Phase Distance and satellite positions at that corrected time
has been shown. The Code Equations have also been derived and summarized.

In Chapter 4, Grid Point Method has been introduced, in which the method itself uses double
difference technique between the real receiver position and the modelled grid point. The main
principle of this method is that, among all the grid points lying on the surface of the modelled
grid hemisphere, only one of these produces smallest sums of square of residues based on the
corrected pseudoranges. In addition, by denser the grids around this best grid points via a number
of iterations; the final estimation of receiver position can become more refined. Post-process data
in RINEX format obtained from IST receiver has been used to illustrate this method. The final
computed Longitude and Latitude turn out to be very accurate with respect to the actual value
provided by IST. This method however does not compute ellipsoidal height.

In Chapter 5, a Baseline estimation and Separation of Ambiguities technique has been illustrated
based on Real-time Ashtech data. It involves the Bancroft Method in estimating the Master
position which uses only data from one epoch; and Jacobian Method in estimating the Receiver
position which usess data from all epochs. Ashtech antenna corrections have been added to the
final baseline estimation, which has shown to have very small effect on the final result. This
illustration has shown that the ionosphere effect is insignificant. However, from the large
fluctuation in ambiguities throughout the epochs, one can notice the existence of systematic error.
This can be due to other un-modelled effect such as multipath delay; receiver clock offset error
and inaccuracies in the computation in troposphere and ionosphere delays.

To conclude, this report introduces the relevant fundamentals regarding to DGPS. Reasonable
assumptions have been made in the computations in order to obtain some fairly accurate results to
illustrate the methods. The results, however, can be made even more accurate by applying other
techniques that have not yet been exploited in this report, such as the Least-squares Ambiguity
Decorrelation Adjustment method (LAMBDA Method) and Kalman Filters.

The scope of GPS is vast, so as the techniques. This report should therefore be treated as a
‘beginner guide’ for those who would like to advance further in this exciting world of GPS.
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8. Appendices
8.1. Figures

North Pole ZECEF

}{;'ECEF,gec,:[ﬂ A h,-]r

X, .

. .' Represents Satellite & (superscript)
{ECEF — [x: F Z!’]EC‘EF

A5 represents Receiver f (subscript)

Represents
X Topocentric plane, at
ECEF height &
{i.e. Greenwich Lo f ol ===
Meridian at equator A
with longitude A =0) .- cemane- - el YECEF

BRI EE S
Axis parallel to Xeegr Axis parallel o Yecer

R =Radius of Curvature

South Pole
Figure 8.1 Definition of ECEF Cartesian, Geographical Coordinates of receiver I and satellite K
and the Topocentric Plane at an offset hi from the WGS 84 Ellipsoidal surface. Figure
modified from [8].
Vertical
upward
U
Satellite K
5x* @
Sun =u North
n

Receiver

] —
East S dee = e
e onn=n
k vk
5X.i,ECEF - XECEP o Xz‘,ECEP
Figure 8.2 Definition of Topocentric coordinates of an object (satellite) with an offset U from the

Topocentric Plane. The origin is defined as receiver I. Figure obtained from [10].
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k x ks k
? XECEF = [x Y % 0:|ECEF
i Satellite

(4th) D' &k

ECEF

(3rd) z

Xx‘,ECEF:|:x Yo & Df

L 2 £ :|ECEF

- : 2nd) y
Receiver j . ( ECEF

(1st) %ECEF J/ -------- .

X

Figure 8.3 Four Dimensional space system in satellite frame of reference. The four dimensions, from

first to fourth, are respectively Xpcpp> Yecpr> Zpcpr (ECEF Cartesian) and Dik
(uncertainty). Note that Delay only affects receiver position in the satellite frame of

reference.
_ _ . The dotted line represents the Least Distance Path of
All Receiver Positions are based on the ko _ B GPS Signal, from Satellite k to receiver i
same Epoch Time (i.e. Time of signal oPs 7o

’

received on ground)

E [k 3 I3
Xrcrr = [x Yoz 0:|ECEF
Represents the absolute satelite
position in the Satellite Frame of

Reference ie Delays only affect
Receiver Position.

But only the Correct Pseudorange gives
the Corrected GPS Transmission Time

Represents the
Xi,ECEF :[Il- Y & O]ECEF receiver position based
on Range only.

