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Abstract 
Global Positioning System (GPS) has been one of the most successful aerospace applications 
invented by mankind. During the past decades, this technology has undergone stages of 
development in order to improve its reliability, accuracy and widespread implementation. 
Motivated by the introduction of Unmanned Aerial Vehicles (UAVs) by the military, GPS has 
become an important tool in providing real-time positioning of the vehicles, enabling the ground 
base headquarter to carry out direct remote control of UAVs.  

The aim of this report is to summarize student’s learning outcome on Differential GPS (DGPS) 
over the 17 weeks stay at Institute of Systems and Robotics (ISR), Instituto Superior Técnico 
(IST), Lisboa. The report will start by presenting the fundamentals on Geodesy and GPS, and  
direct implementation and development of the existing MATLAB scripts (used all over the 
document), based on readily available receiver data. This provides the two main illustrations:  

(1) Preliminary position estimation of IST receiver using Grid Point Method;  

(2) Separation of ambiguities and baseline vector estimation between the Master and 
stationary Rover receivers, which uses both Bancroft and Jacobian Methods.  

Due to the limiting time constraint on this project, only stationary receiver applications are 
exploited and dealt with. The 7 progress reports and corresponding MATLAB scripts are attached 
along with this report for completeness. At the end of this report, a brief conclusion is presented. 
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1. Introduction 
Global Positioning System (GPS) is one of the most innovative and practical technology 
developed today. The scope of GPS is vast: from data acquisitions and processing, to detailed 
computational algorithm in position estimations. The aim of this report is to describe and explain 
the fundamental techniques of GPS introduced by [1] in the most clear and logical manner, and to 
provide illustrations through diagrams and algebraic expressions. A number of readily available 
MATLAB scripts from [1] are also studied and implemented in order to illustrate the methods, 
hence enabling us to visualize the overall system relations. 

The main principle of GPS in estimating the position of a stationary receiver is to acquire 
accurate distances between all locked satellites and receiver, and subsequently obtain a fix on the 
receiver position. This can be illustrated in the following simplistic model.  

Assume the whole system is perfect (where no clock errors and other delays exist), the distance 
between each satellite and the stationary receiver can be simply expressed as the difference 
between signal transmission time and signal receive time, multiplied by the speed of light. These 
assumed error-free distances can be visualized as ‘rigid bars’, linking between each satellite and 
the receiver. Under this error-free environment, there is theoretically only one fix point where all 
these ‘rigid bars’ intersect. In the 3-dimensional space where we are all accustomed to, at least 3 
of these ‘rigid bars’ are required to provide this fix (i.e. at least 3 satellites are required). This fix 
is the point position of the receiver (see Figure 1). 

In reality errors do exist within each of these measured distances. For instant, if the satellite and 
receiver clocks are offset by a small amount say 1 millisecond, the error in this measured distance 
would be 1 millisecond multiplied by the speed of light, which is about 100 meters. On top of 
such clock errors, there also exist other signal delays caused by the atmosphere and local 
environment, which can increase this uncertainty as well. 

In order to incorporate with such uncertainties, a major technique that is used within this report is 
Double Difference, which uses differences of distances rather than the absolute distances. This 
technique is called Differential GPS (DGPS), which largely reduces the sensitivity of methods to 
the existing errors. 

In this work only stationary receiver applications are considered. It starts from Chapter 2 by 
introducing the fundamentals of Geodesy; moving on to GPS in Chapter 3. The report then go on 
further to direct implementations of existing techniques using post-processed RINEX data and 
algorithms in estimating IST receiver position using the Grid Point Method in Chapter 4. In 
Chapter 5, Real-time Ashtech data from a Master and stationary Rover receivers are used to 
illustrate a Baseline Estimation and Separation of Ambiguities method. In Chapter 6 a 
Conclusion is presented to summarize main learning outcomes of this report. 

 
Figure 1 The concept of GPS is that the distances between the satellites and receiver (measured by 

the receiver) produces a ‘fix’, which determines the position of the receiver. 
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2. Geodesy  

2.1. Geodetic Reference System 
There exist a number of geodetic reference systems that represent the Earth geometry as different 
ellipsoidal models, for example, the Clarke 1866 (NAD 27), Geodetic Reference System 1983 
(NAD 83) and World Geodetic System 1984 (WGS 84). For consistency and according to most of 
the GPS applications, only WGS 84 is used throughout the whole of this report. Details regarding 
the WGS 84 are described in detail in the sub-section below. 

2.1.1. World Geodetic System 1984 (WGS 84) 
The Earth model represented on WGS 84 is considered to be a global ellipsoid, in which the 
ellipsoidal centre aligns perfectly with the Geoid centre (i.e. the real centre of mass of Earth). 
This WGS 84 ellipsoidal model has the following parameters that are well defined. 

The semi major axis a : 

 6378137 ma =  (3.1) 

The (dimensionless) Earth flatness parameter f : 

 298.257223563f =  (3.2) 

The Earth Gravitational constant (including the mass of the Earth’s atmosphere) kM  along with 
its standard deviation kMσ : 

 8 3 33986005 10  m /skM = ×  (3.3) 

 8 3 3
kM 0.6 10  m / sσ = ×  (3.4) 

The Earth’s rotational rate eω  along with its standard deviation 
eω

σ : 

 11
e 7292115.1467 10  rad/sω −= ×  (3.5) 

 
e

11
ω 15 10  rad/sσ −= ×  (3.6) 

The Speed of Light in vacuum lightV : 

 light 299792458 m/sV =  (3.7) 

In order to maintain consistency with GPS calculations within this project, it is re-emphasized 
that only WGS 84 parameters are used. 

2.2. Coordinate System 
Within the GPS calculations, the position of a point in space can be expressed in different 
coordinate system for suiting different types of GPS calculations. Within this project, there are 
four types of coordinate systems used, namely the Solar Cartesian, Earth-Centered-Earth-Fixed 
(ECEF) Cartesian, ECEF Geographical, and Topocentric coordinate systems. These four main 
coordinate systems are described in detail in the following sub-sections. 
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2.2.1. Solar Cartesian 
Solar Cartesian coordinate system is an astronomical coordinate system, in which the 3 main 
reference axes are the Earth spinning axis ‘ ECEFz ’, the vernal equinox ‘ x ’ and the axis that is 
perpendicular to the other two axes ‘ y ’. The Solar Cartesian coordinate of satellite k  is 
expressed as follow: 

 ECEF

Tk k k kX x y z⎡ ⎤= ⎣ ⎦  (3.8) 

When computing the satellite positions, the outputs are in Solar Cartesian coordinates. 

2.2.2. ECEF Cartesian 
ECEF Cartesian coordinate system is defined by the 3 main reference axes: the Earth spinning 
axis ‘ ECEFz ’, the axis that cuts both the equatorial plane and Greenwich Meridian ‘ ECEFx ’, and 

the axis that is perpendicular to the other two axes ‘ ECEFy ’. The position of a point (which can be 
either satellite or receiver) in ECEF Cartesian coordinate system is expressed as follow: 

 [ ]ECEF ECEF ECEF ECEF
TX x y z=  (3.9) 

These 3 components within the ECEF Cartesian coordinate are defined in Figure 8.1. 

2.2.3. ECEF Geographical 
ECEF Geographical coordinate is defined in terms of Latitude ‘ϕ ’, Longitude ‘λ ’ and 
Ellipsoidal Height ‘ h ’ (perpendicular to ellipsoidal surface).  The position of a point (which can 
be either satellite or receiver) in ECEF Geographical coordinate system is expressed as follow: 

 [ ]ECEF,geo
TX hϕ λ=  (3.10) 

These 3 components within the ECEF geographical coordinate are defined in Figure 8.1. 

2.2.4. Topocentric 
Topocentric coordinate define the position of the object k  relative to the receiver i . This 
coordinate system It is defined by the 3 main reference axes, with the origin being defined as the 
receiver i : The axis that points to the North and parallel to the ellipsoidal surface ‘ n ’, the axis 
that points to the East and parallel to the ellipsoidal surface ‘e’, and the axis that is perpendicular 
to the other two axes (i.e. perpendicularly upwards with respect to the ellipsoidal surface) ‘u ’. 
The position of satellite k  relative to the receiver i  is expressed as follow: 

 [ ],topocentric
Tk

iX e n u=  (3.11) 

The plan in which both e  and n  lie is called the Topocentric Plane (Figure 8.1 and Figure 8.2). 
The azimuth angle α  is defined as the angle lying on the Topocentric plane, measured clockwise 
from the axis n .  The vector measured from receiver i  to satellite k  is denoted by ,ECEF

k
iXδ  . 

The zenith angle Z is the angle between the spinning axis and ,ECEF
k
iXδ . EL  is the elevation 

angle of satellite k  seen by the receiver i . These parameters can be defined as follow: 
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2 2

zenith angle,   z arctan e n
u

δ δ
δ

⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.12) 

 elevation angle,    90 zEL = °−  (3.13) 

 arzimuth angle,   arctan e
n

δα
δ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.14) 

2.3. Conversions of Coordinate Systems 
Within the GPS calculation, conversion of coordinate systems occurs very often in order to 
satisfy the type of GPS calculation that is to carry out. The following sub-sections show the four 
main conversions that are used within this report. 

2.3.1. Solar Cartesian to ECEF Cartesian 
To convert Satellite Solar Cartesian coordinate kX  to ECEF Cartesian coordinate ECEF

kX , first 

define the Third Rotational Matrix 3R : 

 

( ) ( )
( ) ( )

e e

3 e e

cos sin 0

sin cos 0

0 0 1

k k
i i

k k k
i iR

ω τ ω τ

ω τ ω τ

⎡ ⎤
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.15) 

where eω  is the WGS 84 rotational speed of Earth (Chapter 2.1.1); k
iτ  is the Corrected Signal 

Travel Time (will be discussed later) from Satellite k  to Receiver i . The ECEF Cartesian 
coordinate of satellite k  is defined as follow: 

 ECEF 3
k kX R X=  (3.16) 

2.3.2. ECEF Cartesian to ECEF Geographical 
To convert from ECEF Cartesian coordinate ECEFX  to ECEF Geographical coordinate ECEF,geoX  

an iterative approach as suggested by [1] is used. First, the Longitude λ  can be computed 
directly, which is the final value: 

 ECEF

ECEF

arctan y
z

λ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (3.17) 

Define the planar distance p : 

 2 2
ECEF ECEFp x y= +  (3.18) 

Define the distance between Earth spinning axis and ECEFX : 

 2 2
ECEFr p z= +  (3.19) 
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Initial guess of Latitude 0ϕ : 

 ECEF
0 arcsin z

r
ϕ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (3.20) 

Initial guess of ellipsoidal height 0h : 

 ( )2
0 01 sinh r af ϕ= − −  (3.21) 

where a  and f  are the WGS 84 Earth semi-major axis and Flatness parameter respectively 
(Chapter 2.1.1). Now define a reasonable tolerance hφε  for iteration purpose: 

 20
hφ 1 10ε −= ×  (3.22) 

Initialization of parameters for the iteration: 

 old 0ϕ ϕ=  (3.23) 

 old 0h h=   (3.24) 

The iteration process is summarized between (3.25) and (3.31), with the stopping criterion 
defined in (3.32): 

 
( ) 2

old2 sin
aR

a f f ϕ
=

− −
 (3.25) 

 ( )old oldcosdp p R h ϕ= − +  (3.26) 

 ( )( )( )ECEF ECEF old old1 2 sindz z R f f h ϕ= − − − +  (3.27) 

 ( )new old old ECEF oldsin cosh h dz dpϕ ϕ= + +  (3.28) 

 old ECEF old
new old

new

cos sindz dp
R h

ϕ ϕϕ ϕ −
= +

+
 (3.29) 

 old newh h=  (3.30) 

 old newϕ ϕ=  (3.31) 

where dp  and ECEFdz  are respectively the residues in the planar distance and ECEFz direction; R  
the Radius of Curvature. The Stopping Criterion for the above iteration is defined as: 

 2 2
ECEF hφdp dz ε+ <  (3.32) 

When this Stopping Criterion is reached, the final iterative values for latitude ϕ  and ellipsoidal 
height h  are therefore respectively the values as defined in (3.31) and  (3.30). 
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2.3.3. ECEF Geographical to ECEF Cartesian 
To convert from ECEF Geographical coordinate ECEF,geoX  to ECEF Cartesian coordinate ECEFX , 
first, define the Radius of Curvature R  as: 

 
( ) 21 2 sin

aR
f f ϕ

=
− −

 (3.33) 

where a  and f  are the WGS 84 Earth semi-major axis and Flatness parameter respectively 
(Chapter 2.1.1). The three components of the ECEF Cartesian coordinate can be computed: 

 ( )cos cosECEFx R h ϕ λ= +  (3.34) 

 ( )cos sinECEFy R h ϕ λ= +  (3.35) 

 ( )( )21 sinECEFz f R h ϕ= − +  (3.36) 

2.3.4. ECEF to Topocentric 
To convert from ECEF Geographical coordinate ECEF,geoX  and ECEF Cartesian coordinate 

ECEFX  to ECEF Topocentric coordinate ctopocentriX , first define the Topocentric Transformational 
Matrix F : 

 [ ]F e n u=  (3.37) 

where e , n  and u  are the Topocentric unit vectors in the direction of East, North and Vertical 
Upward respectively. These unit vectors are defined as follow: 

 [ ]sin cos 0 Te λ λ= −  (3.38) 

 [ ]sin cos sin sin cos Tn ϕ ϕ λ ϕ= − −  (3.39) 

 [ ]cos cos cos sin sin Tu ϕ ϕ λ ϕ=  (3.40) 

The vector from the Receiver i  to Satellite k  is defined as: 

 ,ECEF ECEF i,ECEF
k k
iX X Xδ = −  (3.41) 

where ECEF
kX  and ,ECEFiX  are the ECEF Cartesian coordinates of Satellite k  and Receiver i  

respectively. The Topocentric coordinate ,topocentric
k
iX  can be computed directly as follow: 

 ,topocentric ,ECEF
k T k
i iX F Xδ=  (3.42) 
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3. Global Positioning System (GPS) 

3.1. Post-processed RINEX Format data 
Post-processed Receiver Independent Exchange (RINEX) format data files are recorded in text 
file format, which is explained in full in [1]. Data in RINEX format is highly accurate due to 
exchange of data from many GPS receivers. i.e. data from only one epoch is sufficient. Below are 
two sub-sections that discuss the main forms and outputs of data in RINEX format. 

