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Resumo

Esta dissertação tem como objectivo apresentar uma colecção de algoritmos multi-modelo (MM) ca-
pazes de efectuar o seguimento de um ou múltiplos objectos na presença de incertezas no movimento
do objecto e na origem das observações. Ademais, esta dissertação apresenta um novo algoritmo
MM para seguimento de múltiplos objectos.

A estimativa da posição de um objecto é baseada em estimadores MM (formados por bancos de
filtros de Kalman) com a ajuda de observações de um sensor. São apresentadas as três gerações
de estimadores MM juntamente com a descrição e simulação de um algoritmo representativo. Estas
gerações são i) Autónomos, ii) Cooperativos e iii) Estrutura Variável. Os correspondentes algoritmos
representativos descritos são o Minimum Mean Square Error Autonomous Multiple Model (MMSE-
AMM), o Interacting Multiple Model (IMM) e o Likely Model-Set (LMS). Relativamente ao seguimento
de múltiplos objectos, dois algoritmos são descritos e simulados. O primeiro combina o algoritmo IMM
com o Joint Probabilistic Data Association Filter (JPDAF); o segundo é um algoritmo novo baseado
nos algoritmos LMS e JPDAF.

O MMSE-AMM é o mais simples e fraco dos algoritmos para seguimento de um objecto; a complexi-
dade e desempenho do IMM e LMS são semelhantes, mas o LMS tem mais espaço para melhorar e
provavelmente irá suplantar o IMM (e o MMSE-AMM). No exemplo simulado na presença de múltiplos
objectos, o algoritmo proposto LMS-JPDAF suplanta o desempenho do IMM-JPDAF na presença de
incerteza na origem das observações, apesar de mostrar um pior seguimento dos objectos quando
estes estão afastados.

Palavras-chave: Seguimento de Objectos, Estimação multi-modelo, Data Association
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Abstract

The aim of this thesis is to present a collection of multiple model (MM) algorithms capable of single
or multiple target tracking by solving one or both target motion and measurement origin uncertainties.
Furthermore, this thesis introduces a new MM algorithm for multiple target tracking.

A single target position estimation is based on MM estimators (composed of Kalman filters banks) with
the help of sensor measurements. The three MM generations are presented along with a description
and simulation of a representative algorithm. These generations are: i) the Autonomous, ii) the Co-
operative and iii) the Variable Structure. The correspondent representative algorithms described are
the Minimum Mean Square Error Autonomous Multiple Model (MMSE-AMM), the Interacting Multiple
Model (IMM) and the Likely Model-Set (LMS). Regarding the tracking in the presence of the multiple
targets two algortihms are described and simulated. The first combines the IMM and Joint Probabilistic
Data Association Filter (JPDAF) algorithm, the second is a new algorithm based on the LMS and on
the JPDAF.

The MMSE-AMM is the simplest and poorer single target tracker; the IMM and LMS complexity and
responses are similar but the LMS has further room for improvement and will probabilly surpass the
IMM (and the MMSE-AMM) performance. On the multiple target example simulated, the proposed
LMS-JPDAF surpassed the IMM-JPDAF tracking performance under measurement origin uncertainty,
although provided a worse overall single target tracking when the targets are far apart.

Keywords: Target Tracking, Multiple Model Estimation, Data Association
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Acronyms

2D Two Dimensions
ATC Air Traffic Control
AMM Autonomous Multiple Model
CMM Cooperating Multiple Model
CV (nearly) Constant Velocity
CT (nearly) Constant Turn
DA Data Association
FSMM Fixed Structure Multiple Model
IMM Interacting Multiple Model
IMM-JPDAF Interacting Multiple Model Joint Probabilistic Data Association Filter
JPDAF Joint Probabilistic Data Association Filter
KF Kalman Filter
LMS Likely Model-Set
LMS-JPDAF Likely Model-Set Joint Probabilistic Data Association Filter
MGS Model-Group Switching
MJLS Markov Jump-Linear System
MMSE Minimum Mean Squared Error
MMSE-AMM Minimum Mean Square Error Autonomous Multiple Model
MSE Mean Squared Error
MTT Multiple Target Tracking
RADAR RAdio Detection And Ranging
RAMS Recursive Adaptive Model-Set
SM Single Model
SONAR SOund Navigation and Ranging
STT Single Target Tracking
VSIMM Variable Structure Interacting Multiple Model
VSIMM-JPDAF Variable Structure Interacting Multiple Model Joint Probabilistic Data Association Filter
VSMM Variable Structure Multiple Model
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Chapter 1

Introduction

This chapter gives a brief overview of the work developed in this thesis, beginning by describing the
motivations behind it, section 1.1.