& " Represents the receiver
s + e —Xm\,,,ECEF . |:x1. V4 DJ-,P_MJECEF position based on Raw
Pseudorange only.
3 _ k
, DJ‘,P-clnck = Kight (d't - d‘!)
X v v

tk X],CUII’,ECEF = |:x1' y:' Z! (Dz',P-atm E D:',P-clock ):|ECEF

i,cpoch Represents the receiver position based on Corrected Pseudorange only
Figure 8.4 Four Dimensional Space in Satellite Frame of Reference, showing the relationships

between all Pseudoranges related GPS variables which illustrate the origin of the Single
Epoch Pseudorange Equation.
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The dotted line represents the Least Distance Path of

3
All Receiver Positions are based on the b P GPS Signal, from Satellite k to receiver |

same Epoch Time (i & Time of signal IGPS -
received on ground)

Plight

v [ gk k 3
Xpoer = [x LA ]ECEF
Represents the absolute satellite
position in the Satellite Frame of

Reference i & Delays only affect
Receiver Fosition.

But only the Correct Phase Distance gives
the Corrected GPS Transmission Time

Represents the
X porr :[-'R ¥, I O]ECEF receiver position based
on Range only.

i Represents the receiver
Q'ﬁ’*’““JECEF position based on Raw
Phase Distance only.

Dy e = Vi (- )

i

’r:’/r chh.clock =4 (¢Uk - ¢D’1 )

5 — i3 i3 i3
I's X],cnrr,ECEF - |:I!. yz' Z! (‘Di,@-atm + D:',P-clock + Dx’,@-clock ):|ECEF
i,cpoch Represents the receiver position based on Corrected Phase Distance only

Figure 8.5 Four Dimensional Space Diagram in Satellite Frame of Reference, showing the
relationships between all Phase Distances related GPS variables which illustrate the
origin of the Single Epoch Phase Equation.

(reference satellite) k l { non-reference satellites )

(Master) l j (Rover)

Figure 8.6 Definition of double difference observation between 2 satellites and 2 receivers. In this
report, Satellite K and | represent respectively reference and non-reference satellites;
Receiver | and ] represent respectively the Master and Rover receivers. Figure obtained
from [10].
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Key:

Symbolf (row number of matrix) { Description [unit]

Definition of Ephemeris Parameters provided by the ephemeris

Matrix in the row-wise direction.

k (1) Sateliite ID Ck {8) Satellite Perigee Perturbation C.k (18) Satellite Satellite Inclination
number uc | Argument Coefficient (cosine term) [rad] ig | Perturbation Argument Coefficient
{sine term) [rad]
k | (2) Satellite clock drift k | (9) Satellite Perigee Perturbation k | (16) Satellite Right Ascension
a aents7 | C Q
tp | rate coefficient [52] us | Argument Coefficient (sine term) [rad] 0 | Rate of ascending node K. [rad]
k k (10) SatelliteSatellite Orbit Radius a (17) Satellite Right Ascension
ﬂ() © Satlelllte C Pertubation Argument Coefficient Qk Rate of ascending node K {ie.
Aomay ¢ | (cosine term) [m] dhy/dt) [radis]
{4} Square root of E | (1) Satellite Orbit Radius Pertubation 193 Satellit h
i fak Satellite orbit's semi- Crs Argument Coefficient (sine term) [m] tfepoch Eec)eivsdeti‘nfee[g]oc
major axis [m?3] .
k| &) Satellite change .k {12) Satellite inclination [rad] k| (19) Satellite clock bias
An of mean angular 10 aﬂ) coefficient [s]
welacity [radis]
k | (6) Satellite orbit's 7 4 e k| (20) setelite clock arit
e eCCcentricity 10 {13) Satellite inclination rate [rad/s] aﬂ coefficient [57]
k | (N Satellite k i
(3] argument of perigee Cic {14) Satellite Inclination Perturbation £ “ t(\zr:gz E??#g?:g?;g&iﬁg;d
[rad] Argument Coefficient {cosine term) [rad]] - :

Figure 8.7 Ephemeris Parameters provided by an ephemeris matrix, derived from either a post-
processed RINEX or real-time Ashtech ephemeris file. These parameters expand in the
column-wise direction for all of the locked satellites. Note that only the ephemeris data
with a time that is immediately before the epoch time is used. Figure obtained from [8].