3.1.1. Ephemeris data 
Ephemeris data of a Satellite provides the parameters that can be used to derive the location of 
that corresponding satellite (will be discussed later). By using the readily available MATLAB 
code rinexe.m in conjunction with get_eph.m, the Ephemeris Matrix (of size ‘21’ by ‘total 
number of ephemeris epoch’, see Figure 8.7) can be obtained. Note that by inputting satellite 
number and epoch time to the MATLAB code find_eph.m, only the ephemeris data immediately 
before that epoch time is extracted for that satellite. A RINEX ephemeris file name has the 
extension ‘yyn’, where ‘yy’ is replaced with the last 2 digit of year; ‘n’ represents ephemeris file. 

3.1.2. Observation data 
Each row of the observation data records the measured Single Epoch Variables at each epoch 
such as Raw Pseudoranges (on both L1 and L2 codes, in meters), Raw Phases (on both L1 and L2 
codes, in cycles), Epoch Time (in second). These variables will be discussed later. A RINEX 
observation file name has the extension ‘yyo’, where ‘yy’ is replaced with the last 2 digit of year 
and ‘o’ represents observation. Figure 8.8 shows a typical RINEX observation data file with 
explanations. 

3.2. Real-time Ashtech Format data 
Real-time Ashtech format data files are recorded in binary format. The term ‘real-time’ implies 
that the observables obtained here are not refined. i.e. they are not post-processed. When using 
real-time data, data from lots of epochs are needed to refine the raw measurements. Below are 
two sub-sections that discuss the main form and outputs of data in real-time Ashtech format. 

3.2.1. Ephemeris data 
An Ashtech format ephemeris file name has the format that looks like ‘e0005a94.076’, where the 
‘e’ represents Ashtech ephemeris data, ‘0005’ represents the site number, ‘a’ represents the 
version, ‘94’ represents the 2 digit year, and ‘.076’ represents the type of Ashtech receiver used. 
The readily available MATLAB scripts edata.m and get_eph.m work together to extract the 
ephemeris parameters from ephemeris data in Ashtech format. This creates an ephemeris matrix 
(Figure 8.7) that is similar to the one described previously in Chapter 3.1.1. 

3.2.2. Observation data 
Each row of the observation data records the measured Single Epoch Variables at each epoch 
such as Raw Pseudoranges (on both L1 and L2 codes, in meters), Raw Phases (on both L1 and L2 
codes, in cycles), Epoch Time (in second) and Elevation Angle of the observed satellite in degree. 
These variables will be discussed later. Figure 8.9 shows a typical Ashtech format observation 
data file. An Ashtech format observation file name has the format that looks like ‘b0005a94.076’, 
where the ‘b’ represents Ashtech observation data, ‘0005’ represents the site number, ‘a’ 
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represents the version, ‘94’ represents the last 2 digit of year, and ‘.076’ represents the type of 
Ashtech receiver used. 

3.3. Time System 
Within GPS calculations, ‘time’ is an important parameter. It can be expressed as either Universal 
Time or GPS Time. These are described in the following sub-sections. 

3.3.1. Universal Time 
Universal Time is expressed in Year, Month, Day, Hour, Minute and Second. This is the type of 
time format recorded in a Receiver Independent Exchange (RINEX) format observation file. 

3.3.2. GPS Time 
GPS Time is expressed in the seconds of week. There are up to 60 60 24 7 604800× × × =  
seconds in a week. When carrying out any GPS calculations, the parameter ‘time’ must be 
expressed in GPS time. This is the type of format recorded in an Ashtech format observation file. 

3.3.3. Convert Universal Time to GPS Time 
To convert from Universal Time to GPS Time, the following procedure by [2] is used. First, 
convert Universal Time (in Year, Month, Day, Hour, Minute, Second) into decimal hour: 

 in_decimal 60 3600
minute secondhour hour ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4.1) 

Define Julian Day, JD , which is the number of days counting from 4713 B.C., January, day 1, 
12:00:00. This can be computed as follow, with conditions defined in (4.3): 

 ( ) ( )( ) in_decimal
y mfloor 365.25 floor 30.6001 1 1720981.5

24
hour

JD K K day
⎛ ⎞

= + + + + +⎜ ⎟
⎝ ⎠

 (4.2) 

 
y m

y m

If     2    then       ;   

If     2    then     1  ;   12

month K year K month

month K year K month

≤ = =

> = − = +
 (4.3) 

where ‘floor’ is a MATLAB function in rounding down numbers. Define the coefficients aK , 

bK , cK , eK  , fK  and dK as follow: 

 ( )a floor 0.5K JD= +  (4.4) 

 ( )b afloor 1537K K= +  (4.5) 

 b
c

122.1floor
365.25

KK −⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (4.6) 

 ( )e cfloor 365.25K K=  (4.7) 

 b e
f floor

30.6001
K KK −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (4.8) 
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 ( ) ( )d b e ffloor 30.6001 rem 0.5,1K K K K JD= − − + +  (4.9) 

where ‘rem’ is a MATLAB function that computes the remaining of a division. GPS Time in days 
of the week is expressed as follow: 

 ( )( )GPS_day_of_week rem floor 0.5 ,7t JD= +  (4.10) 

Define GPS Standard Epoch as the Julian Day of 1980 AC, January, day 6, 00:00:00.  

 GPS_standard_epoch 2444244.5JD =  (4.11) 

Define the GPS week counting from the GPS Standard Epoch: 

 GPS_standard_epoch
GPS_week floor

7
JD JD

t
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (4.12) 

Finally, the GPS time in seconds of the week can be computed directly: 

 ( )( )GPS_second_of_week d GPS_day_of_weekrem ,1 1 86400t K t= + + ×  (4.13) 

3.4. Four Dimensional Space System 
Within this report, only stationary receiver applications are dealt with. The Four-dimensional 
Space System of a Static Receiver can be visualized in the following fundamental figures. These 
figure forms the basis of the Code Equations that will be presented later on. 

Figure 8.3 shows the Four-dimensional Space System of a Static Receiver in satellite frame of 
reference. The first 3 dimensions are ECEFx , ECEFy  and ECEFz . The forth dimension is 

uncertainty, denoted by k
iD . In a Satellite Frame of Reference, the satellite position is always 

assumed to be absolute. i.e. the error in distance measurement caused by delays only affect 
position of receiver.  

Figure 8.4 describes the Four-dimensional Space System in terms of the relationships between 
Pseudorange and other important GPS variables (will be discussed later). 

Figure 8.5 describes the Four-dimensional Space System in terms of the relationships between 
Phase Distances and other important GPS variables (will be discussed later). 

3.5. Code Frequencies and Wavelengths 
Within this report, double frequency codes are used. These two code frequencies are namely L1 
(denoted by 1f ) and L2 (denoted by 2f ), with the corresponding values as follow: 

 6
1on L1 code:           1575.42 10  Hzf = ×  (4.14) 

 6
2on L2 code:          1227.60 10  Hzf = ×  (4.15) 

The corresponding Wavelengths for L1 and L2 codes are defined as: 

 1 light 1on L1 code:          V fλ =  (4.16) 

 2 light 2on L2 code:          V fλ =  (4.17) 
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where lightV  is the WGS 84 speed of light (Chapter 2.1.1). 

3.6. GPS – Raw Observables 
Raw GPS observables, such as Pseudorange (in meters) and Phase (in cycles) are obtained 
directly from observation files, which can be either in RINEX or Ashtech format. The following 
sub-sections define these raw GPS observables. 

3.6.1. Epoch Time 
Epoch Time is the instant of time (so called an epoch) when the signal by satellite k  is received 
by receiver i . It is the time recorded on receiver clock and is denoted by ,epoch

k
it . It is expressed in 

GPS Time (Chapter 3.3.2). If it is in Universal Time, convert to GPS Time with (Chapter 3.3.3). 
Epoch Time can be obtained from observation files (either in RINEX or Ashtech format). 

3.6.2. Raw Pseudorange 
For every single epoch, two Raw Pseudoranges (in meters) are obtained: one on L1 code, denoted 
by 1 ,raw

k
iP ; the other one on L2 code, denoted by 2 ,raw

k
iP . (See Chapter 3.5 for definition on L1 

and L2 codes). These Raw Pseudoranges do not take Clock Delay into account and therefore must 
be corrected before being used in any GPS calculations (will be discussed later). 

3.6.3. Raw Phase and Phase Distance 
For every single epoch, two Raw Phases (in cycles) are obtained: one on L1 code, denoted by 

1 ,raw
k
iφ ; the other one on L2 Code, denoted by 2 ,raw

k
iφ . (See Chapter 3.5 for definition on L1 and 

L2 codes). Raw Phase Distances (in meters) on L1 and L2 codes, denoted respectively by 1 ,raw
k
iΦ  

and 2 ,raw
k

iΦ , can be calculated directly: 

 1 ,raw 1 ,raw 1on L1 code:        k k
i iφ λΦ =  (4.18) 

 2 ,raw 2 ,raw 2on L2 code:        k k
i iφ λΦ =  (4.19) 

where 1λ  and 2λ  are respectively the wavelength of the signal code L1 and L2. 

3.6.4. Elevation Angle of Satellite 
Only the file with data in Ashtech format records the Elevation Angle (Chapter 2.2.4) of the 
Satellite. It is expressed in degrees. 

3.7. GPS – Computed Variables 
This section acts as a link between the Raw GPS Observables and other core GPS computations 
that will be discussed later on in this report. It should be re-emphasized that GPS works under a 
Four-dimensional Space System (Chapter 3.4). The fundamental big picture as presented in 
Figure 8.3 and Figure 8.4 should therefore be referred to constantly in order to maintain the 
sense of logic. 
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3.7.1. Range 
Recall from (3.41) that define the vector ,ECEF

k
iXδ  from receiver i  to satellite k : 

 ,ECEF ECEF i,ECEF
k k
iX X Xδ = −  (4.20) 

The Range k
iρ  is defined as the modulus of ,ECEF

k
iXδ . i.e. It is the length between receiver i  and 

satellite k  . This can be seen in Figure 8.4 and is defined as: 

 ,ECEF
k k
i iXρ δ=  (4.21) 

In addition, from Figure 8.4, the relationship between Raw Pseudorange ,raw
k

iP , Range k
iρ and 

Pseudorange Atmospheric Delay P-atm
kD  (will be discussed later) can be derived directly: 

 ,raw P-atm
k k k
i iP Dρ = −  (4.22) 

3.7.2. Troposphere Delay 
The troposphere is the lower part of the atmosphere, thickest over equator. Within this report, an 
empirical model as suggested in [1] is used to model this delay: 

 
( )
( ) 0 0

0

1 0.0026cos 2 0.00028 12550.002277 0.05
cos

ik
i

H
T P e

z T
ϕ ⎛ ⎞+ + ⎛ ⎞

= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (4.23) 

where k
iT  is the troposphere delay in meters; z is the Zenith Angle in degrees; iϕ is the 

Latitude in degree; 0T is the temperature in Kelvin; 0e  is the partial pressure of water vapour in 

millibar; 0P  is the atmospheric pressure measurement at height H  in millibar. H is the height of 

0P  measurement in kilometer 

This report implements the MATLAB script tropo.m directly to obtain this delay, which is not 
exploited in detail. The following parameters are assumed in the script for illustration purpose: 

• Zenith angle in degree  obtained from Chapter 2.2.4     (4.24) 

• Height of receiver  obtained from Chapter 5.4     (4.25) 

• Atmospheric pressure in millibar  assume 1013 millibar    (4.26) 

• Surface Temperature in Kelvin  assume 293 Kelvin      (4.27) 

• Humidity in %  assume 50 %         (4.28) 

• Heights where the inputs (4.26), (4.27), (4.28) are measured  assume 0 meters   (4.29) 

It should be noted that, the smaller the Zenith Angle, (i.e. larger the elevation angle), thus smaller 
the troposphere delay. It is therefore wise to use the information from the satellites with elevation 
higher than a certain value (i.e. cutoff angle). In this report this value is set to be 15 degrees. 

3.7.3. Ionosphere Delay 
The Ionosphere Delay, k

iI  depends on the L1 and L2 code frequencies, denoted by 1f  and 2f  
respectively (Chapter 3.5). It is inversely proportional to code frequency squared. This effect on 
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the Corrected Pseudorange ,corr
k

iP  (will be discussed later) and phase distance ,corr
k
iΦ  (will be 

discussed later) are opposite in sign. The effect of this delay is thus dispersive. The relationship 
between Ionosphere Delays based on L1 and L2 codes is express as: 

 
2

1
,L2 ,L1

2

k k
i i

fI I
f

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (4.30) 

3.7.4. Multipath Delay 
The Satellite GPS signals may reach the receiver by several possible paths. Multipath delay is 
zero when this path is least distance. The signals that travel via other paths are considered to 
contain Multipath delay, which usually occur due to signals bouncing off walls or other local 
medium. To avoid or minimize this delay, it is desirable to position the receiver antenna at a clear 
surface where signals can be received in the most direct path. Within this report, Multipath delay 
is not modelled. It is included in the systematic error term (will be discussed later). 