The subject of target tracking is not new but current advances in technology, namely the evolution on
the sensory systems, as provided new means that allow the development of better and more robust
algorithms. The current State-of-the-Art in relation to target tracking is presented in section 1.2, be-
ginning by the ever-present single tracker Kalman Filter and ending with the recent proposed multiple
target trackers.

An overview of this work scope is also presented in section 1.2. At the end of the chapter, in section
1.4, the thesis structure is provided.
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1.1 Motivation

The problem of target tracking dates back as far as the eighteenth century, with the first attempts to
determine the orbits of visible planets. More recent work, early 1960s, was mostly developed target-
ing military applications, such as ballistic missile defense, battlefield situational awareness and orbital
vehicle tracking. Nowadays, the target tracking problem has an ever-growing number of civilian ap-
plications, ranging from traditional applications such as air traffic control and building surveillance to
emerging applications such as supply chain management and wildlife tracking. Certain applications of
target tracking have become relatively more important in the last few years. Mainly air traffic control
(ATC), which has and will experience a large grow due to the increase of civilian aviation (see figures
1.1 and 1.2) and highway vehicle surveillance, driven by current interest in intelligent transportation
systems and by the proliferation of surveillance systems and their increased sophistication.

Figure 1.1: Market size 2002 in billions revenue passenger kilometers and yearly expected growth
rates 2003-2022.

Figure 1.2: Expected market growth rates 2007-2027 (source: Boeing Market Outlook).

What these applications have in common, is that they intent to accurately and timely know the state of
one or more moving targets based on a combination of the sensed data and the target history.
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A major issue in target tracking design is thus the solving of two discrete-valued uncertainties, the
target motion uncertainty and the measurement origin uncertainty.

The target motion uncertainty is present when a target undergoes a known or unknown maneuver
during an unknown time period. In general, it is only possible to account target motion uncertainty by
having different motion models. Note that the target motion uncertainty can also reveal itself by target
nonlinearity, which will not be addressed in this thesis.

The measurement origin uncertainty is present when the measurements from the sensory system can
have been originated by an external source, such as clutter, false alarms or neighboring targets, for
example. In many situations the measurement origin uncertainty has far more impact in the tracking
performance than the noise associated with the measurements or the target motion uncertainty.

Solving the measurement origin uncertainty has gain specially attention in current years, due to the ris-
ing of more complex and complete sensory systems such as RAdio Detection And Ranging (RADAR),
infrared, laser RADAR and SOund Navigation and Ranging (SONAR), capable of observing diverse
sources, including the targets of interested and background noise (see figure 1.3).

ground 
clutter

weather 
clutter

targets

Figure 1.3: Plan position indicator screen of an ATC-radar with targets and clutter.

1.2 State-of-the-Art

The ubiquitous Kalman Filter [14] is the most widely used filtering technique and is the basis for most
of the more complex target tracking estimators. The Kalman Filter is an optimal single target tracker if
there is not target motion uncertainty nor measurement origin uncertainty.
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The Multiple Model methods are the main stream approach in single target tracking under motion
uncertainty and in the absence of measurement origin uncertainty. Basically, these methods resolve
the target motion uncertainty by using multiple models at a time for a maneuvering target, being able to
explain a larger number of target motions at each time. Numerous techniques have been developed to
resolve the target motion uncertainty, amongst the more popular, there are the Minimum Mean-Square
Error Autonomous Multiple Model [22] and the Interacting Multiple Model algorithm [11].

Furthermore, there are two main Multiple Model algorithm approaches, the Fixed Structure and the
Variable Structure. The first has received a lot of attention from the scientific community, and little
more there is to be improved, on the other hand, the latter is relatively new and has appeared has an
alternative to upgrade the Fixed Structure Multiple Model algorithms. In the survey set [4], [7], [5], [6], [8]
and [10], an interesting and almost complete study of all the main Variable Structure Multiple Model
algorithms is made.