Status flag In a full observation
& {0=ok; =0 Mumnber of satellits signal file, many of these
EpoEhIns . means problem detectad ‘sections’ are
{yearimonthidayfhourfminute | | with this set of recorded downwards
fsecond) data) Satelite number in ascending order | g]bas;grizaiﬁdt‘i:r?e
a
ra— - manner
08 030400 55 U.UUUUUUd |U|’I ’Id}U GOSGI9G12G14G15618GI2G29GA0G32 I
24529313 273 | 128902393 01446 (245329312 522| 100443436 08247 | [
19995286 969 | 105075963 09749 19995286 017 | 81877374 65149 Measurement data
20752477 659 | 109055021 75148 20752476 811| | 84977953 43749 recorded for each
20448488 270 | 107447042 56409 (20448486 572| | 837249658 43409 satelite in
22131922 339 | 116304044 68645 (22131921 .014) | 90626515 595843 ascending Sate_\l\te
24626697 853 | 129414184 19006 (24626687 412| 100842250 62306 nurmber arder {if the
24235855 614 | 127360275 67046 24235854 560( | 99241772 22946 walle is Zero, it
23554590 548 | 123780198 14247 (23554588 159| | 96452093 52748 either means
23834080 273 | 125249001 37306 (23834089 866| | 975966720 00108 ‘missing data’ or
20915063 644 | 109909415 93249 (20915083 043| | 85643694 37549 ‘don‘tcare’ )
24168795 494 | 127007876 £8646) 24168795 057 | | 98957177 18047 I v
Li T T T =
Fseudorange Fhase Pseudorange Fhase An Example of a section of an
using C/A code measUrement using F code measuUrement abservation file obtained from
on L1 [m] on L1 [cyclg] on L2 [m] on L2 [cycle] the 15T receiver.
i i k P ;
}?uw %’rw }32 ¢ rar ¢21_,raw Taken from file ist1068a.080
Figure 8.8 Typical observation data arrangement in RINEX format. Figure obtained from Ref. [8].
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Step 1 Step 2
Read binary row Ashtech receiver data Reshape the raw column array into a new matrix

Use the MATLAB function bdata to read binary Ashiech observation
data file. Typical call bdata"Master Fife’,'Rover_Fila'}

Initially it is & 1 column long array Rover and Master data in a form

az shown below (with equal rows number blocks)
I (M| @] 3|4 |5 |(6)] ()

Size of reshaped matnx = (Total number of epochs divided by 7) by 7

'y

R 1 Epoch Time [s]

(2) Satellite ID numbear
= Total Rows =
Raw Pseudorange on L1
& | & £ Total number of
'Fl'f,uw cn'd.é:;:l KRT raw ohservations Step 3
ﬂ* ) It;'gl" SR AL LY {or epachs) Split the reshaped malrix
L ; Split the reshapad matrix into top (Rover) and bottom (Master) partz, and assign
Pk (5) R“;" Pseudorange on L2 them into two individual matrices. Since both pants are soned in ascending
24, reawe fcodefm] | epoch time order, this 'split line” is defined a5 the only jump® of epoch time

K Raw Phase on L2 code
& cow © | fcycles)

2 @ [ o @@ |@ (e e

Block size:
{tatal number of epochs Master M@ @ @ |5 (6) | (7)
-— e divided by 7} rows data
1 column =
Step 4 Step 8
Use the Rover data {lgnore Master data for now): Create ‘good’ observation data matrices for rover
= Compute the mean elevation angle for each satellite Mow, split the good cbservation data into two individual matrices. Cne

for the reference satellite only (nhamed ‘datarrer), and the other one for
the non-reference satellites (named “datar) only. Mote that the matrices
Step 5 are ascendingly sorded by Satellite 1D number first, then epoch time.:

- Compute the total number of epoches for each satellite

Datermine the refarence satelie: Size of [datamed] = number of good reference satellite observation by 7

The reference satellite iz the one with the most epochs | (1} | (2] | (3) [ (4) I (5) {s) I (T) |
If there are mare :han_une satellite thal satrsfies this condition,
choose the satefita with the largest mean elevalion angle. Size of [datamei] = number of good non-reference satellite obse rvation by 7

If there are more than one satellite that shate this same
largest mean elavalion angle, just choose the one with the
lowest satellie ID number

Step 6 (M| @] @@ B (6 @

Bad observations are the ones with satellie slevation angle
that iz lezs than 15 degrees (e, low satelltes). dentify these ( Fim';' Step 9
bad observations and exclude them in step 7.

Create ‘good’ observation data matiices for Master

Step 7 Simply rapeat Step 4 1o Step 8, but with Master receiver data (obtained
- . i from (Step 3) instead of Raver's . The size of these matrices an
5 thi d° ohservation data:
R i S A ol deserbed the same as in Step 8 (named ‘datarmrel” for the reference
From the Rover data obtained in step 3, delete the bad data salellile and ‘datam’ for the non-reference satellites.)