3.7.5. Ambiguities 
When tracking is continued without loss of lock the fractional part and the integer number of 
phase (in cycles) since the initial epoch is recorded. However, the integer part of phase (in cycles) 
of this initial epoch is not provided from the epoch. This un-provided integer is thus the 
ambiguity of the epoch. Ambiguities on L1 and L2 code between receiver i  and satellite k  are 
denoted by 1,

k
iN  and 2,

k
iN  respectively. 

3.7.6. Systematic Errors 
Any delays on the signals that are not modelled within the GPS calculations are all grouped 
together as Systematic Errors. The idea of GPS calculation is to find the best guess of receiver 
position base on the assumptions that minimize this systematic error term. As this term gradually 
reduces, the result becomes more accurate. Systematic errors are respectively denoted by k

ie  and 
k
iε  for Pseudorange and Phase Distance measurement, between satellite k and receiver i . 

3.7.7. Pseudorange Clock Delay 
The Pseudorange Clock Delay ,P-clock

k
iD  accounts for the clock offset distances of satellite k  and 

receiver i  that are excluded from the Raw Pseudorange measurements. This is defined as: 

 ,clock P-clock ,P-clock
k k
i iD D D= −   (4.31) 

where P-clock
kD  and ,P-clockiD  are respectively the satellite and receiver clock offset distances: 

 P-clock light
k kD V dt=  (4.32) 

 ,P-clock lighti iD V dt=  (4.33) 

where lightV  is the WGS 84 speed of light (Chapter 2.1.1); kdt  and idt  are the clock offsets (in 

seconds) of satellite k  and receiver i  respectively. 
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3.7.8. Phase Clock Delay 
The Phase Clock Delay , -clock

k
iD Φ  accounts for the initial phase offset distances of satellite k and 

receiver i  that are excluded from the Raw Phase Distance measurements. This is defined as: 

 ,Φ-clock Φ-clock ,Φ-clock
k k
i iD D D= −  (4.34) 

where Φ-clock
kD  and ,Φ-clockiD  are respectively the Satellite and Receiver Initial Phase Offset 

Distances, defined as: 

 Φ-clock 0
k kD λφ=  (4.35) 

 ,Φ-clock 0,i iD λφ=  (4.36) 

where λ  is the Wavelength of the signal (Chapter 3.5); 0
kφ  and 0,iφ  are the initial phase recorded 

at satellite k  and receiver i  respectively. 

3.7.9. Pseudorange Atmospheric Delay 
The Pseudorange Atmospheric Delay ,P-atm

k
iD  accounts for all atmospheric delays and systematic 

errors that are included in the Raw Pseudorange Measurement. This is defined as: 

 ,P-atm
k k k
i i iD T I= +  (4.37) 

where k
iT  and k

iI  are respectively the Troposphere Delay and Ionosphere Delay between satellite 
k  and receiver i . 

3.7.10. Phase Atmospheric Delay 
The Phase Atmospheric Delay ,Φ-atm

k
iD  accounts for all atmospheric delays and systematic errors 

that are included in the Phase Distance measurement. This is defined as: 

 ,Φ-atm
k k k k
i i i iD T I Nλ= − +  (4.38) 

where k
iT , k

iI , λ  and k
iN  are respectively the Troposphere Delay (Chapter 3.7.2), Ionosphere 

Delay (Chapter 3.7.3), Code frequency (Chapter 3.5) and Ambiguity (Chapter 3.7.5). 

3.7.11. Corrected Pseudorange 
From Figure 8.4, one can deduce the relationship between the Raw Pseudorange ,raw

k
iP , 

Corrected Pseudorange ,corr
k

iP  , Pseudorange Clock Delay ,clock
k
iD  and systematic error k

ie  
directly. This is summarized as follow: 

 ,corr ,raw ,P-clock
k k k k

i i i iP P D e= + −  (4.39) 

By expanding terms in (4.39) gives the General Single Epoch form for ,corr
k

iP : 

 ( ) k
ii

kk
i

k
i

k
i

k
i edtdtVITP −−+++= lightcorr, ρ  (4.40) 
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,raw
k

iP  is known (from observation files); k
ie  is assumed zero initially; ,clock

k
iD  is required to 

calculate ,corr
k

iP . In this report, a main initial assumption is made, which is to assume the receiver 
clock offset time is zero (i.e. it is embedded into the systematic error term, and hopefully to be 
recovered in the end). This Initial Assumption for GPS calculation is shown as follow: 

 Initial Assumption:           0idt =  (4.41) 

The value of satellite clock offset time can be derived using coefficients f0
ka , f1

ka  and f2
ka  

obtained from ephemeris data (see Figure 8.7 for definition), expressed as follow: 

 ( ) ( )2

f2 j,raw f1 j,raw f0
k k k k k kdt a t a t a= + +  (4.42) 

where ,raw
k
jt is the Raw Satellite Ellipse Time (in seconds), calculated using the epoch time ,epoch

k
it  

and the Raw Pseudorange (Chapter 3.6), which are known from the obtained observation file: 

 ( )raw ,epoch ,raw light
k k k

i it t P V= −  (4.43) 

By knowing kdt , ,clock
k
iD  can be computed (Chapter 3.7.8). i.e. ,corr

k
iP  can be computed. 

3.7.12. Corrected Phase distance 
From Figure 8.5 , one can deduce the relationship between the Raw Phase Distance ,raw

k
iΦ , 

Corrected Phase Distance ,corr
k
iΦ  , Phase Clock Delay ,Φ-clock

k
iD  and systematic error k

iε  directly: 

 ,corr ,raw ,Φ-clock ,P-clock
k k k k k
i i i i iD D εΦ = Φ + + −  (4.44) 

By expanding terms in (4.44) gives the General Single Epoch form for ,corr
k
iΦ : 

 ( ) ( ) k
ii

k
i

kk
i

k
i

k
i

k
i

k
i dtdtVNIT εϕφλλρ −−+−++−+=Φ ,00lightcorr,  (4.45) 

3.7.13. Corrected Signal Travel Time 
The Corrected Signal Travel Time k

iτ taken from Satellite k  to Receiver i  is based on the 

Corrected Pseudorange ,corr
k

iP , (Chapter 3.7.11). It is defined as follow: 

 ,corr light
k k
i iP Vτ =  (4.46) 

3.7.14. Corrected GPS Transmission Time 
The Corrected GPS Transmission Time is the corrected time in which the signal is transmitted 
from the satellite. It is an important parameter in computing satellite position that will be 
discussed later. It is denoted by GPS

kt  and expressed as follow: 

 GPS ,epoch
k k k

i it t τ= −  (4.47) 

where ,epoch
k
it is the Epoch Time (Chapter 3.6.1); k

iτ  the Corrected Signal Travel Time (Chapter 
3.7.13). 
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3.8. Code Equations 
In this report, two main sets of equations are used in the GPS computations. These are namely the 
Single Epoch Equations and Double Differenced Equations. They provide the global relationships 
between the Corrected GPS Observables (i.e. Pseudoranges and Phase Distances) in terms of the 
GPS variables as introduced earlier in Chapter 3.6 and Chapter 3.7. It should be emphasized that 
these two sets of equations share the same general form derived from (4.30), (4.40) and (4.45). 
These two sets of equations are presented in Least Squared form in the following sub-sections. 

3.8.1. Single Epoch Equations 
The Full set of Single Epoch Equations is defined as follow: 

 

( )light1 11
2

1 11

22 1, 0 0,
2

2 2, 0 0,corr 1
2

2

1 1 0 0
1 1 0

1 0 0

1 0

k k kk k
i i ii i

k k
i i
k k k
i i i
k k k
i i i

k k
i i

T V dt dtP e
If

fP N
Nf

fb x
A

ρλ
ε

φ φ
φ φλ

⎡ ⎤
⎢ ⎥ ⎡ ⎤+ + −⎡ ⎤ −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Φ ⎢ ⎥⎢ ⎥ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎝ ⎠ + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Φ ⎢ ⎥⎢ ⎥ + −⎣ ⎦ ⎛ ⎞ ⎣ ⎦−⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

2

2

k
i
k
i
k
i

k
i

e

e

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.48) 

where the subscripts ‘1’ and ‘2’ represent L1 and L2 codes respectively; The definitions of these 
Single Epoch Variables have been defined previously in Chapter 4. 

3.8.2. Double Difference Equations 
Double difference calculations involve two satellites k  and l , and two receivers i  and j  (see 
Figure 8.6). A Double Difference Variable, denoted by kl

ijd  here, is defined as: 

 ( ) ( )kl k k l l
ij i j i jd d d d d= − − −  (4.49) 

where the symbol d  in (4.49) can be of any Single Epoch Variables described previously in 
Chapter 4. When carrying out Double Differencing using (4.49), all clock related terms (such as 
the Pseudorange Clock Delay and Phase Clock Delay) disappear. This can be proved easily using 
satellite clock offset time as an example: 

 
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) 0

kl k k l lk k k k k

ij i j i j

k k l l

dt dt dt dt dt

dt dt dt dt

= − − −

= − − − =
 (4.50) 

Similarly, all other clock errors are zero. Base on this fact in accordance to (4.39) and (4.44), two 
extra facts are also deduced: 

 ,corr ,raw
kl kl kl

ij ij ijP P e= −  (4.51) 

 ,corr ,raw
kl kl kl
ij ij ijεΦ = Φ −  (4.52) 

The full set of Double Difference Equations can be defined as follow:  
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1 11
2

1 11

22 1, 2
2

2 2, 2corr 1
2

2

1 1 0 0
1 1 0

1 0 0

1 0

kl kl kl kl
ij ij ij ij
kl kl kl
ij ij ij
kl kl kl
ij ij ij
kl kl
ij ij ij

klkl
ij ij

P T e
If

fP N e
Nf

fb x
A

ρλ
ε

ε
λ

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤+−⎢ ⎥⎢ ⎥ ⎢ ⎥Φ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎛ ⎞= −⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥Φ⎢ ⎥ ⎢ ⎥⎛ ⎞⎣ ⎦ ⎣ ⎦−⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

kl

kl
ije

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.53) 

where the subscripts ‘1’ and ‘2’ represent L1 and L2 codes respectively. 

3.9. Computation of Satellite Positions 
This section aims to show the method in obtaining satellite position in Solar Cartesian coordinate 
(Chapter 2.2.1) with the given ephemeris matrix (obtained in Chapter 3.1.1 for RINEX and 
Chapter 3.2.1 for Ashtech data files), satellite ID and epoch time epoch

kt . The MATLAB script 

satpos.m carries out the following computation. First, define the satellite elapse time j
kt : 

 ( )j GPS epochcheck_tk k kt t t= −  (4.54) 

where GPS
kt is the corrected GPS transmission time (Chapter 3.7.14); check_t is the MATLAB 

function to ensure the GPS time is between 0 and 604800 seconds of the week.. All variables are 
defined in Figure 8.7, and the WGS constants in Chapter 2.1.1.  

Compute Mean Anomaly j
kμ : 

 
( )j 0 j3

k k k

k

GM n t
a

μ μ
⎛ ⎞
⎜ ⎟= + + Δ⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.55) 

 Compute j
kE  iteratively (see Chapter 3.9.1), followed by True Anomaly j

kf : 

 j j jsink k k kE e Eμ= +  (4.56) 

 
( )2

j
j

j

1 sin
arctan

cos

k k
k

k k

e E
f

E e

−
=

−
 (4.57) 

Compute Longitude for ascending node j
kΩ  and Argument of perigee j

kω :  

 ( )j 0 0 e j e oe
k k k k kt tω ωΩ = Ω + Ω − −  (4.58) 

 ( ) ( )j j ωc j ωs jcos 2 sin 2k k k k k k k k kf C f C fω ω ω ω= + + + + +  (4.59) 

Compute Radial Distance j
kr : 

 ( ) ( ) ( )j j rc j rs j1 cos cos 2 sin 2k k k k k k k k k kr a e E C f C fω ω= − + + + +  (4.60) 
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Compute Satellite Inclination j
ki : 

 ( ) ( )j 0 j ic j is jcos 2 sin 2k k k k k k k k k ki i i t C f C fω ω= + + + + +  (4.61) 

The position of satellite k  on the elliptical orbital plane in kx∗ , ky∗  (with kx∗  pointing towards 
the Perigee of the elliptical Orbital Plane) can be computed: 

 j j j jcos                ;            sink k k k k kx r y rω ω∗ ∗= =  (4.62) 

The Satellite Position in Solar Cartesian coordinate kz can now be computed directly as follow: 

 j j jcos cos sink k k k k kx x y i∗ ∗= Ω − Ω  (4.63) 

 j j jsin cos cosk k k k ky x y i∗ ∗= Ω − Ω  (4.64) 

 ECEF jsink k kz y i∗=  (4.65) 

It is re-emphasized here that the Solar Cartesian Coordinate must be converted into ECEF 
Cartesian before being used in any of the GPS Calculations (Chapter 2.3.1). 