The Multiple Target Tracking problem extends the single target tracking scenario to a situation where
the number of targets may not be known and varies with time, leading to the presence of measurement
origin uncertainty in addition to the target motion uncertainty. Besides the need to estimate the targets
current state, the identities of the targets may need to be known. The usual method to solve this
problem is to assign a single target tracker to each target and use a data association technique to
assign the correct measurement to each target. Numerous techniques have been developed to resolve
the measurement origin uncertainty, such as the Nearest Neighbour Standard Filter [23], the Joint
Probabilistic Data Association Filter [1], and the Multiple Hypothesis Tracking Filter [1].

1.3 Objectives

The aim of this thesis is to present a collection of tools that are capable of target tracking by solving one
or both target motion and measurement origin uncertainties. This thesis represents an evolution from
the more accepted and more documented tracking algorithms to the more recent ones, from the more
simple to the more complex concepts in target tracking. Furthermore, during the thesis development, a
new algorithm for Multiple Target Tracking arose naturally, by combining two of the studied approaches:
the Likely Model-Set and the Joint Probabilistic Data Filter.

1.4 Contents

The outline of this thesis is as follows. The modeling of the target and sensory system is made in
chapter 2. The Kalman Filter, viewed as the elemental filter or block of the Multiple Model estimators,
is described in chapter 3. The three generations of Multiple Model methods are surveyed in chapter
4. This generations are: the autonomous, the cooperative and the variable structure multiple mod-
els. For all the three generations a representative algorithm is simulated. Furthermore, at the end of
the chapter all three algorithms performances are discussed and compared. The tracking of multiple
targets is addressed in chapter 5, where two alternative algorithms are presented. The first, is a well

4



documented algorithm whereas the second one was developed in the thesis context. Both this algo-
rithms performances are compared. The final chapter, chapter 6, summarizes the work presented in
this thesis and outlines future research based on the work developed.
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Chapter 2

The Target and Sensor Models

This chapter addresses the importance of a correct modeling of the target and sensor in the problem of
target tracking. In the first section (section 2.1), the system composed of target and sensor is described
as a general state-space system.

In section 2.2, two possible models to explain the target motion are described. The target can have two
types of motions: non-maneuvering motion (described in subsection 2.2.1) and maneuvering motion
(described in subsection 2.2.2). In subsection 2.2.3 these two models are incorporated in a hybrid
target model able to describe the multiple motions of the target.

In section 2.3, the sensor model is described along with the necessary coordinate transformation and
linearization (subsection 2.3.1). In subsection 2.3.2, the sensor model is extended to the the multiple
target tracking problem.

Finally in section 2.4 the difference between the terms Mode and Model are discussed.

7



2.1 The State Space Model

For the successful tracking of a moving target it is essential to extract the maximum useful information
about the target state from the available observations. Both good models to describe the target dy-
namics and sensor will certainly help this information extraction. As the knowledge of information on
the target’s kinematics and sensor characteristics are generally known, most of the tracking algorithms
base their performance on the a priori defined mathematical model of the target which are assumed to
be sufficiently accurately. This section, addresses the problem of describing the target motion model
and establishes a good compromise between accuracy and complexity.

The target is treated as a pontual mass and is described by a linear state-space model in the form

xk+1 = Fkxk +Gkuk + Ekwk (2.1)

and the measurement function has the form

zk = Hkxk + vk (2.2)

where xk ∈ Rn, zk ∈ Rm and uk ∈ Rp the target state,observation, and control input vectors, respec-
tively, at the discrete time tk; wk ∈ Rq and vk ∈ Rm are the process and measurement noise sequences
with covariances Q(t) ∈ Rq×q and R(t) ∈ Rm×m, respectively; and Fk ∈ Rn×n, Ek ∈ Rn×p, GK ∈ Rn×q

and Hk ∈ Rm×n are the possible time-varying discrete-time transition matrix, input gain, noise gain
and measurement matrix, respectively.