(identified from step B). This final Rover data now contains
only the good observations

Summary of ash_dd.m
= Input (to read binary Ashtech observation files)
+ bdata{’Masfer_observalion_file' | Rover_observalion_filg')
= In this report bdata(’ b0810a94.076 "H005a 076 )
—  Output (‘raw’ observablas) in Matrix farm
[datar] - Rover observables (relating to non-reference satellites)
[datam] = Master aobservables (relating to non-referance satellites)
[datarref] - Rover cbservables (relating to reference sateliite)
[datamraf] — Master observables (relating to reference satellite)
»  MNumber of rows of these matnces corresponds to total number of good observations or epochs
»  Observables in colum wise direction are

#1 #2 #3 #4 #5 #6 #7
Satellite 10 k k L
':Fftpoch nurmnber Blzkr\m' él:,ruw ‘P]:,rw #2:,““' EL
Figure 8.9 From the figure, Step 1 shows s typical observation data arrangement in Ashtech format.

The rest of the figure shows the process in preparing the 4 sets of observation matrices
(which is done by the MATLAB code ash_dd.m) required by the double difference
computations. Figure obtained from [8].
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Figure 8.10 Modeling of Grid Hemisphere for the Grid Point Method. Note that this Grid Hemisphere
is based on an assumption of 18 grid points in the azimuth directions at each contour
angle, 8 points in the contour direction at each azimuth angle, and also 1 grid point at the
(top) centre of the grid hemisphere. This makes a total of N, = [(l 8x 8) + l] =145
grid points in total.
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Figure 8.11 Definition of Spherical Triangle: it is used in the routine updating process within the Grid

Point Method in estimating the receiver position, in terms of latitude and longitude.
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Computation of IST's Latitude over an observation period of 1 hour
Start Time: 2008-March4th-00:00:00
End Time: 2008-March-4th-00:59:55

e COM Lrtalmnalvafue%;cods) Mayi File:
ot ol et e AP gation File: ist1064a.08n
—_— Clgmputa!innalvglue{ code) Observation File: ist1064a 080
90 4
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60 4 |
50 [@”‘\x -
A0 o e e s __\k'_ — 7 % ] % fc-
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Start of observation Time (minute) End of observation

Latitude (degree Northward)

Figure 8.12 The best guess of IST receiver Latitude based on Grid Point Method. Ephemeris and
Observation files are respectively ‘ist1064a.08n’ and ’ist1064a.080° run over the
observation data from first to last epoch.

Computation of IST's Longitude over an observation period of 1 hour
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Figure 8.13 The best guess of IST receiver position in terms of Latitude based on Grid Point Method.
Ephemeris and Observation files are respectively ‘ist1064a.08n’ and ’ist1064a.080” run
over the observation data from first to last epoch.
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Figure 8.14 This figure illustrates the effect of the routine updating procedure and Iteration process as

described in the Grid Point Method. Each newer guess has a smaller value of sum of the

double differenced residues. Data file in RINEX format are used: ‘ist1064a.08n’ and

’ist1064a.080°.
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Elimination of 'Bad’ Observation from low satellite Count total number of epochs of the selected satellites
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Figure 8.17 Figure on the Left shows the average Elevation Angles of each locked satellite measured

by the Master receiver. The Cut off angle as been set to 15 degrees to filter out the ‘low’
satellites (satellite 7, 12, 17 and 31); the Right figure counts the total number of epochs
received from each of the non-filtered satellites. It should be noted that the satellite with
the most epochs (1 choice) and highest average elevation angle (2™ choice) is the
reference satellite. i.e. satellite 26 is selected as the reference satellite.
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Figure 8.18 Visualization of a typical Satellite Trajectory in Inertial Earth Frame Reference. Satellite
number 1 is used here for illustration purpose. Ephemeris data is based on the IST
receiver data ‘ist1064a.08n’. The Trajectory is plotted at a time interval of 1 hour, with
Start Time 2000 — Janurary - Day 1 — 00:00:00, over a total duration of 24 hours. The plot
is normalized with respect to the WGS Earth Semi-major axis. The Solar Longitude is the
angle measured from the Solar X axis, in the Eastward direction. Latitude is essentially
the ECEF Latitude. It should be noted that, the satellite orbit the Earth for about twice per
day (i.e. 24 hour). Main script: jc_ist10641_orbit_in_c2gm.m
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Figure 8.19 Figures on the Left show the Wide-lane Ambiguities for all epochs between the

Reference and Non-reference satellite; the figures on the Right show the Ionosphere
Delay computed for all epochs between the Reference and Non-reference satellites.