3.9.1. Iterative Solution for j
kE  

This sub-section aims to solve the iterative solution j
kE  that appears in (4.56). The first step is to 

initialize the ‘old’ j,oldE  and ‘new’ j,new
kE , with the calculate Mean Anomaly j

kμ : 

 j,old j j,new j    :       0.001k k kE Eμ μ= = +  (4.66) 

The iteration defined below continues until the stopping criterion in (4.69) is reached. 

 j,new j,old
k kE E=  (4.67) 

 j,old j j,newsink k k kE e Eμ= +  (4.68) 

The Stopping Criteria is defined as: 

 12
j,old j,new 1 10k kE E −− < ×  (4.69) 

When this Stopping Criterion is reached, the corresponding j,old
kE  is the final value of j

kE . 

3.9.2. Visualization of Satellite Trajectory 
See Figure 8.18: For the sake of visualization of a typical satellite trajectory, a MATLAB script 
‘jc_ist10641_orbit_in_c2gm.m’ is written to plot the trajectory of a satellite around the WGS 84 
Ellipsoidal Earth Model in an inertial Earth Frame of Reference. The plot is in Solar Cartesian 
Coordinate System and plotted over duration of 24 hours with 1 hour intervals.   

It can be clearly seen that, a satellite typically orbit around the Earth about twice per day, with 
small disturbance in trajectory. 
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4. Grid Point Method - to estimated receiver position 
In this Chapter, the preliminary position of the static IST receiver is estimated in terms of ECEF 
Geographical Coordinate (Chapter 2.2.3) using Grid Point Method. This method only finds the 
Longitude and Latitude of the receiver, but not the Ellipsoidal Height. To illustrate this method, 
post-processed RINEX data (Chapter 3.1) obtained from the IST receiver is used throughout the 
whole of this Chapter. The main MATLAB script ash_base.m computes this. 

4.1. Extract Post-processed RINEX Data 
Post-processed RINEX Data (Chapter 3.1) from the stationary IST receiver is obtained. The 
Ephemeris and Observation data files used are respectively ‘ist1064a.08n’ and ‘ist1064a.08o’. 
The final results are presented in at the end of this chapter. 

4.2. Main Initial Assumptions 
To begin the Grid Point Method, major initial assumptions are made. Since the Raw Observables 
have already taken some delays into account, the delays terms in (4.40) can be assumed zero: 

 0k k
i iI T= =  (5.1) 

By also realizing the initial assumptions made on embedding the receiver clock offset distance 
into the systematic error term, and include only the satellite clock offset distance in the 
calculation, as described in Chapter 3.7.11, the Corrected Pseudorange can be summarized as: 

 ,corr ,raw light
k k k

i iP P V dt= +  (5.2) 

 1, 2,3....k m=  (5.3) 

where kdt is defined in (4.42). By carrying out (5.2) for all m  satellites, all ,corr
k

iP  are obtained. 

4.3. Model Grid Hemisphere 
The purpose of the Grid Hemisphere is to provide the 2nd imaginary receiver (i.e. receiver j ) for 
double differencing. Based on the epoch time in Chapter 4.1, calculate the satellite positions 
(Chapter 3.9) for all m  satellites and covert to ECEF Cartesian Coordinates (Chapter 2.3.1). 
Obtain also the Geographical Coordinates (Chapter 2.3.2). The first guess of receiver position in 
Latitude 0, jϕ  and Longitude 0, jλ  can be computed: 

 0, ECEF 0, ECEF
1 1

          ;          
m m

k k
j j

k k
m mϕ ϕ λ λ

= =

= =∑ ∑  (5.4) 

where ECEF
kϕ and ECEF

kλ  are the satellites ECEF latitude and longitude respectively. Note that the 
Ellipsoidal Height h  is always assumed to be zero for each grid point receiver. Using this first 
guess as the central point, the Grid Hemisphere can now be modelled in the Azimuth direction, 
which assume to range from 0 to 360 degrees, with intervals of 20 degrees. This gives 

( )azimuth 360 / 20 18N = =  number of grid points in the Azimuth directions at each contour (i.e. 
the central point is the top of the hemisphere, if look from above the hemisphere, one can see 
elliptical ring shaped contours). The central point of the hemisphere has a contour angle of zero 
degree; at the bottom 90 degrees. Each interval can be assumed say 11.25 degrees. This gives 
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contour (90 /11.25) 8N = =  number of points in the changing contour direction (excluding the 
centre point), at each azimuth angle. The total number of grid points totalN  (i.e. the total number 
of computation on the grid hemisphere), including the ‘1’ centre point, is therefore expressed as: 

 ( )total azimuth contour 1N N N⎡ ⎤= × +⎣ ⎦  (5.5) 

See Figure 8.10 for definition of the variables used in modeling the Grid Hemisphere. Note that 
there are up to ( )total 18 8 1 145N ⎡ ⎤= × + =⎣ ⎦  grid points in total based on the modelling 

assumptions. The incrementing procedure in the azimuth angle jα  direction for ALL iterations 
(Chapter 4.6) is summarized as follow: 

 
endintervalstart

340:20:0   )iterations all( °°°=jα  (5.6) 

The incrementing procedure in the contour angle jϕ′  direction in the 1st iteration only (i.e. the 
very initial stage where the first guess obtained in Chapter 4.4 is used) is summarized as follow: 

 
endintervalstart

90:125.11:0   )iterations1st (' °°°=jϕ  (5.7) 

4.4. First guess of receiver position 
Starting with the ECEF geographical coordinate of the centre point: 

 ,ECEF,geo 0,j 0, jφ 0
T

jX λ⎡ ⎤= ⎣ ⎦  (5.8) 

Convert (5.8) into ECEF Cartesian Coordinate ,ECEFjX  (Chapter 2.3.3). The Pseudorange k
jP  

measured between each grid point j  and satellite k , based on the assumption of zero delay in 
(5.1), can be assumed to be the same as the range k

jρ  (Chapter 3.7.1). 

 k k
j jP ρ=  (5.9) 

 1, 2,3....k m=  (5.10) 

The Grid Point method essentially utilizes the double difference method (Chapter 3.8.2), where i  
corresponds to the actual receiver and j  corresponds to the grid point. The reference satellite is 
the 1st satellite (denoted by the superscript ‘1’); all the other satellites are non-reference satellite 
(denoted by the superscript ‘ l ’, where l  runs from satellite 2 to m). If the grid point j  overlaps 
with the actual receiver location i  perfectly (i.e. j  = i  ), then theoretically the following 
expression should be true: 

 ( ) ( )1 1 1
,corr ,corr 0l l l

ij i j i jP P Pρ ρ≡ − − − =  (5.11) 

 2,3....l m=  (5.12) 

However, equation (5.11) can never be true due to the existence of any un-modelled delays that 
are embedded inside the systematic error term. There will therefore be a Double Differenced 
Residue term, 1l

ijRES  instead of the ‘perfect’ zero. This is expressed as: 
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 ( ) ( )1 1 1 1
,corr ,corr

l l l l
ij i j i j ijP P P RESρ ρ≡ − − − =  (5.13) 

 2,3....l m=  (5.14) 

The corresponding Sum of Square of this Residue term, 1l
ijS  is expressed as follow: 

 ( )21 1

1

m
l l

ij ij p
p

S RES
=

=∑  (5.15) 

The first best guess of receiver position is defined in (5.8), with its corresponding 1l
ijS  in (5.15). 

4.5. Routine Updates for best guess 
The main principle of the Routine Update Process is to move from one grid point to the other one, 
and so on. Starting with the first guess (Chapter 4.3), repeat the process as described in (5.9), 
(5.13) and (5.15) for all other grid points. The best guess would produce the minimum 1l

ijS . This 

gives the new estimate in terms of Grid Point Latitude 2, jϕ  and Longitude 2, jλ , a Spherical 
Triangle (see Figure 8.11) is used along with the following equations: 

 ( )2, 0, 0arcsin sin cos cos sin cosj j j j j jϕ ϕ ϕ ϕ ϕ α′ ′= +  (5.16) 

 
2,

sin sin
arcsin

cos
j j

j
j

α ϕ
λ

ϕ
⎛ ⎞′

Δ = ⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.17) 

 2, 0,j j jλ λ λ= + Δ  (5.18) 

By incrementing the azimuth angle jα (at constant contour angle jϕ′ ) and repeat the same for all 

contour angle jϕ′ , based on the previous guess 0, jϕ  and 0, jλ , all the unknowns in the above 

equations (5.16) to (5.18) are solved easily. The now solved 2, jϕ  and 2, jλ  are therefore 
respectively the new estimate Latitude and Longitude of the receiver position, which are used as 
the 0, jϕ  and 0, jλ  in the next updating process. This process moves on to the next grid points. 

During this updating process, only explicitly record the value of the new estimate (i.e. 2, jϕ  and 

2, jλ )  if the corresponding 1l
ijS  turns out to be lesser than the one before. Otherwise, keep the 

previous explicitly recorded value. Once all the grid points have been used for the computation, 
the grid point with the final explicitly recorded 2, jϕ  and 2, jλ  is therefore the best guess of the 
receiver position compare to all other grid points. 

4.6. Iteration to refine the best guess 
The grid point that represents the best guess of receiver position, obtained from Chapter 4.5, is 
now used as the centre point of a new grid ‘hemisphere’. This new ‘hemisphere’ has the same 
total amount of grid points as before (Chapter 4.3). The intervals (i.e. grid spacing) in the contour 
angle direction is however now modeled as 10 times smaller then before, with the spacing in the 
azimuth angle remains the same (i.e. this is basically a small surface of the grid hemisphere). This 
setting for the 2nd iteration and onwards can be expressed as follow: 
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endintervalstart

340:20:0  )iteration all( °°°=jα  (5.19) 

 
endintervalstart

9:1.125:0  )iteration 2nd(' °°°=jϕ  (5.20) 

 
endintervalstart

0.9:0.1125:0  )iteration 3rd(' °°°=jϕ  (5.21) 

Notice the values of the jϕ′  ‘interval’ and ‘end’ become 10 times less in each iteration. This trend 

of jϕ′  continues for the 4th iteration and onwards. The best guess therefore becomes more 
accurate. i..e. each iteration gives an extra decimal accuracy. Base on this setting, repeat the 
procedure in Chapter 4.5 for more updated best guesses. Figure 8.14 illustrates the combined 
effects of the routine update process and iteration in improving the estimation of IST receiver 
position. The guess that is computed at the end of iteration is the final best guess. 

4.7. Discussion on results 
This section discusses the computed ‘best estimates’ of IST positions in terms of latitude and 
longitude, base on Grid Point Method. To illustrate this method, post-processed RINEX data 
obtained from the IST receiver has been used (Chapter 4.1). The ephemeris and observation files 
used are respectively ‘ist1064a.08n’ and ‘ist1064a.08o’. From below, it should be noted that both 
Pseudorange measurement on L1 and L2 codes give near the same sets of results. 

Latitude: see Figure 8.12 - Fluctuation within the first 40 minutes is seen. This is due to the 
initial automatic data refinement. The result after this point has a stable value of 38.7374 degrees 
North. (i.e. 38o 44' 14,53420'' North ), which corresponds to the value provided by IST exactly. 
This value should stay constant from this time onwards. 

Longitude: see Figure 8.13 - Fluctuation within the first 40 minutes is seen. This is due to the 
initial automatic data refinement. The result after this point has a stable value of 350.8601 East 
degrees. (i.e. 9o 8' 23,81196'' West), which corresponds to the value provided by IST exactly. This 
value should stay constant from this time onwards. 

4.8. Comment on Grid Point Method 
Grid Point Method as already described above implements post-processed data in RINEX format. 
i.e. GPS observables from one epoch is usually accurate enough to yield good results. It should be 
recalled that the Ellipsoidal Height has been assumed to be zero throughout the Grid Point 
Method. Hence, if one would like to obtain parameters such as altitude, Grid Point Method is 
irrelevant. Nevertheless, this method has shown high accuracy in estimating Latitude and 
Longitude, with an error of nearly zero within the stable region. An alternative method that is 
capable of computing ellipsoidal height, as well as longitude and latitude is a method developed 
in [3]. i.e. The Bancroft Method. This method will be discussed later on. 
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5. Baseline Estimation and Separation of Ambiguities 
The Aim of this Chapter is to illustrate a computational method for finding out the positions of 2 
Real-time Ashtech Receivers. The First one is called Master, in which the Ashtech data (Chapter 
3.2) from ‘site 810’ is used. The latter one is called Rover, in which the Ashtech data from ‘site 5’ 
is used. In general, the Master represents a stationary object, while the Rover represents a moving 
object. In this report, however, both Master and Rover are used as stationary objects. By taking 
this into account, the baseline, which is defined by the vector that measures from Master to 
Rover, will be calculated at the end of this Chapter. It should be noted that this Chapter 
implements double difference method (Chapter 3.8.2). 

5.1. Extract Real-time Ashtech Receiver Data 
First, prepare the 4 sets of matrices based on the receiver data from the two sites (i.e. Master and 
Rover sites), with respect to the reference satellite and non-reference satellites. The whole data 
extraction process and outputs are presented in Figure 8.9 in detail. Note that some filtering 
based on elevation angles and total number of epochs has been used in obtaining these matrices: 

[datar] - Rover observables (relating to all non-reference satellites). i.e. l
jd  

[datam] - Master observables (relating to all non-reference satellites). i.e. l
id  

[datarref] - Rover observables (relating to the reference satellite). i.e. k
jd  

[datamref] - Master observables (relating to reference satellite). i.e. k
id  

where the subscripts ‘ i ’ and ‘ j ’ respectively represent Master and Rover; the superscripts ‘ k ’ 
and ‘ l ’ respectively represent the one reference satellite and all non-reference satellites. The 
variable ‘ d ’ can be the Raw Pseudorange (in meters) based on L1 and L2 codes, denoted 
respectively by 1,rawP  and 2,rawP ; Raw Phase (in cycles) base on L1 and L2 codes, denoted 

respectively by 1,rawφ  and 2,rawφ ; Elevation Angle (in degrees) of the satellite with respect to the 

receiver, denoted by EL ; Epoch Time (in GPS seconds), denoted by epocht . Note that 1,rawφ  and  

2,rawφ  can be converted into Phase Distances (in meters) 1,rawΦ  and 2,rawΦ  directly using (4.18) 
and (4.19); By using some of these Raw single epoch variables from these 4 matrices above, the 
double differenced forms of these variables can be computed easily using (4.49). 

i.e. ( )1,raw
kl

ij
P , ( )2,raw

kl

ij
P , ( )1,raw

kl

ij
Φ   and  ( )2,raw

kl

ij
Φ   are known. 