The discrete-time model presented above is often obtained by discretizing the continuous-time model

ẋ(t) = A(t)x(t) +D(t)u(t) +B(t)w(t) x(t0) = x0 (2.3)

z(t) = C(t)x(t) + v(t) (2.4)

where A(t), D(t), B(t) and C(t) are the continuos-time equivalent to the Fk, EK , Gk and Hk ma-
trixes, respectively and w(t) and v(t) are the continuous-time process and measurement noise with
covariances Q(t) and R(t), respectively.

Since the observations are usually only available at discrete time instants and the target motion is
more accurately modeled by the continuous time equation, it is more appropriate to use the following
continuous-discrete time form

ẋ(t) = A(t)x(t) +D(t)u(t) +B(t)w(t), x(t0) = x0 (2.5)

zk = Hkxk + vk. (2.6)
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2.2 Mathematical Model for the Maneuvering Target

After addressing the importance of correct modeling the target and sensor, and introducing general
equations for the continuous-time target system, in this section, the concrete model chosen to explain
the target’s motion is described.

Before presenting the model, the expressions for discretizing (sampling) of the continuous-time linear
system (2.3), for a time-invariant continuous-time system with sampling rate ∆t, using Euler discretiza-
tion or Zero-Order Hold (ZOH) [12], [9], are

Fk
4
= F (tk+1, tk) = F (tk+1 − tk) = F (∆t) = eA∆t (2.7)

Gk
4
= G(tk+1, tk) =

∫ ∆t

0

eA(∆t−τ)Ddτ. (2.8)

The process noise w(t) is considered to be zero-mean and white Gaussian. The discretized process
noise wk retains the same characteristics

E[wk] = 0, E[wkw′j ] = Qkδkj (2.9)

with covariance Qk given by

Qk =
∫ ∆t

0

eA(∆t−τ)BQB′eA
′(∆t−τ)dτ. (2.10)

The target is assumed to have a 2D horizontal motion model has a state described by

x =
[
x ẋ y ẏ

]′
(2.11)

where (x, y) is the target position in Cartesian coordinates and ẋ and ẏ are the linear velocity of the
target along the x-axis and the y-axis, respectively.

The target dynamics is described by 

ẋ(t) = v(t) cosφ(t)

ẏ(t) = v(t) sinφ(t)

v̇(t) = at(t)

φ̇(t) = an(t)/v(t)

(2.12)

where v and φ are the linear velocity and (velocity) heading angle, respectively. The variable at and an
are the target tangential and normal accelerations in the horizontal plane, respectively. See figure 2.1
for visual representation of this variables.

This model can explain several target motions including the special cases

• rectilinear, constant velocity motion (an = 0, at = 0);

9



Figure 2.1: Geometry of 2D target motion.

• rectilinear, accelerated motion (an = 0, at 6= 0);

• circular, constant speed motion (an 6= 0, at = 0).

The two motions addressed in this thesis for modeling the target’s dynamics are the first and last cases
of the above list.

The first case represents the target in non-maneuver, its motion is (nearly) uniform with (nearly) con-
stant linear velocity v. This model is commonly called Constant Velocity (CV) Model [20].

The last case above, with a constant and known an, is referred to as a Constant Turn (CT) Model with
Known Turn Rate [20]. This model assume that the target moves with (nearly) constant speed v and
(nearly) constant angular velocity (or turn rate) ω. The constant value is assumed to be known leading
to a four-dimensional state vector.

2.2.1 Constant Velocity Model

From (2.12) for an = 0 and at = 0; and using the form of (2.3), the target state vector is given by

ẋ(t) = ACV x(t) +BCV w(t) (2.13)

ACV =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , BCV =


0 0
1 0
0 0
0 1

 (2.14)

where w(t) is white gaussian noise with covariance E[w(t)w(τ)′] = Q(t)δ(t− τ)

Q(t) = diag(σ2
x, σ

2
y). (2.15)

The discrete-time equivalent of the above model is described by

xk+1 = FCV xk + wk (2.16)
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where, using the equation (2.7), the discrete-time transition matrix is given by

FCV =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 . (2.17)

The covariance matrix of the discrete-time process noise sequence wk, calculated using the expression
(2.10), is