(Johnny) Chun-Ning Chan, Imperial College London

48



Advance NAVSTAR-GPS Positioning Techniques for UAVs 30 May 2008

8.2. Nomenclature

This section summarizes the main symbols used within the report. Descriptions of symbols that
are not in this section should be found within the report. It should also be noted that this section
acts a ‘reference’ only. The report should have defined the meanings for all of these symbols
within the main Chapters already.

8.2.1. General Notation for satellite and receiver
Superscript K Usually represents observed satellite. There can be up to m satellites.
Subscript | Usually represents receiver.

8.2.2. Geodesy
a WGS Earth Semi-major Axis: a= 6378137 m

f WGS Earth Flatness Parameter (this is not the code frequency here!):
f =298.257223563

kM WGS 84 Earth Gravitational constant including the mass of the Earth’s atmosphere:
kM =3986005x10° m’/s’

, WGS Earth Rotational Speed: @, =7292115.1467 x 107" rad/s

light WGS Speed of Light: V,,, =299792458 m/s
k u
X Solar Cartesian Coordinate: X * = [Xk y© ZECEF]
Xecer ECEF Cartesian Coordinate: X ... = [XECEF Yecer  Zecer ]T

Xpcergeo  ECEF Geographical Coordinate: ) h]T > ¢, A and h are
respectively the Latitude, Longitude (this is not the Signal Wavelength here!) and
Ellipsoidal Height.

k
i topocentric

u .
=[e n u] - €, N and U are respectively

the Eastward Distance, Northward Distance and Vertical Upward Distance. It
measures the position of an object K (satellite) with respect to the origin i (receiver).

k . .
Xi,topocemric Topocentric Coordinate: X

X7 Zenith Angle: the angle between the Earth spinning axis and the line linking between
satellite and receiver.

EL Elevation Angle: the angle between the Topocentric Plane and the line linking
between satellite and receiver.

a Azimuth Angle: the angle measured from the North direction (i.e. North being zero
degree) clockwise towards the East direction (90 degree), then South (180 degree),
then West (270 degree), then back to North (360 or zero degree).

RX The Third Rotational Matrix that carry out transformation between Solar Coordinate
and ECEF Cartesian Coordinate. It is a function of the Earth Rotation Speed @, and
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the Correct Signal Travel Time Tik .

p Earth Planer Distance: the distance measured from the Earth Spinning Axis to a
point in space and it’s parallel to the plane shared between the X and Y g -
r Radial Distance between the Earth Spinning Axis to a point in space, with this line
perpendicular to the WGS ellipsoidal surface.
R Radius of Curvature about the Earth’s spinning Axis.
dp Residue in the Planner Distance direction.
dZpcer Residue in the Earth Spinning Axis direction.
F The Topocentric Transformation Matrix that carries out transformation between
ECEF Coordinates and Topocentric Coordinate. It is a function of Latitude and
Longitude.
SX/! .  The vector measured from receiver I to satellite K
8.2.3. Global Positioning System (GPS)
JD Julian Day: the number of days counting from 4713 B.C., January, day 1,
12:00:00
IDips ctandand epoch Julian Day of GPS Standard Epoch: the Julian Day of 1980 AC, January, day
- h 6, 00:00:00
tops week GPS week number of the satellite since the Julian Day of GPS Standard Epoch
Tips second of week GPS time: this is the ‘seconds’ of the GPS week. It is within the range of
T between 0 and 604800 seconds.
f Code Frequency (this is not the Earth Flatness Parameter here!). Subscript ‘1’
and 2° corresponds to L1 and L2 code frequency respectively.
f = 1575.42x10° Hz ; f,= 1227.60x10° Hz
A Signal Wavelength (this is not the Longitude here!). Subscript ‘1’ and ‘2’
corresponds to L1 and L2 code frequency  respectively.
A, =0.190293672 m; A, =0.244210213 m.
tik . Time of Epoch (in GPS time. i.e. seconds)
,epoc!
pX Raw Pseudorange (in meters) obtained directly from observation file.
b Subscript ‘1° and ‘2’ corresponds to L1 and L2 code respectively.
¢k Raw Phase (in cycles) obtained directly from observation file. Subscript ‘1’
b and ‘2’ corresponds to L1 and L2 code respectively.
OR Raw Phase Distance (in meters) based on Raw Phase. Subscript ‘1’ and 2’
b corresponds to L1 and L2 code respectively.
Pik Range: The calculated distance between Satellite K and receiver I assuming

no delay or error.
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Tk

Dk

i,®-clock

Dk

i,P-atm

Dk

i,0-atm

Troposphere Delay (distance) between Satellite K and receiver i
Tonosphere Delay (distance) between Satellite K and receiver i

Ambiguity between Satellite k and receiver i. Subscript ‘1> and 2’
corresponds to L1 and L2 code respectively.