Note that the observables that are obtained here are ‘real-time’. i.e. they are not post processed, 
unlike the post-processed RINEX data (Chapter 3.1). This implies no delays or errors have been 
taken into account in the publishing of the Ashtech data. Fortunately, these delays or errors are 
correlated from one epoch to the others. Hence by using the whole epochs of data, this correlation 
can be estimated. Delays and uncertainty due to Ionosphere, Troposphere, clock offsets and 
Ambiguities can therefore be recovered and included in the computation.  

5.2. Double Differenced True Ambiguities 
The initial approach is to assume the Double Differenced Ionosphere Delay Term kl

ijI  is zero: 
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 0kl
ijI =  (6.1) 

By substituting (6.1) into the Double Difference Code Equation (4.53) in conjunction with the 
facts in (4.51) and (4.52), the Double Difference Code Equation becomes : 

 

1,

1, 1
1,

2,
2,

2, 2raw

43

1 0 0 ˆˆ
1 0 ˆ
1 0 0

ˆ
1 0

ˆˆ

kl
kl klij
ij ijkl

ij kl
ijkl

ij kl
kl ij

ij
kl

kl ij
ij

P T

N
P

N

xAb

ρ
λ

λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥ ⎢ ⎥Φ⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦Φ⎢ ⎥ ⎣ ⎦⎣ ⎦

 (6.2) 

This above equation (6.2) express the relationship between the raw double differenced 
observables ˆkl

ijb  (Chapter 5.1), in terms of the unknown ˆkl
ijx . The 4 by 3 Design Matrix 43A  is 

defined above based on assumptions made in (6.1). The above is a system of 4 equations with 3 
unknowns in ˆkl

ijx . i.e. must use least square method in solving ˆkl
ijx : 

 

1

43 2 43 43 2

3 by 3 3 by 1

ˆˆkl T T kl
ij ijx A W A A W b

−
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (6.3) 

where 2W  is the weighted matrix, which can be defined as follow: 

 

1

1

2

2

2
P

2

2 2
P

2

1/ 0 0 0

0 1/ 0 0

0 0 1/ 0

0 0 0 1/

W

σ

σ

σ

σ

Φ

Φ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6.4) 

where σ  is the standard deviation: the subscripts 1P , 2P , 1Φ , 2Φ  represents respectively the 
Pseudorange on L1 and L2, Phase Distance on L1 and L2. Reasonable values of the 
corresponding standard deviations are defined as follow in meters: 

 1 1

1 2

P P 0.3

0.005

σ σ

σ σΦ Φ

= =

= =
 (6.5) 

Now define 22N  as the bottom right (2 by 2) matrix of 43 2 43
TA W A ; RS as the bottom (2 by 1) 

vector of  43 2
ˆT kl
ijA W b . The detailed algorithm in solving 1,

ˆ kl
ijN  and 2,

ˆ kl
ijN  for all epochs is now 

shown, starting from the earliest to last epoch’s data. First, initialize the matrices: 

 initial 22,initial

0 0 0
           ;            

0 0 0
RS N

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (6.6) 
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( )

( )
1 1 2 21

2 1 1 2 22

2 2 2 22 2
1 P 1 2 P 21 1 1 1

RS 2 2 2 2 22
2 P P2 2 ,raw ,raw

ˆ ˆˆ ˆˆ

ˆ

klkl

ij ij

P P
F

σ σ σ σσ λ σ λ
σ λ σ σ σ σσ λ

− − − −− −
Φ ΦΦ Φ

− − − − −−
Φ Φ ΦΦ

⎛ ⎞⎡ ⎤ +Φ + +ΦΦ ⎡ ⎤ ⎜ ⎟⎢ ⎥= − ⎢ ⎥ ⎜ ⎟+ + +⎢ ⎥Φ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎝ ⎠
 (6.7) 

 
( )

1

1 2

2

22

1 1 2 2

2
1 2 2

1 22
2

2 2 2 2
P P

,raw

kl

N

ij

F

σ λ
σ λ σ λ

σ λ

σ σ σ σ

−
Φ − −

Φ Φ−
Φ

− − − −
Φ Φ

⎛ ⎞⎡ ⎤
⎡ ⎤⎜ ⎟⎢ ⎥ ⎣ ⎦⎜ ⎟⎢ ⎥⎣ ⎦= ⎜ ⎟

+ + +⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6.8) 

where the standard deviation terms σ  can be obtained from (6.5); 1λ  and 2λ  are the wavelengths 
of the L1 and L2 code respectively (Chapter 3.5). The combined subscripts and superscripts 
‘ ,raw

kl
ij ’ represents raw double differenced variables (Chapter 5.1). Starting with the first epoch’s 

data, define the variables RS  and 22,N  from (6.6): 

 previous_epoch initialRS RS=  (6.9) 

 22,previous_epoch 22,initialN N=  (6.10) 

 ,1st_epoch
ˆ ˆkl kl
ij ijb b=  (6.11) 

The updating process to determine better values for 1,
ˆ kl

ijN  and 2,
ˆ kl

ijN can be summarized as follow 
between (6.12) and  (6.14)  proceeding from 1st to last epoch’s data: 

 this_epoch previous_epoch RS,this_epochRS RS F= +  (6.12) 

 
2222,this_epoch 22,previous_epoch N ,this_epochN N F= +  (6.13) 

 
11,

22,this_epoch this_epoch
2, this_epoch 2 by 1

ˆ

ˆ

kl
ij

kl
ij

N
N RS

N
−⎡ ⎤

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 (6.14) 

By repeating (6.12) to (6.14), the corresponding 1,
ˆ kl

ijN  and 2,
ˆ kl

ijN  at each epoch can be solved. 
Note the subscripts ‘previous epoch’ and ‘this epoch’ corresponds to the data used for that epoch, 
purely to emphasize the logic within the ‘Epoch Loop’ procedure carried out in MATLAB. Once 
the end of the Epoch Loop is reached, the best estimated 1,

ˆ kl
ijN  and 2,

ˆ kl
ijN  are obtained: 

 1, 1,

2, 2,best last_epoch

ˆ ˆ

ˆ ˆ

kl kl
ij ij

kl kl
ij ij

N N

N N

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (6.15) 

where the subscript ‘best’ stands for ‘best estimate’; ‘last epoch’ stands for the result obtained at 
the end of iteration. Note that (6.15) is the estimated solution. The procedure below illustrate the 
computational method that determines the ‘true’ values ( )1, true

ˆ kl
ijN and ( )2, true

ˆ kl
ijN , which are 

integers. First, compute the two constants 1,
kl
ijK  and 2,

kl
ijK : 
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 ( )1, 1, 2, best
ˆ ˆroundkl kl kl

ij ij ijK N N= −  (6.16) 

 ( )2, 1, 2, best
ˆ ˆround 60 77kl kl kl

ij ij ijK N N= −  (6.17) 

where ‘round’ is a MATLAB function in rounding down numbers. Now, the true double 
differenced Ambiguities ( )1, true

ˆ kl
ijN and ( )2, true

ˆ kl
ijN  can be computed directly (which are integers): 

 ( ) ( )( )2, 1, 2,true
ˆ round 60 17kl kl kl

ij ij ijN K K= −  (6.18) 

 ( ) ( )1, 2, 1,true
ˆ ˆroundkl kl kl

ij ij ijN N K= +  (6.19) 

5.3. Double Differenced Ionosphere Delay 
From (4.53), the second and forth equations are taken out and rearrange to make the Ionosphere 
term kl

ijI  the subject. The least square solution form is expressed as follow: 

 
( )( ) ( )( )

( )
2, ,raw 2 2, 1, ,raw 1 1,true true

2
1 2

ˆ ˆ

1

kl kl kl kl
ij ij ij ijkl

ij

N N
I

f f

λ λΦ − − Φ −
=

−
 (6.20) 

where 1, ,raw
kl

ijΦ  and 2, ,raw
kl

ijΦ  are the raw double differenced Phase Distances on L1 and L2 code 

respectively, obtained from Chapter 5.1 for each epoch; 1λ  and 2λ  are the wavelengths on L1 

and L2 code respectively, obtained from Chapter 3.5; 1f  and 2f  are the frequencies on L1 and 

L2 code respectively, obtained from Chapter 3.5. ( )1, true
ˆ kl

ijN and ( )2, true
ˆ kl

ijN  are the True Double 

Differenced Ambiguities on L1 and L2 code respectively, obtained from Chapter 5.2. Since all 
these variables are known, kl

ijI  can be computed directly for each epoch. 

5.4. Bancroft Method – to estimate Master position 
From Chapter 4.8 a comment is made regarding to the fact that Grid Point Method is not able to 
compute ellipsoidal height h  of the receiver. In this section, a new method called the Bancroft 
Method will be used in obtaining the preliminary ECEF Master receiver location ,ECEFi iX X≡  
(drop the subscript ‘ECEF’ for simplicity within this section. Note that all coordinates in this 
section are represented in ECEF), which calculates h  as well as longitude λ  and latitude ϕ .. 
First, define the Minikowski function taken from [3]: 

 

[ ]
[ ]

1 2 3 4

1 2 3 4

1 1 2 2 3 3 4 4

Minikowski function

,

g g g g g

f f f f f

g f g f g f g f g f

=

=

= + + −

 (6.21) 

Define the following matrices and vectors (superscript k  represents satellites, from 1 to m): 
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 1 2

ECEF

m by 4Satellite k's ECEF positions & raw pseudoranges

   ;  
Tk k k k k m

ia x y z P A a a a⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  (6.22) 

 1, 2.....k m=  (6.23) 

where the first three components in ka  correspond to satellite k  position in ECEF Cartesian 
coordinate system based on the first epoch time: k

iP  is the pseudorange measurement based on 
L1 code, based on the same first epoch time. The above matrices are constructed based on the 
data from all m  satellites. Now, define more matrices as follow based on the inputs ka  and A  : 

 [ ] 1
0

 by 1   1

,
   ;    1 1    ;     

2

k k
TTk m

m m by

a a
r i r r r⎡ ⎤= = = ⎣ ⎦  (6.24) 

 ( ) 1

0

4 by m

      ;           ;       T TB A A A u Bi v Br
−

= = =  (6.25) 

The following coefficients can be computed directly: 

 ,     ;    , 1     ;       ,E u u F u v G v v= = − =  (6.26) 

Solve the following quadratic would give two roots 1γ  and 2γ : 

 2 2 0E F Gγ γ+ + =  (6.27) 

 
2 2

1 2      ;       F F EG F F EG
E E

γ γ− + − − − −
= =  (6.28) 

The two possible Master ECEF positions 1Y and 2Y  can be computed directly in the four 
dimensional space form (Chapter 3.4). See Figure 8.15 for clarity regarding to these solutions: 

 1 ,P-atm 11

k
i i i iY x y z D u vγ⎡ ⎤≡ = +⎣ ⎦  (6.29) 

 2 ,P-atm 22

k
i i i iY x y z D u vγ⎡ ⎤≡ = +⎣ ⎦  (6.30) 

where the first three components in the above solutions corresponds to the possible Master 
positions in ECEF Cartesian coordinate system. The forth component ,P-atm

k
iD is the Atmospheric 

Delay (Chapter 3.7.9) and it is recalled below, with assumption of insignificant ionosphere delay: 

 ,P-atm   ;   assume   0;   0 k k k k k
i i i i iD I T I T= + ≈ ≠  (6.31) 

Note: Troposphere Delay k
iT  (Chapter 3.7.2) can be computed using the ellipsoidal height h  

recovered here (by converting the first 3 components of the solution into ECEF Geographical 
coordinate), in conjunction with the Elevation angle EL  from Chapter 5.1. ( kl

ijT is known also). 

Now include the clock delay ,P-clock
k
iD  as well, obtained from Chapter 3.9. The Master positions 

i,raw,1X  and i,raw,2X  are now based on the corrected pseudorange (Figure 8.15): 
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 ( )i,raw,1 ,P-atm ,P-clock raw,1

k k
i i i i iX x y z D D⎡ ⎤= +⎣ ⎦  (6.32) 

 ( )i,raw,2 ,P-clock ,P-atm raw,2

k k
i i i i iX x y z D D⎡ ⎤= +⎣ ⎦  (6.33) 

The principle in determining the better solution between (6.32) and (6.33) is that the ‘better’ 
solution should give a smaller absolute error k

ie  in comparison to the other one: 

 ( )1 , ECEF ,raw,1
k k k

i raw ie P X X= − + −  (6.34) 

 ( )2 , ECEF ,raw,2
k k k

i raw ie P X X= − + −  (6.35) 

Since a set of satellites are used here, it would be more fair to calculate the ‘norm’ of all these 
k
ie  instead of only just one of them. These norms of errors, 1E  and 2E  are defined below: 

 ( ) ( )1 1
1 1 1 2 2 2norm        ;     norm

T Tm mE e e E e e⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  (6.36) 

The final Master position can therefore be selected based on smaller systematic error: 

 1 2 ,raw,1 ,raw,2if     then  X X    otherwise  X Xi i i iE E< = =  (6.37) 

Summary: Troposphere Delay kl
ijT  and  ECEF  Master Position ,ECEFi iX X≡  are now known. 