Qk =


1/3(∆t)3σ2

x 1/2(∆t)2σ2
x 0 0

1/2(∆t)2σ2
x ∆tσ2

x 0 0
0 0 1/3(∆t)3σ2

y 1/2(∆t)2σ2
y

0 0 1/2(∆t)2σ2
y ∆tσ2

y

 . (2.18)

2.2.2 Constant Turn Model with Known Turn Rate

From (2.12) for an 6= 0 and at = 0; and using the form of (2.3), the target state vector is given by

ẋ(t) = ACT (ω)x(t) +BCTw(t) (2.19)

ACT (ω) =


0 1 0 0
0 0 0 −ω
0 0 0 1
0 ω 0 0

 , BCT =


0 0
1 0
0 0
0 1

 (2.20)

where w(t) is white gaussian noise with covariance given by (2.15). If ω is known this model is linear.

The discrete-time equivalent of the above model can be obtained by

xk+1 = FCT (ω)xk + wk (2.21)

where, using once again the equation (2.7), the discrete-time transition matrix is given by

FCT (ω) =


1 sinω∆t

ω 0 − 1−cosω∆t
ω

0 cosω∆t 0 − sinω∆t
0 1−cosω∆t

ω 1 sinω∆t
ω

0 sinω∆t 0 cosω∆t

 . (2.22)

Note that the discretization of this continuos model has an issue, since it can be time-variant, regarding
which of the discrete-time value of the angular velocity ω should be used. The most popular way, and
the one here applied, is to use ωk. Other ways include the more stable method propose in [16], which
uses ωk+1, or adopt the mean value 1

2 (ωk + ωk+1) instead.

The variable wk remains a white gaussian noise sequence with covariance given by (2.10), resulting in
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the matrix defined by Qk =
[
Q1 Q2 Q3 Q4

]
, where

Q1 =



(3ω∆t−4 sin(ω∆t)+1/2 sin(2ω∆t))σy
2

2ω3 + (ω∆t−1/2 sin(2ω∆t))σx
2

2ω3

− (2 cos(ω∆t)−1−cos(ω∆t)2)σy
2

2ω2 + sin(ω∆t)2σx
2

2ω2

(2 cos(ω∆t)−1−cos(ω∆t)2)σy
2

2ω3 + (cos(ω∆t)2−2 cos(ω∆t)+1)σx
2

2ω3

(ω∆t−2 sin(ω∆t)+1/2 sin(2ω∆t))σy
2

2ω2 + (ω∆t−1/2 sin(2ω∆t))σx
2

2ω2


(2.23)

Q2 =



Q1(2)

(ω∆t−1/2 sin(2ω∆t))σy
2

2ω + (1/2 sin(2ω∆t)+ω∆t)σx
2

2ω

− (ω∆t−1/2 sin(2ω∆t))σy
2

2ω2 − (ω∆t−2 sin(ω∆t)+1/2 sin(2ω∆t))σx
2

2ω2

sin(ω∆t)2σx
2

2ω − sin(ω∆t)2σy
2

2ω


(2.24)

Q3 =



Q1(3)

Q2(3)

(ω∆t−1/2 sin(2ω∆t))σy
2

2ω3 + (3ω∆t−4 sin(ω∆t)+1/2 sin(2ω∆t))σx
2

2ω3

sin(ω∆t)2σy
2

2ω2 + (cos(ω∆t)2−2 cos(ω∆t)+1)σx
2

2ω2


(2.25)

Q4 =



Q1(4)

Q2(4)

Q3(4)

(1/2 sin(2ω∆t)+ω∆t)σy
2

2ω + (ω∆t−1/2 sin(2ω∆t))σx
2

2ω


. (2.26)

Unfortunately, this model requires the exact value of the angular velocity ω to be known a priori thus
making it not usable in practical applications. A intuitive idea is to replace the above ω by its esti-
mate however, this adds up to the already existing uncertainty of the target’s state and may lead to
unacceptably large errors into the system.

2.2.3 The Target as a Discrete-Time Hybrid System

In general, a target non-maneuvering and different maneuvering motions can only be explained by
different motion models.

A natural solution to take advantage of the simpleness of the models described in sections 2.2.1 and
2.2.2, and still achieve good tracking results, is based on the use of multiple models with different fixed
turn rates. The turn rate, or system behavior, at a time instant k is modeled by a discrete variable name
mode state sk.