Systematic Error of the Raw Pseudorange.

Systematic Error of the Raw Phase Distance.

Pseudorange Clock Delay due to the satellite clock offset dt* and receiver
clock offset dt.. Note that dt, is always assumed to be zero (i.e. it is
embedded into the systematic error term)

Phase Clock Delay due to the satellite initial phase ¢(;( and receiver initial

phase ¢,; recorded.

Pseudorange Atmospheric Delay: It is contributed by the Ionosphere Delay
and Troposphere Delay.

Phase Atmospheric Delay: It is contributed by the Ionosphere Delay,
Troposphere Delay and Ambiguity induced uncertainty.

Corrected Pseudorange: The Pseudorange that has taken the Pseudorange
Atmosphere Delay, Pseudorange Clock Delay and Systematic Error into
account.

Corrected Phase Distance: The Phase Distance that has taken the Phase
Atmosphere Delay, Pseudorange Clock Delay, Phase Clock Delay and
Systematic Error into account.

Corrected Signal Travel Time: based on the Corrected Pseudorange.
Raw GPS Transmission Time: based on the Raw Pseudorange.
Corrected GPS Transmission Time: based on the Corrected Pseudorange.

Time of Elapse of Satellite K based on the corrected GPS Transmission Time
and Time of Epoch.

Mean Anomaly of satellite K at time tf

Eccentric Anomaly of satellite K at time t Jk

True Anomaly of satellite K at time t Jk

Longitude for Ascending Node of satellite K at time tf
Argument of Perigee of satellite K at time t;(

Radial Distance of satellite K at time t;‘
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Qk

Inclination of satellite K at time t J!(
Row 1 of Ephemeris Matrix: satellite ID Number

Row 2 of Ephemeris Matrix: satellite Clock Drift Rate Coefficient [s-2]
Row 3 of Ephemeris Matrix: satellite Anomaly

Row 4 of Ephemeris Matrix: Square root of satellite orbit’s semi-major axis of
[m05]

Row 5 of Ephemeris Matrix: satellite Change of Mean Angular Velocity
[rad/s]

Row 6 of Ephemeris Matrix: satellite Orbit’s Eccentricity
Row 7 of Ephemeris Matrix: satellite Argument of Perigee [rad]

Row 8 of Ephemeris Matrix: satellite Perigee Perturbation Argument
Coefficient (cosine term) [rad]

Row 9 of Ephemeris Matrix: satellite Perigee Perturbation Argument
Coefficient (sine term) [rad]

Row 10 of Ephemeris Matrix: satellite Orbit Radius Pertubation Argument
Coefficient (cosine term) [m]

Row 11 of Ephemeris Matrix: satellite Orbit Radius Pertubation Argument
Coefficient (sine term) [m]

Row 12 of Ephemeris Matrix: satellite inclination [rad]
Row 13 of Ephemeris Matrix: satellite inclination rate [rad/s]

Row 14 of Ephemeris Matrix: satellite Inclination Perturbation Argument
Coefficient (cosine term) [rad]

Row 15 of Ephemeris Matrix: Satellite Satellite Inclination Perturbation
Argument Coefficient (sine term) [rad]

Row 16 of Ephemeris Matrix: satellite Right Ascension Rate of ascending
node K. [rad]

Row 17 of Ephemeris Matrix: satellite Right Ascension Rate of ascending

(Johnny) Chun-Ning Chan, Imperial College London 52



Advance NAVSTAR-GPS Positioning Techniques for UAVs

30 May 2008

8.2.4.

total
azimuth

contour

2%
Zy
?;

a;

AL

]

RES

8.2.5.

<
I1l
>

r

ashtech

h

S

node K [rad/s]
Row 18 and 21 of Ephemeris Matrix: satellite epoch received time [s]
Row 19 of Ephemeris Matrix: satellite clock bias coefficient [s]

Row 20 of Ephemeris Matrix: satellite clock drift coefficient [s-2]

Grid point method
Initial Grid Point Latitude

Initial Grid Point Longitude
Total number of grid points on the grid hemisphere
Total number of grid points in the azimuth direction at each constant contour

Total number of grid points in the contour direction at each constant azimuth
angle

New estimate of Grid Point Latitude
New estimate of Grid Point Longitude

Constant Radius Angle between the central axis of the grid hemisphere and the
grid point itself

Azimuth Angle of grid point, with origin of the Topocentric Plane being the
central axis of the grid hemisphere.