5.5. Jacobian Method – to estimate Rover position 
This section aims to estimate the Rover ECEF Position ,ECEFj jX X≡  (drop the subscript ‘ECEF’ 
for simplicity within this Chapter. Note that all coordinates in this Chapter are represented in 
ECEF). Iteration Loop and Epoch Loop are used to compute this. First, let the first guess of Rover 
position jX  as the same as Master position iX : 

 ,this iteration ,previous iteration1st iteration only:   j i j jX X X X= ≡ =  (6.38) 

Also, start from using the information of the first epoch only, define the double frequency (i.e. L1 
and L2 code) Design Matrix A  and Constant Noise Vector b̂ ;  Rover Position Updating Vector 

jdX : 

 
,previous iteration , this iteration

,previous iteration , this iteration
this iteration

,previous iteration , this iteration
2(m-1) by 3

ˆ
ˆ  ;   
ˆ

j j j

j j j j

j j j

dx x x
J

A dX dy y y
J

dz z z

⎡ ⎤ ⎡ ⎤−
⎡ ⎤ ⎢ ⎥ ⎢= = ≡ −⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎢ ⎥ ⎢ −⎣ ⎦ ⎣ ⎦

1,

2,

2(m-1) by 1
3 by 1

ˆ
ˆ ;      ˆ

kl
ij

kl
ij

C
b

C

⎡ ⎤⎥ = ⎢ ⎥⎥ ⎢ ⎥⎣ ⎦⎥
(6.39) 

where J  is the Jacobian Matrix, define as follow 1,
ˆ kl

ijC  and 2,
ˆ kl

ijC  are the Constant Noise Vector 
for L1 and L2 code respectively: 
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 ( ) ( ) ( ) ( ) ( ) ( )

: x  compnent : y  compnent : z  compnent

(m-1) by 3

[ ]

l k l k l k
i j i j i j

l k
i j

l k l k l k
i j i j i j

k k k
i i i

u u u u u u ECEF

J u u

x x x x y y y y z z z z
ρ ρ ρ

− − −

≡ −

⎡ ⎤
⎢ ⎥− − − − − − − − −
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6.40) 

 1, 1, 1 1,

(m-1) by 1

ˆL1 code:    kl kl kl kl kl
ij ij ij ij ijC T Nλ ρ⎡ ⎤= Φ − − −⎣ ⎦  (6.41) 

 2, 2, 2 2,

(m-1) by 1

ˆL2 code:    kl kl kl kl kl
ij ij ij ij ijC T Nλ ρ⎡ ⎤= Φ − − −⎣ ⎦  (6.42) 

Note that the single epoch range k
iρ  and double differenced range kl

ijρ  can be computed directly 

based on all the variables obtained from Chapter 5.1. 1,
kl

ijΦ  and 2,
kl

ijΦ  are known from Chapter 

5.1; kl
ijT  from Chapter 5.4 and 1,

kl
ijN  and 2,

kl
ijN  from Chapter 5.2; and finally, 1λ  and 2λ  from 

Chapter 3.5. i.e. Both 1,
ˆ kl

ijC  and 2,
ˆ kl

ijC  are now known (i.e. b̂  also), over all iterations;  J  in this 
iteration is known (i.e. A  also) based on the first guess defined in (6.38).  

Now define the Double Differenced Variable Weighted matrix 3W , which is (m-1) by (m-1):  

 

14 2 2
2

2
2 2 4

dW

−
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6.43) 

The Double Frequency Weighted Matrix 22dW  is expressed as:  

 3
22

3

(ms-1) by (ms-1)

0
For this epoch:    

0d

W
W

W
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (6.44) 

The Information Matrix 33N  and General Right Side Matrix 31RS  are defined below: 

 33 22 31 22
ˆ      ;       T T

d dN A W A RS A W b≡ ≡  (6.45) 

33N  and 31RS   update themselves as the first to last epoch’s data (Chapter 5.1) are run through. 

At the beginning of the Epoch Loop for each iteration, 33N  and 31RS , must be initialize. 

 31,previous_epoch 33,previous_epoch

0 0 0 0
For 1st epoch always:   0  ; 0 0 0

0 0 0 0
RS N

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (6.46). 
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In addition, the sum of Variance of  jdX , denoted by  
j

2
dXσΣ  must also be initialize: 

 
j

2
dX ,previous_epochFor 1st epoch always:    0 σΣ =  (6.47) 

The Epoch Loop is executed only if either (6.48) , (6.49) as shown below is met: 

 This is the first iteration, or... (6.48) 

 
j jdx ,this_epoch, this_iteration dx ,average, previous iteration

individual standard deviation from this epoch and this iteration average standard deviation from previous iteration

1.5σ σ< ×  (6.49) 

The updating process within the Epoch Loop is summarized between (6.50) and (6.53): 

 Epoch Loop start from: 1st epoch to last epoch  (6.50) 

 33,next_epoch 33,previous_epoch 33,this_epochN N N= +  (6.51) 

 31,next_epoch 31,previous_epoch 31,this_epochRS RS RS= +  (6.52) 

 
j j j

2 2 2
dX ,this_epoch dX ,previous_epoch dX ,this_epochσ σ σΣ = Σ +  (6.53) 

At the end of the Epoch loop (i.e. with subscript ‘this iteration’): define ,this_iteration
ˆ

jdX  as the 

change of Rover position relative to value from previous iteration. This value is based on 33N  

and 31RS  of the final epoch only: 

 ( )( )1
,this_iteration 33 31

this_iteration
ˆ

jdX N RS−=  (6.54) 

Define this_iterationRES  as the resultant resides of the new result ,this_iteration
ˆ

jdX : 

 this_iteration this_iteration

2(m-1) by 1

jRES A dX b= × −  (6.55) 

Define 
jdX ,this_iterationσ  as the standard deviation of the new result ,this_iteration

ˆ
jdX . This value is 

based on the residue this_iterationRES  calculated earlier: 

 
( ) ( )

j

22
dX ,this_iteration

this_iteration

1 by 1

2( 1)

T
dRES W RES

m
σ

⎡ ⎤
⎢ ⎥=

−⎢ ⎥
⎣ ⎦

 (6.56) 

Define 2
,average,this_iterationjdXσ  as the average variance of the new result ,this_iteration

ˆ
jdX . This value is 

based on the final sum of variance 
j

2
dX ,this_iterationσΣ  computed at the end of epoch loop: 

 j

2
dX ,this_iteration2

,average,this_iteration total number of executionsjdX

σ
σ

Σ
=  (6.57) 
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Define ,average,this_iterationjdXσ  as the average standard deviation of the new result ,this_iteration
ˆ

jdX . 

This value is based on 2
,average,this_iterationjdXσ  computed previously: 

 2
,average,this_iteration ,average,this_iterationj jdX dXσ σ=  (6.58) 

A new estimate of the Rover Position from this iteration, ,this_iterationjX  can finally be computed. 

 ,this_iteration ,previous_iteration ,this_iterationj j jX X dX= +  (6.59) 

An extra piece of information is the Covariance Matrix of this newly calculated ,this_iterationjX : 

 ( ) 1
,this_iteration average,this_iteration 33

Covariance_Matrix

jXC Nσ −=  (6.60) 

This is the end of the Epoch Loop. If the following Stopping Criteria is met, shown in (6.61), then 
the whole Iteration process ends, and the final value of jX  would be ,this_iterationjX . 

 
jdx ,average, this iteration

average standard deviation from this iteration

0.5σ <  (6.61) 

If (6.61) is not satisfied, then all the newly calculated variables from this iteration, with subscript 
‘this iteration’, will be used in the next Iteration Loop with subscript ‘previous iteration’. Note 
that the Average Standard Deviation of jdX  of the iteration, denoted by ,average,this_iterationjdXσ  is 

used in the next for testing the condition (6.49). The reason for (6.49) is purely for extra filtering 
of outlier results obtained from the epoch within the iteration (i.e. with subscript 
‘this_epoch_this_iteration’). This speeds up the convergence process. 

Summary: the ECEF Rover Receiver position ,ECEFj jX X≡  is now known. 

5.6. Baseline Estimation Vector – Master to Rover 

5.6.1. Without Ashtech Antenna Corrections 
As Master position ,ECEFiX   (from Chapter 5.4) and Rover position ,ECEFjX  (from Chapter 5.5) 

are known, the baseline without Ashtech Antenna Correction ,ECEF,rawijX is computed directly:  

 ,ECEF,raw ,ECEF ,ECEFij j iX X X= −  (6.62) 

5.6.2. With Ashtech Antenna Corrections 
In this Chapter, the Antenna files used for the Master and Rover receiver are respectively: 
‘s0005a94.076’ and ‘s0810a94.076', which provide the Slope Distances ,s ih  (Master) and ,s jh  

(Rover). The expression of Antenna Heights ,a ih  (Master) and ,a jh  (Rover ) due to vertical 
supports  is represented through the trigonometric relation: 

 2 2 2 2
, , ashtech , , ashtech   ;   a i s i a i s ih h r h h r= − = −  (6.63) 
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where ashtech 0.135 mr = , which is the antenna radius for an Ashtech antenna. The Final baseline 
estimation incorporating with the Ashtech Antenna Correction ,ij corrX  is expressed as: 

 ( ),ECEF,raw ,ECEF ,ECEF , ,ij j i a i a jX X X u h h= − − −  (6.64) 

where Master position ,ECEFiX   (from Chapter 5.4) and Rover position ,ECEFjX  (from Chapter 
5.5) are known; u  is the vertical upward Topocentric unit vector, which can be computed using 
(3.40) with the ECEF Geographical Coordinates of ,ECEFiX  and ,ECEFjX  as inputs. 

5.7. Discussion on results 

5.7.1. Real-time Ashtech Data Extraction 
Figure 8.17 shows a part of the Real-time Ashtech data extraction process as described in 
Chapter 5.1. Due to the Cut-off Elevation Angle setting of 15 degrees, one could see that, out of 
the 11 satellites, 5 of these are eliminated. i.e. only data from 7 satellites is used. It should be 
noted that only satellite 19 shows near zero elevation angles, while the other 4 (i.e. satellite 7, 12, 
17 and 31) are around 10 degrees. If found to be appropriate, one should lower the cut-off angle 
and accept data from more satellites (say, to change the cutoff angle to 10 degrees instead). i.e. 
this provides a larger number of data sample for the least square computation, which would 
reduce the variance and increase the reliability of the results. The Right figure counts the total 
number of epochs received from each satellite, that has been used to select the reference satellite. 

5.7.2. Wide-lane Ambiguities and Ionosphere Delays 
In Figure 8.19, the Right figures show the plots of Ionosphere Delays for all epochs. It is clearly 
seen that the delay calculated here on this regard is very small (in millimeter level). Hence the 
assumption of zero Ionosphere Delay made in Chapter 5.4 and Chapter 5.5 is reasonable. The 
Left figures show the Wide-lane Ambiguities WLN  (in cycles) plots for all epochs. The Wide-

lane ambiguities plots can be analyze as follow. First, define the Wide-lane wavelength WLλ  as: 

 light
WL

1 2

0.862 m
V
f f

λ = =
−

 (6.65) 

The uncertainty due to both L1 and L2 ambiguities in meters WLD  can be calculated directly: 

 WL WL WLD N λ= ×  (6.66) 

For example, if WLN  is 0.1 cycles, WL 0.1 0.862 0.0862 m = 8.62 cmD = × = . It should be 
noted that, both Master and Rover are stationary. Each Ambiguities plot should therefore 
theoretically be flat. (e.g. 0.1 cycles constant). The fluctuation that is observed in the plot 
suggests that there might be some other sources of error (e.g. Multipath delay, Ionosphere Delay, 
Ephemeris error, etc.) that exist but was not included in the computation. i.e. Systematic Error. 

5.7.3. Final Baseline Estimation 
The Master Position iX  and Rover Position jX  are found to be as follow (in meters): 
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: Master : Rover

3436371.8091 3435430.6126
603277.4117      ;     607773.8144

5321426.0092 5321537.9527

i j

i j

i j

Xi Xj

x x
y y
z z

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (6.67) 

And the final Baseline Estimation, with and without antenna Corrections are: 

 

With antenna correction no antenna correction

-941.270 -941.196
  4496.359       ;    4496.403

111.977 111.943

ij ij

ij ij

ij ij

x x
y y
z z

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (6.68) 

It should be noted that the impact on the baseline vector due to Antenna Correction is very small 
(7.4 cm, 4.4 cm and 3.4 cm in the ECEF x, y and z direction respectively). It is therefore up to the 
user to decide whether to include this small correction in the computation. 
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6. Conclusion 
In Chapter 2, the definitions of relevant GPS coordinate systems have been defined. These are 
the so called Solar Cartesian, ECEF Cartesian, ECEF Geographical and Topocentric coordinate 
systems. The relevant conversion techniques among these 4 coordinate systems have been 
defined. Throughout the whole of the report, the ellipsoidal Earth Model assumed is based on 
WGS 84 solely, where all relevant geodetic parameters on this regard are clearly defined. 