The target system is hybrid, since it has both continuous and discrete components. Those that vary
continuously are the base state x(t) and those that may only jump are the mode state sk.
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In this approach, at each given time k the target can assume a mode state s
(i)
k , associated with an

angular velocity ωi. The mode sk is considered to be in effect during the sampling period ending at k.
The set of possible modes is the finite mode space S. Note that the value of ω can be equal to zero,
leading to the CV model.

The sequence of modes, and consequently the sequence of turn rates, is modeled as a Markov chain,
which means that at each time step k its value may either jump or stay unchanged with transition
probability, for a homogeneous Markov chain, defined by

P{s(j)
k+1|s

(i)
k } = P{ωk+1 = ωj |ωk = ωi} = πij,k = πij ∀i, j, k. (2.27)

The target model can be casted as a Markov Jump-Linear System (MJLS), i.e., a linear system whose
parameters evolve with time according to a finite state Markov chain. The measurement equation will
be omitted since the sensor has only discrete-time parameters and does not depend on the mode state.
The discrete-time general representation of a hybrid system, where the discrete system components
have a first order {sk}-dependance, can be described by

xk+1 = Fk(sk)xk + wk(sk). (2.28)

The above equations can be simplified in this context, where the system mode sk is considered to
be associated with an angular velocity ωk, meaning that Fk is the only sk-dependent factor of the
system. Also the time-dependence of the transition matrix Fk can be dropped resulting in the following
expressions

xk+1 = F (ωk)xk + wk (2.29)

where

F (ωk) =

 lim
ωk→0

FCT (ωk) = FCV if ωk = 0

FCT (ωk) otherwise.
(2.30)

2.3 Mathematical Model for Sensory System

As was introduced in section 2.1 in the problem of target tracking it is essential to extract the most
information about the target state from the observations, thus besides modeling the target it also is
necessary to model the sensor.

The sensor described is a RADAR and is considered to be placed at the origin of the Cartesian axis,
i.e., is placed in the coordinates (x, y) = (0, 0), and the sensor coordinate system is polar providing in
each measurement the range r and the bearing θ of the target (see figure 2.2).

The sensor measurements are modeled with the following additive noise

r = r̄ + vr (2.31)

θ = θ̄ + vθ (2.32)
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Figure 2.2: Sensor coordinate system.

where xpk = (r̄, θ̄) are the nominal target position, in the sensor polar coordinates, and vpk = (vr, vθ) are
the respective measurement errors, assumed to be zero-mean, Gaussian distributed and uncorrelated.
Considering vpk the measurement error vector in polar coordinates at the time step k

vpk ∼ N (0, Rpk) (2.33)

with
Rpk = cov(vpk) = diag(σ2

r , σ
2
θ) = Rp ∀k. (2.34)

The sensor measurements in the sensor coordinate system is given by

zpk =

[
r

θ

]
= h(xk) + vpk (2.35)

where the error-free position of the target in polar coordinates is given by

xck = h(xk) =

[
r̄k

θ̄k

]
=

[√
x2
k + y2

k

f(yk, xk)

]
(2.36)

where f(yk, xk) is a four-quadrant inverse tangent.

At this point, there are two distinct coordinate systems, the Cartesian coordinate system of the target
and the polar coordinate system of the sensor. Although there are several techniques to address
the tracking problem in a multiple coordinate systems [19], the choice taken in this thesis is to track
in Cartesian coordinates, therefore, there is the need to perform the conversion between the sensor
coordinates to Cartesian coordinates.

2.3.1 Tracking in Cartesian Coordinates

The nominal position of the target in Cartesian coordinates corespondent to the pair xpk = [r θ]′ is
defined by xck = [x y]′, which is a subvector of the actual state vector x. The correspondence polar-to-
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Cartesian coordinates of the target position is exact and given by

xck =

[
x

y

]
= Φ(xpk) = Φ(r̄, θ̄) =

[
r̄ cos(θ̄)
r̄ sin(θ̄)

]
(2.37)

where Φ = h−1 is the polar-to-Cartesian transformation.