Change of Longitude when move from one grid point to the other one.
Residues: this is the overall systematic error of the least square solution.

Sum of Squares of Residue: Best estimation has a minimum value of this.

Baseline estimation & Separation of Ambiguities
Jacobian Matrix

Master Receiver Position in ECEF Cartesian Coordinate
Rover Receiver Position in ECEF Cartesian Coordinate
Antenna Correction Height

Ashtech Antenna Radius

Slope Distance of Antenna
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8.3. MATLAB Scripts & GPS Files

This section summarizes all the relevant MATLAB scripts used in Chapter 4 (Grid Point
Method) and Chapter 5 (Baseline Estimation and Separation of Ambiguities). These MATLAB
scripts are obtained from [1], which have been studied and used for illustrations. It should be
noted that the “Main Script’ is the one that can be run directly for the corresponding illustrations
(i.e. The Main script acts as the main body that links all the other sub-codes together.). The main
scripts ‘recpos_test cl.m’, ‘recpos_test_p2.m’ and ‘jc_ist10641_orbit_in_c2gm.m’ are the only
main scripts that have been modified manually for the corresponding illustration purpose.

8.3.1. Grid Point Method
recpos_test cl.m The Main Script to illustrate the Grid Point Method base on L1 code data.
recpos_test_p2.m The Main Script to illustrate the Grid Point Method base on L2 code data.
ist1064a.08n Post-processed RINEX Ephemeris Data File of IST receiver used.
ist1064a.080 Post-processed RINEX Observation Data File of IST receiver used.
b_point.m Prepares input to the Bancroft algorithm for finding a preliminary position

of a receiver. The input is four or more pseudoranges and the coordinates
of the satellites.

check_t.m Repairs over- and underflow of GPS time
deg2degD.m Converts Degree/Minute/Second into Degree in decimal format
find_eph.m Finds the proper column in ephemeris array (i.e. Only the data that is

immediately before the epoch time is used for that satellite)

frgeod.m Subroutine to calculate Cartesian coordinates X,Y,Z given geodetic
coordinates latitude (North), longitude (East), and Ellipsoidal Height
above reference ellipsoid along with reference ellipsoid values Semi-major
axis and the inverse of Flatness Parameter

get_eph.m The ephemerides contained in ephemerides file (output by rinexe.m) are
reshaped into a matrix with 21 rows and as many columns as there are
ephemerides.

gps_time.m Conversion of Julian Day number to GPS week and Seconds of Week
reckoned from Saturday midnight

julday.m Convert Universal Time (Year/Month/Day/Hour) into Julian Day

rinexe.m Reads a RINEX Navigation Message file and reformats the data into a

matrix with 21 rows and a column for each satellite. The matrix is stored
in an output file for get_eph.m

satpos.m Calculation of X,Y,Z Solar Coordinates in an ROTATIONAL reference
frame at the Corrected GPS Transmission Time with given Ephemeris
Matrix

togeod.m Subroutine to calculate ECEF Geographical coordinates (Latitude,

Longitude, Ellipsoidal height) given ECEF Cartesian coordinates and
WGS Earth Semi-major Axis and the inverse of Flatness Parameter
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8.3.2.

ash_base.m

b0005a94.076
b0810a94.076
€0810a94.076
s0005a94.076
50810a94.076
ash_dd.m

b_point.m

bancroft.m

bdata.m

check t.m
d2dms.m

e_r_corr.m

edata.m

find_eph.m

get_eph.m

get_rho.m

gps_time.m

julday.m
lorentz.m

satpos.m

Baseline Estimation & Separation of Ambiguities

The Main Script to illustrate the Method of Baseline Estimation &
Separation of Ambiguities.

Rover receiver observation data file used.
Master receiver observation data file used.
Master receiver ephemeris data file used.
Rover receiver antenna data file used.
Master receiver antenna data file used.

Arrangement and Formatting of Double Differenced Code and Phase
Observations.

Prepares input to the Bancroft algorithm for finding a preliminary position
of a receiver. The input is four or more pseudoranges and the coordinates
of the satellites.