In Chapter 3, all relevant definitions regarding to GPS are defined and explained. GPS 
computation assumes a 4-dimensional space, where the first 3 components belong to the ECEF 
Cartesian coordinates; the 4th component corresponds to the uncertainty in the direction of signal. 
In term of GPS data acquisition, it can be either the post-processed data in RINEX format, in 
which the variables are well refined and published; or the Real-time Ashtech data, in which the 
data contain more noise. In this report, double frequency (L1 and L2) data are used. Uncertainty-
wise, the components that have been taken into account are due to atmospheric effects such as 
ionosphere delay and troposphere delay, clock offsets and systematic errors. Any un-modelled 
uncertainties are all embedded in the systematic error term, which have been used in the least 
square estimation process. Aspect regarding to finding the ‘corrected’ variables such as GPS 
transmission time, Pseudorange and Phase Distance and satellite positions at that corrected time 
has been shown. The Code Equations have also been derived and summarized. 

In Chapter 4, Grid Point Method has been introduced, in which the method itself uses double 
difference technique between the real receiver position and the modelled grid point. The main 
principle of this method is that, among all the grid points lying on the surface of the modelled 
grid hemisphere, only one of these produces smallest sums of square of residues based on the 
corrected pseudoranges. In addition, by denser the grids around this best grid points via a number 
of iterations; the final estimation of receiver position can become more refined. Post-process data 
in RINEX format obtained from IST receiver has been used to illustrate this method. The final 
computed Longitude and Latitude turn out to be very accurate with respect to the actual value 
provided by IST. This method however does not compute ellipsoidal height. 

In Chapter 5, a Baseline estimation and Separation of Ambiguities technique has been illustrated 
based on Real-time Ashtech data. It involves the Bancroft Method in estimating the Master 
position which uses only data from one epoch; and Jacobian Method in estimating the Receiver 
position which usess data from all epochs. Ashtech antenna corrections have been added to the 
final baseline estimation, which has shown to have very small effect on the final result. This 
illustration has shown that the ionosphere effect is insignificant. However, from the large 
fluctuation in ambiguities throughout the epochs, one can notice the existence of systematic error. 
This can be due to other un-modelled effect such as multipath delay; receiver clock offset error 
and inaccuracies in the computation in troposphere and ionosphere delays. 

To conclude, this report introduces the relevant fundamentals regarding to DGPS. Reasonable 
assumptions have been made in the computations in order to obtain some fairly accurate results to 
illustrate the methods. The results, however, can be made even more accurate by applying other 
techniques that have not yet been exploited in this report, such as the Least-squares Ambiguity 
Decorrelation Adjustment method (LAMBDA Method) and Kalman Filters.  

The scope of GPS is vast, so as the techniques. This report should therefore be treated as a 
‘beginner guide’ for those who would like to advance further in this exciting world of GPS. 
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8. Appendices 

8.1. Figures 

 
Figure 8.1 Definition of ECEF Cartesian, Geographical Coordinates of receiver i  and satellite k  

and the Topocentric Plane at an offset ih  from the WGS 84 Ellipsoidal surface. Figure 
modified from [8]. 

 

 
Figure 8.2 Definition of Topocentric coordinates of an object (satellite) with an offset u  from the 

Topocentric Plane. The origin is defined as receiver i .  Figure obtained from [10]. 
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Figure 8.3 Four Dimensional space system in satellite frame of reference. The four dimensions, from 

first to fourth, are respectively ECEFx , ECEFy , ECEFz  (ECEF Cartesian) and k
iD  

(uncertainty). Note that Delay only affects receiver position in the satellite frame of 
reference. 

 
Figure 8.4 Four Dimensional Space in Satellite Frame of Reference, showing the relationships 

between all Pseudoranges related GPS variables which illustrate the origin of the Single 
Epoch Pseudorange Equation. 
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Figure 8.5 Four Dimensional Space Diagram in Satellite Frame of Reference, showing the 

relationships between all Phase Distances related GPS variables which illustrate the 
origin of the Single Epoch Phase Equation. 

 
Figure 8.6 Definition of double difference observation between 2 satellites and 2 receivers. In this 

report, Satellite k  and l  represent respectively reference and non-reference satellites; 
Receiver i  and j  represent respectively the Master and Rover receivers. Figure obtained 
from [10]. 
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Figure 8.7 Ephemeris Parameters provided by an ephemeris matrix, derived from either a post-

processed RINEX or real-time Ashtech ephemeris file. These parameters expand in the 
column-wise direction for all of the locked satellites. Note that only the ephemeris data 
with a time that is immediately before the epoch time is used. Figure obtained from [8]. 

 

 
Figure 8.8 Typical observation data arrangement in RINEX format. Figure obtained from Ref. [8]. 
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Figure 8.9 From the figure, Step 1 shows s typical observation data arrangement in Ashtech format. 

The rest of the figure shows the process in preparing the 4 sets of observation matrices 
(which is done by the MATLAB code ash_dd.m) required by the double difference 
computations. Figure obtained from [8]. 
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Figure 8.10 Modeling of Grid Hemisphere for the Grid Point Method. Note that this Grid Hemisphere 

is based on an assumption of 18 grid points in the azimuth directions at each contour 
angle, 8 points in the contour direction at each azimuth angle, and also 1 grid point at the 
(top) centre of the grid hemisphere. This makes a total of ( )total 18 8 1 145N ⎡ ⎤= × + =⎣ ⎦  

grid points in total. 

 
Figure 8.11 Definition of Spherical Triangle: it is used in the routine updating process within the Grid 

Point Method in estimating the receiver position, in terms of latitude and longitude. 
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Figure 8.12 The best guess of IST receiver Latitude based on Grid Point Method. Ephemeris and 

Observation files are respectively ‘ist1064a.08n’ and ’ist1064a.08o’ run over the 
observation data from first to last epoch. 

 
Figure 8.13 The best guess of IST receiver position in terms of Latitude based on Grid Point Method. 

Ephemeris and Observation files are respectively ‘ist1064a.08n’ and ’ist1064a.08o’ run 
over the observation data from first to last epoch. 
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Figure 8.14 This figure illustrates the effect of the routine updating procedure and Iteration process as 

described in the Grid Point Method. Each newer guess has a smaller value of sum of the 
double differenced residues. Data file in RINEX format are used: ‘ist1064a.08n’ and 
’ist1064a.08o’. 

 

 
Figure 8.15 Relationships between GPS variables used in within the Bancroft Algorithm. 

 
Figure 8.16 Illustration of Baseline Estimation (Vector) with and without Antenna Correction 
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Figure 8.17 Figure on the Left shows the average Elevation Angles of each locked satellite measured 

by the Master receiver. The Cut off angle as been set to 15 degrees to filter out the ‘low’ 
satellites (satellite 7, 12, 17 and 31); the Right figure counts the total number of epochs 
received from each of the non-filtered satellites. It should be noted that the satellite with 
the most epochs (1st choice) and highest average elevation angle (2nd choice) is the 
reference satellite. i.e. satellite 26 is selected as the reference satellite. 

 
Figure 8.18 Visualization of a typical Satellite Trajectory in Inertial Earth Frame Reference. Satellite 

number 1 is used here for illustration purpose. Ephemeris data is based on the IST 
receiver data ‘ist1064a.08n’. The Trajectory is plotted at a time interval of 1 hour, with 
Start Time 2000 – Janurary - Day 1 – 00:00:00, over a total duration of 24 hours. The plot 
is normalized with respect to the WGS Earth Semi-major axis. The Solar Longitude is the 
angle measured from the Solar X axis, in the Eastward direction. Latitude is essentially 
the ECEF Latitude. It should be noted that, the satellite orbit the Earth for about twice per 
day (i.e. 24 hour).  Main script: jc_ist10641_orbit_in_c2gm.m 
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Figure 8.19 Figures on the Left show the Wide-lane Ambiguities for all epochs between the 

Reference and Non-reference satellite; the figures on the Right show the Ionosphere 
Delay computed for all epochs between the Reference and Non-reference satellites. 
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8.2. Nomenclature 
This section summarizes the main symbols used within the report. Descriptions of symbols that 
are not in this section should be found within the report. It should also be noted that this section 
acts a ‘reference’ only. The report should have defined the meanings for all of these symbols 
within the main Chapters already. 

8.2.1. General Notation for satellite and receiver 
Superscript k  Usually represents observed satellite. There can be up to m satellites. 

Subscript i  Usually represents receiver. 

8.2.2. Geodesy 
a  WGS Earth Semi-major Axis: 6378137 ma =  

f  WGS Earth Flatness Parameter (this is not the code frequency here!): 
298.257223563f =  

kM  WGS 84 Earth Gravitational constant including the mass of the Earth’s atmosphere: 
8 3 33986005 10  m /skM = ×  

eω  WGS Earth Rotational Speed: 11
e 7292115.1467 10  rad/sω −= ×  

lightV  WGS Speed of Light: light 299792458 m/sV =  

kX  Solar Cartesian Coordinate: ECEF

Tk k k kX x y z⎡ ⎤= ⎣ ⎦  

ECEFX  ECEF Cartesian Coordinate: [ ]ECEF ECEF ECEF ECEF
TX x y z=  

ECEF,geoX  ECEF Geographical Coordinate: [ ]ECEF,geo
TX hϕ λ=   ϕ , λ  and h  are 

respectively the Latitude, Longitude (this is not the Signal Wavelength here!) and 
Ellipsoidal Height. 

,topocentric
k
iX  Topocentric Coordinate: [ ],topocentric

Tk
iX e n u=    e , n  and u  are respectively 

the Eastward Distance, Northward Distance and Vertical Upward Distance. It 
measures the position of an object k (satellite) with respect to the origin i  (receiver). 

z  Zenith Angle: the angle between the Earth spinning axis and the line linking between 
satellite and receiver. 

EL  Elevation Angle: the angle between the Topocentric Plane and the line linking 
between satellite and receiver. 

α  Azimuth Angle: the angle measured from the North direction (i.e. North being zero 
degree) clockwise towards the East direction (90 degree), then South (180 degree), 
then West (270 degree), then back to North (360 or zero degree). 

3
kR  The Third Rotational Matrix that carry out transformation between Solar Coordinate 

and ECEF Cartesian Coordinate. It is a function of the Earth Rotation Speed eω  and 
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the Correct Signal Travel Time k
iτ . 

p  Earth Planer Distance: the distance measured from the Earth Spinning Axis to a 
point in space and it’s parallel to the plane shared between the ECEFx  and ECEFy . 

r  Radial Distance between the Earth Spinning Axis to a point in space, with this line 
perpendicular to the WGS ellipsoidal surface. 

R  Radius of Curvature about the Earth’s spinning Axis. 

dp  Residue in the Planner Distance direction. 

ECEFdz  Residue in the Earth Spinning Axis direction. 

F  The Topocentric Transformation Matrix that carries out transformation between 
ECEF Coordinates and Topocentric Coordinate. It is a function of Latitude and 
Longitude. 

,ECEF
k
iXδ  The vector measured from receiver i  to satellite k  

8.2.3. Global Positioning System (GPS) 
JD  Julian Day: the number of days counting from 4713 B.C., January, day 1, 

12:00:00 

GPS_standard_epochJD  Julian Day of GPS Standard Epoch: the Julian Day of 1980 AC, January, day 
6, 00:00:00 

GPS_weekt  GPS week number of the satellite since the Julian Day of GPS Standard Epoch 

GPS_second_of_weekt  GPS time: this is the ‘seconds’ of the GPS week. It is within the range of 
between 0 and 604800 seconds. 

f  Code Frequency (this is not the Earth Flatness Parameter here!). Subscript ‘1’ 
and ‘2’ corresponds to L1 and L2 code frequency respectively. 

6
1 1575.42 10  Hzf = × ; 6

2 1227.60 10  Hzf = ×  

λ  Signal Wavelength (this is not the Longitude here!). Subscript ‘1’ and ‘2’ 
corresponds to L1 and L2 code frequency respectively. 

1 0.190293672 mλ = ; 2 0.244210213 mλ = .  

,epoch
k
it  Time of Epoch (in GPS time. i.e. seconds) 

,raw
k

iP  Raw Pseudorange (in meters) obtained directly from observation file. 
Subscript ‘1’ and ‘2’ corresponds to L1 and L2 code respectively. 

,raw
k
iφ  Raw Phase (in cycles) obtained directly from observation file. Subscript ‘1’ 

and ‘2’ corresponds to L1 and L2 code respectively. 

,raw
k
iΦ  Raw Phase Distance (in meters) based on Raw Phase. Subscript ‘1’ and ‘2’ 

corresponds to L1 and L2 code respectively. 
k
iρ  Range: The calculated distance between Satellite k  and receiver i  assuming 

no delay or error. 
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k
iT  Troposphere Delay (distance) between Satellite k  and receiver i  

k
iI  Ionosphere Delay (distance) between Satellite k  and receiver i  

k
iN  Ambiguity between Satellite k  and receiver i . Subscript ‘1’ and ‘2’ 

corresponds to L1 and L2 code respectively. 
k
ie  Systematic Error of the Raw Pseudorange. 

k
iε  Systematic Error of the Raw Phase Distance. 

,clock
k
iD  Pseudorange Clock Delay due to the satellite clock offset kdt  and receiver 

clock offset idt . Note that idt  is always assumed to be zero (i.e. it is 
embedded into the systematic error term) 

,Φ-clock
k
iD  Phase Clock Delay due to the satellite initial phase 0

kφ  and receiver initial 

phase 0,iφ  recorded. 

,P-atm
k
iD  Pseudorange Atmospheric Delay: It is contributed by the Ionosphere Delay 

and Troposphere Delay. 