After the conversion above, the sensor model in Cartesian coordinates, can be modeled as

zk = Hxk + vck =

[
1 0 0 0
0 0 1 0

]
xk + vk (2.38)

where xck = Hxk = [x y]′ is the nominal position of the target in Cartesian coordinates (a subvector of
the actual state vector x) and vk is the converted measurement noise into Cartesian coordinates. The
measurement matrix is now time invariant, i.e., Hk = H ∀k.

The major advantage of the above expression is that the linear Kalman Filter (see chapter 3) can be
applied for tracking, as the target dynamics are also linear.

The main challenge of the equation above is to obtain a linearized conversion of the measurement
noise, since vck in general is coupled across coordinates, is non-Gaussian and state dependent. Due
to state dependency of vck the model in equation (2.38) is actually non-linear which means that the
Kalman Filter fails to deliver optimal results.

The alternative is also not perfect, as the techniques to track nonlinearity present only in the mea-
surement noise and not in the measurement function are scarce and not deeply researched. The
presence of this nonlinearity in vck is actually much less significant then the presence of nonlinearity in
the measurement function.

One of the approaches is to linearize the measurement noise is to perform a Taylor series expansion
of Φ(xpk) around the noisy measurement zpk [19], omitting the time index k

xc = Φ(xp) = Φ(zp − vp) = Φ(zp)− J(zp)vp + ξ(vp) (2.39)

where ξ(vp) stands for higher order (≤ 2) terms and J(zp) is the Jacobian given by

J(zp) =
∂Φ
∂xp

∣∣∣
xp=zp

=

[
cos θ −r sin θ
sin θ r cos θ

]
. (2.40)

Then the equation (2.38) can be written as

zk = Φ(zpk) = Φ(xpk + vpk) = Hxk + J(zpk)vpk + ξ(vpk)︸ ︷︷ ︸
vc

k

(2.41)

The most commonly applied approach is to treat vck as a zero-mean sequence with covariance

Rk = J(zpk)RpkJ(zpk)′ (2.42)
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this is achieved by ignoring the higher order terms of the Taylor series expansion ξ(vpk), i.e.,

zk = Φ(zpk) ≈ Hxk + J(zpk)vpk︸ ︷︷ ︸
vk

(2.43)

where vck is approximated by the linearized version vk. As stated in [17], the linearization described
above is considered valid, i.e., the linearized vk roughly retains the zero-mean and white sequence
characteristic of vck only if the following conditions are met

rσ2
θ

σr
< 0.4, σθ < 0.4 rad. (2.44)

Outside this conditions the noise sequence vk reveals its state dependency, non zero-mean and non-
white characteristics. Below in figure 2.3, is an example of coordinate conversion and what happens to
the measurement probability density function from polar to Cartesian coordinates.

The distribution of the measurement data zk (in polar or Cartesian coordinates) given the target position
xk (in polar or Cartesian coordinates) is calculated using

zk ∼ N (xk, Rk) −→ N (zk;xk, Rk) =
1

2π
√

det(Rk)
e−

1
2 (zk−xk)′R−1

k (zk−xk) (2.45)

where Rk is measurement noise covariance in polar or Cartesian coordinates, depending on which
coordinate system are the other variables.

(a) Polar coordinates. (b) Cartesian coordinates.

Figure 2.3: Measurement probability density function for polar and Cartesian coordinates with range
and bearing uncertainties of 1 m and 0.0349 rad, respectively; and for a target at a range of 7 m and a

bearing of π/4.
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To ensure that the linearization is valid the target should have its range r conditioned to

r < 0.4
σr
σ2
θ

. (2.46)

For the same range and bearing uncertainties of figure 2.3, i.e., for

σr = 1 m, σθ = 0.0349 rad = 2◦ (2.47)

the area in which the sensor is considered valid is represented in figure 2.4. In the same figure is also
represented a target trajectory when in CV mode and the correspondent measurements. It is clearly
seen the dependence of the measurement noise covariance on the target’s range r, the largest the
range the more disperse are the measurements.

Figure 2.4: Validation area for the linearized sensor model for a range and bearing uncertainties of 1
m and 0.0349 rad, respectively.