Calculation of preliminary coordinates for a GPS receiver based on
pseudoranges to 4 or more satellites. The ECEF coordinates (see function
e_r_corr) are the first three elements of each row of B. The fourth element
of each row of B contains the observed pseudorange. Each row pertains to
one satellite.

Reorganization of binary P-code data as resulting from Z-12 receiver Input
of b-files from master and rover.

Typical call: bdata('b0810a94.076','60005294.076")
Repairs over- and underflow of GPS time
Conversion of radians to degrees, minutes, and seconds

Returns rotated satellite ECEF coordinates due to Earth rotation during
signal travel time

Reads a binary ephemeris file and stores it in a matrix with 21 rows;
column number is the number of ephemerides.

Typical call: edata('e0810a94.076")

Finds the proper column in ephemeris array (i.e. Only the data that is
immediately before the epoch time is used for that satellite)

The ephemerides contained in ephemerides file (output by edata.m) are
reshaped into a matrix with 21 rows and as many columns as there are
ephemerides.

Calculation of distance in ECEF system between satellite and receiver at
time given the Ephemeris Matrix

Conversion of Julian Day number to GPS week and Seconds of Week
reckoned from Saturday midnight

Convert Universal Time (Year/Month/Day/Hour) into Julian Day
Calculates the Lorentz inner product of the two 4 by 1 vectors x and y

Calculation of X,Y,Z Solar Coordinates in an ROTATIONAL reference
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sdata.m

togeod.m

topocent.m

tropo.m

8.3.3.

frame at the Corrected GPS Transmission Time with given Ephemeris
Matrix

Reading of antenna offsets. The 2 antenna heights are saved as h =

["rover"; "master"].
Typical call: sdata('s0810a94.076','s0005294.076")

Subroutine to calculate ECEF Geographical coordinates (Latitude,
Longitude, Ellipsoidal height) given ECEF Cartesian coordinates and
WGS Earth Semi-major Axis and the inverse of Flatness Parameter

Transformation of vector (from receiver to satellite) into Topocentric
coordinate (of satellite) system with origin at the receiver. Both parameters
are 3 by 1 vectors. Output: Vector length in units like the input (e.g.
meter); Azimuth from north positive clockwise (degrees); Elevation Angle
(degrees)

Calculation of Troposphere correction. The range correction ddr in meters
is to be subtracted from pseudo-ranges and carrier phases

Visualization of Satellite Trajectory

jc_ist10641 orbit_in_c2gm.m Main Script: This program plots the trajectory of a typical

satellite (satellite 1 is used) base on the ephemeris file
‘ist1064a.08n” obtained from the IST receiver. The WGS 84
Earth Model is also modeled. The plot is in an inertial Earth
Frame System and is presented in Solar Cartesian Coordinate.
The plot is normalized with respect to the WGS Earth Semi-
major axis.
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8.4. Method of Least Square for DGPS

Within the DGPS computation, large sample of double differenced observables (i.e. pseudoranges
and phase distances) from different epochs are used to determine a best fit for the 4 main
unknown variables (i.e. X, y, z Cartesian coordinates of receiver, and the delay distance). This
best fitting procedure is known as Method of Least Square. To begin this procedure, first define
the system of linear algebra for each set of DGPS observables of one epoch:

Ax=b-e (2.1)
where A is the Design Matrix with size (m —l)by 4; X is the unknown vector to solve, with
size 4 byl; b is the known vector with size (m—l) by 1 ; € is the systematic error wit size
(m — 1) by 1. Method of Least Square initially assumes the systematic error term equals to zero.
This leads to the least square form:

A% =D 2.2)
The ‘hat’ represents estimated variables. The general way for solving X follows the following
steps. First multiply both sides by (ATW ) , where the superscript T represents transpose; W the

weighted matrix with size (m - 1) by (m — 1) .
ATWAX = AWD (2.3)

where (ATWA) is called the Information Matrix; (AWB) the General Right Side Matrix. To

solve for X, simply rearrange (2.3):
%=(AWA) " AWb 2.4)

Since all terms on the right hand side (RHS) are known, the unknown X can be solved. It should
be note that, as more information (from many epochs) are included in the computation as defined
by (2.4), this estimated solution X gradually updates itself and produces a minimum error € with
respect to the exact solution X of each epoch. This minimum error can be defined as follow, base
on (2.1):

e=b- A% (2.5)

Now define the Residue, denoted by RES , of each epoch as the absolute value of this minimum
error term:

RES =|e| (2.6)

This whole process as described above summarizes the Method of Least Square. It has been used
in the Grid Point Method, Bancroft Method and Jacobian Method.
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