,Φ-atm
k
iD  Phase Atmospheric Delay: It is contributed by the Ionosphere Delay, 

Troposphere Delay and Ambiguity induced uncertainty. 

,corr
k

iP  Corrected Pseudorange: The Pseudorange that has taken the Pseudorange 
Atmosphere Delay, Pseudorange Clock Delay and Systematic Error into 
account.  

,corr
k
iΦ  Corrected Phase Distance: The Phase Distance that has taken the Phase 

Atmosphere Delay, Pseudorange Clock Delay, Phase Clock Delay and 
Systematic Error into account. 

k
iτ  Corrected Signal Travel Time: based on the Corrected Pseudorange. 

raw
kt  Raw GPS Transmission Time: based on the Raw Pseudorange. 

GPS
kt  Corrected GPS Transmission Time: based on the Corrected Pseudorange. 

j
kt  Time of Elapse of Satellite k  based on the corrected GPS Transmission Time 

and Time of Epoch. 

j
kμ  Mean Anomaly of satellite k  at time j

kt  

j
kE  Eccentric Anomaly of satellite k  at time j

kt  

j
kf  True Anomaly of satellite k  at time j

kt  

j
kΩ  Longitude for Ascending Node of satellite k  at time j

kt  

j
kω  Argument of Perigee of satellite k  at time j

kt  

j
kr  Radial Distance of satellite k  at time j

kt  



Advance NAVSTAR-GPS Positioning Techniques for UAVs 30 May 2008 

(Johnny) Chun-Ning Chan, Imperial College London 52  

j
ki  Inclination of satellite k  at time j

kt  

k  Row 1 of Ephemeris Matrix: satellite ID Number 

f2
ka  Row 2 of Ephemeris Matrix: satellite Clock Drift Rate Coefficient [s-2] 

0
kμ  Row 3 of Ephemeris Matrix: satellite Anomaly 

ka  Row 4 of Ephemeris Matrix: Square root of satellite orbit’s semi-major axis of 
[m0.5] 

knΔ  Row 5 of Ephemeris Matrix: satellite Change of Mean Angular Velocity 
[rad/s] 

ke  Row 6 of Ephemeris Matrix: satellite Orbit’s Eccentricity 

kω  Row 7 of Ephemeris Matrix: satellite Argument of Perigee [rad] 

uc
kC  Row 8 of Ephemeris Matrix: satellite Perigee Perturbation Argument 

Coefficient (cosine term) [rad] 

us
kC  Row 9 of Ephemeris Matrix: satellite Perigee Perturbation Argument 

Coefficient (sine term) [rad] 

rc
kC  Row 10 of Ephemeris Matrix: satellite Orbit Radius Pertubation Argument 

Coefficient (cosine term) [m] 

rs
kC  Row 11 of Ephemeris Matrix: satellite Orbit Radius Pertubation Argument 

Coefficient (sine term) [m] 

0
ki  Row 12 of Ephemeris Matrix: satellite inclination [rad] 

0
ki  Row 13 of Ephemeris Matrix: satellite inclination rate [rad/s] 

ic
kC  Row 14 of Ephemeris Matrix: satellite Inclination Perturbation Argument 

Coefficient (cosine term) [rad] 

is
kC  Row 15 of Ephemeris Matrix: Satellite Satellite Inclination Perturbation 

Argument Coefficient (sine term) [rad] 

0
kΩ  Row 16 of Ephemeris Matrix: satellite Right Ascension Rate of ascending 

node K. [rad] 
kΩ  Row 17 of Ephemeris Matrix: satellite Right Ascension Rate of ascending 
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node K [rad/s] 

oe
kt  Row 18 and 21 of Ephemeris Matrix: satellite epoch received time [s] 

f0
ka  Row 19 of Ephemeris Matrix: satellite clock bias coefficient [s] 

f1
ka  Row 20 of Ephemeris Matrix: satellite clock drift coefficient [s-2] 

8.2.4. Grid point method 

0, jϕ  Initial Grid Point Latitude 

0, jλ  Initial Grid Point Longitude 

totalN  Total number of grid points on the grid hemisphere 

azimuthN  Total number of grid points in the azimuth direction at each constant contour 

contourN  Total number of grid points in the contour direction at each constant azimuth 
angle 

2, jϕ  New estimate of Grid Point Latitude 

2, jλ  New estimate of Grid Point Longitude 

jϕ′  Constant Radius Angle between the central axis of the grid hemisphere and the 
grid point itself 

jα  Azimuth Angle of grid point, with origin of the Topocentric Plane being the 
central axis of the grid hemisphere.  

jλΔ  Change of Longitude when move from one grid point to the other one. 

RES  Residues: this is the overall systematic error of the least square solution. 

S  Sum of Squares of Residue: Best estimation has a minimum value of this. 

8.2.5. Baseline estimation & Separation of Ambiguities 
J  Jacobian Matrix 

,ECEFi iX X≡  Master Receiver Position in ECEF Cartesian Coordinate 

,ECEF j jX X≡  Rover Receiver Position in ECEF Cartesian Coordinate 

ah  Antenna Correction Height 

ashtechr  Ashtech Antenna Radius 

sh  Slope Distance of Antenna 
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8.3. MATLAB Scripts & GPS Files 
This section summarizes all the relevant MATLAB scripts used in Chapter 4 (Grid Point 
Method) and Chapter 5 (Baseline Estimation and Separation of Ambiguities). These MATLAB 
scripts are obtained from [1], which have been studied and used for illustrations. It should be 
noted that the ‘Main Script’ is the one that can be run directly for the corresponding illustrations 
(i.e. The Main script acts as the main body that links all the other sub-codes together.). The main 
scripts ‘recpos_test_c1.m’, ‘recpos_test_p2.m’ and ‘jc_ist10641_orbit_in_c2gm.m’ are the only 
main scripts that have been modified manually for the corresponding illustration purpose. 

8.3.1. Grid Point Method 
recpos_test_c1.m The Main Script to illustrate the Grid Point Method base on L1 code data. 

recpos_test_p2.m The Main Script to illustrate the Grid Point Method base on L2 code data. 

ist1064a.08n Post-processed RINEX Ephemeris Data File of IST receiver used. 

ist1064a.08o Post-processed RINEX Observation Data File of IST receiver used. 

b_point.m Prepares input to the Bancroft algorithm for finding a preliminary position 
of a receiver. The input is four or more pseudoranges and the coordinates 
of the satellites. 

check_t.m Repairs over- and underflow of GPS time 

deg2degD.m Converts Degree/Minute/Second into Degree in decimal format 

find_eph.m Finds the proper column in ephemeris array (i.e. Only the data that is 
immediately before the epoch time is used for that satellite) 

frgeod.m Subroutine to calculate Cartesian coordinates X,Y,Z given geodetic 
coordinates latitude (North), longitude (East), and Ellipsoidal Height 
above reference ellipsoid along with reference ellipsoid values Semi-major 
axis and the inverse of Flatness Parameter 

get_eph.m The ephemerides contained in ephemerides file (output by rinexe.m) are 
reshaped into a matrix with 21 rows and as many columns as there are 
ephemerides. 

gps_time.m Conversion of Julian Day number to GPS week and Seconds of Week 
reckoned from Saturday midnight 

julday.m Convert Universal Time (Year/Month/Day/Hour) into Julian Day 

rinexe.m Reads a RINEX Navigation Message file and reformats the data into a 
matrix with 21 rows and a column for each satellite. The matrix is stored 
in an output file for get_eph.m 

satpos.m Calculation of X,Y,Z Solar Coordinates in an ROTATIONAL reference 
frame at the Corrected GPS Transmission Time with given Ephemeris 
Matrix 

togeod.m Subroutine to calculate ECEF Geographical coordinates (Latitude, 
Longitude, Ellipsoidal height) given ECEF Cartesian coordinates and 
WGS Earth Semi-major Axis and the inverse of Flatness Parameter 
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8.3.2. Baseline Estimation & Separation of Ambiguities 
ash_base.m The Main Script to illustrate the Method of Baseline Estimation & 

Separation of Ambiguities. 

b0005a94.076 Rover receiver observation data file used. 

b0810a94.076 Master receiver observation data file used. 

e0810a94.076 Master receiver ephemeris data file used. 

s0005a94.076 Rover receiver antenna data file used. 

s0810a94.076 Master receiver antenna data file used. 

ash_dd.m Arrangement and Formatting of Double Differenced Code and Phase 
Observations. 

b_point.m Prepares input to the Bancroft algorithm for finding a preliminary position 
of a receiver. The input is four or more pseudoranges and the coordinates 
of the satellites. 

bancroft.m Calculation of preliminary coordinates for a GPS receiver based on 
pseudoranges to 4 or more satellites. The ECEF coordinates (see function 
e_r_corr) are the first three elements of each row of B. The fourth element 
of each row of B contains the observed pseudorange. Each row pertains to 
one satellite. 

bdata.m Reorganization of binary P-code data as resulting from Z-12 receiver Input 
of b-files from master and rover.  
Typical call: bdata('b0810a94.076','b0005a94.076') 

check_t.m Repairs over- and underflow of GPS time 

d2dms.m Conversion of radians to degrees, minutes, and seconds 

e_r_corr.m Returns rotated satellite ECEF coordinates due to Earth rotation during 
signal travel time 

edata.m Reads a binary ephemeris file and stores it in a matrix with 21 rows; 
column number is the number of ephemerides.  
Typical call: edata('e0810a94.076') 

find_eph.m Finds the proper column in ephemeris array (i.e. Only the data that is 
immediately before the epoch time is used for that satellite) 

get_eph.m The ephemerides contained in ephemerides file (output by edata.m) are 
reshaped into a matrix with 21 rows and as many columns as there are 
ephemerides. 

get_rho.m Calculation of distance in ECEF system between satellite and receiver at 
time given the Ephemeris Matrix 

gps_time.m Conversion of Julian Day number to GPS week and Seconds of Week 
reckoned from Saturday midnight 

julday.m Convert Universal Time (Year/Month/Day/Hour) into Julian Day 

lorentz.m Calculates the Lorentz inner product of the two 4 by 1 vectors x and y 

satpos.m Calculation of X,Y,Z Solar Coordinates in an ROTATIONAL reference 
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frame at the Corrected GPS Transmission Time with given Ephemeris 
Matrix 

sdata.m Reading of antenna offsets. The 2 antenna heights are saved as h = 
["rover"; "master"].  
Typical call: sdata('s0810a94.076','s0005a94.076') 

togeod.m Subroutine to calculate ECEF Geographical coordinates (Latitude, 
Longitude, Ellipsoidal height) given ECEF Cartesian coordinates and 
WGS Earth Semi-major Axis and the inverse of Flatness Parameter 

topocent.m Transformation of vector (from receiver to satellite) into Topocentric 
coordinate (of satellite) system with origin at the receiver. Both parameters 
are 3 by 1 vectors. Output: Vector length in units like the input (e.g. 
meter); Azimuth from north positive clockwise (degrees); Elevation Angle 
(degrees) 

tropo.m Calculation of Troposphere correction. The range correction ddr in meters 
is to be subtracted from pseudo-ranges and carrier phases 

8.3.3. Visualization of Satellite Trajectory 
jc_ist10641_orbit_in_c2gm.m Main Script: This program plots the trajectory of a typical 

satellite (satellite 1 is used) base on the ephemeris file 
‘ist1064a.08n’ obtained from the IST receiver. The WGS 84 
Earth Model is also modeled. The plot is in an inertial Earth 
Frame System and is presented in Solar Cartesian Coordinate. 
The plot is normalized with respect to the WGS Earth Semi-
major axis. 
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8.4. Method of Least Square for DGPS 
Within the DGPS computation, large sample of double differenced observables (i.e. pseudoranges 
and phase distances) from different epochs are used to determine a best fit for the 4 main 
unknown variables (i.e. x, y, z Cartesian coordinates of receiver, and the delay distance). This 
best fitting procedure is known as Method of Least Square. To begin this procedure, first define 
the system of linear algebra for each set of DGPS observables of one epoch: 

 Ax b e= −  (2.1) 

where A  is the Design Matrix with size ( )1m − by 4; x  is the unknown vector to solve, with 

size 4 by1; b  is the known vector with size ( )1m −  by 1 ; e  is the systematic error wit size 

( )1m −  by 1. Method of Least Square initially assumes the systematic error term equals to zero. 
This leads to the least square form: 

 ˆˆAx b=  (2.2) 

The ‘hat’ represents estimated variables. The general way for solving x̂  follows the following 
steps. First multiply both sides by ( )TA W , where the superscript T represents transpose; W  the 

weighted matrix with size ( )1m −  by ( )1m − . 

 ˆˆTA WAx AWb=  (2.3) 

where ( )TA WA  is called the Information Matrix; ( )ˆAWb  the General Right Side Matrix. To 

solve for x̂ , simply rearrange (2.3): 

 ( ) 1 ˆˆ Tx A WA AWb
−

=  (2.4) 

Since all terms on the right hand side (RHS) are known, the unknown x̂  can be solved. It should 
be note that, as more information (from many epochs) are included in the computation as defined 
by (2.4), this estimated solution x̂  gradually updates itself and produces a minimum error e  with 
respect to the exact solution x of each epoch. This minimum error can be defined as follow, base 
on  (2.1): 

 ˆe b Ax= −  (2.5) 

Now define the Residue, denoted by RES , of each epoch as the absolute value of this minimum 
error term: 

 RES e=  (2.6) 

This whole process as described above summarizes the Method of Least Square. It has been used 
in the Grid Point Method, Bancroft Method and Jacobian Method. 

 