2.3.2 Sensor Measurements for Multiple Targets

In the problem of multiple target tracking of two distinct targets, at each time step k, the sensor can
have up to two measurements. It is assumed that at each time step k the tracking algorithm has access
to a measurement vector zk containing two measurements which are the Cartesian conversion of the
polar measurements z(1)pk and z(2)pk, associated with target 1 and target 2, respectively. The order in
which this measurements are received is determined by their distance/range, the closest target being
received first.
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The multiple target sensor measurement equation is given by

zk =

[
z

(1)
k

z
(2)
k

]
=

[
Φ(min{z(1)pk, z(2)pk})
Φ(max{z(1)pk, z(2)pk})

]
(2.48)

where z(r)pk indicates the noisy measurement originated from target r in polar coordinates, and z(j)k
indicates the jth measurement of the sensor.

The same linearization discussed in subsection 2.3.1 can be performed for the above measurements
to be able to use a linear model in the multiple target tracking algorithm analyzed in chapter 5.

2.4 Mode versus Model

Along the lines of [21], in this thesis the terms target mode and target model will be used to address two
different realities. The target mode refers to the true target behavior or target motion. The target model
is a mathematical usually simplified description of the of the target motion with a certain accuracy level.
The tracking estimators are based on the target models, which are the known mathematical description
of the target motion, and not on the true target modes.

Regarding the sensory system, it is assumed that a different characterization for its mode and a model
can also be made. Its model is an approximation of the true mode since the model described in
subsection 2.3.1 is a Cartesian transformation and linearized version of the sensor true mode described
in section 2.3. On all the results presented in this thesis, the linear approximation of the sensor mode
is always valid, i.e., conditions in (2.46) are met, so it is considered that the sensor mode and model
are the same.

The system mode at a given time k is represented by

sk (2.49)

while the event that model j is in effect at time k is expressed by

m
(j)
k

4
= {sk = m(j)}. (2.50)

Here it is considered that the models in target tracking algorithm are a subset of the total mode set Sk,
i.e., the models have perfect accuracy but cannot explain all the target modes/motion behaviors.

Since the sensor mode and model are equal and constant during each simulation, for simplicity the
system mode and model can be addressed as target mode and model, respectively.
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Chapter 3

The Elemental Filter

In this chapter, the ubiquitous Kalman Filter algorithm is studied. Under the scope of this thesis, the
Kalman Filter is presented as the most widely used building block, or elemental filter, of the Multiple
Model tracking algorithms. Thus, this chapter begins by introducing the concept of the elemental filter
and in section 3.2 the recursive Kalman Filter algorithm is described.

Even though the Kalman Filter, in this work, is used as a Multiple Model building block, it is also capable
of tracking a single target based on a single model. Simulations regarding the Kalman Filter behavior
as a single target tracker are discussed in section 3.3.
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3.1 The Elemental Filter Concept

In the problem of single target tracking there are two main approaches: 1) Single Model (SM) based
tracking and 2) Multiple Model (MM) based tracking.

The first approach is quite simplistic and it is only applicable if the target mode is time invariant and
known, which for most of the true life applications is unfeasible due to motion uncertainty. The second
approach addresses this issue by using more than one model to describe the target motion.

In the SM based tracking approach there is one single filter based on a unique model. The function
of this elemental filter is to reduce the effect of the various disturbances (system and measurement
noises) on the state estimate, based on the known target mode and measurements data.

On the other hand the MM algorithms use a set of models as possible candidates to describe the target
mode at each time step k. This means that at each time the MM algorithms run a bank of elemental
filters each based on a unique model in the set, and then compute the overall estimate based on all
the estimates of each model. The MM algorithms will be discussed in depth in chapter 4.

In this chapter the algorithm of the elemental filter is described. The elemental filter is a discrete
Kalman Filter (KF) which estimates the state in a way that minimizes the mean of the squared error
(MSE).

3.2 The Discrete Kalman Filter

In 1960, R. E. Kalman published his famous paper [14] describing a recursive state estimator that
minimized the mean of the squared error. This has become known as the Kalman Filter. The discrete
KF consists of a recursive state estimation which, iteratively, computes the state vector from the prior
knowledge of the discretized process dynamics, the discrete measurement model, and the measured
data.

Let xi|j , i ≥ j, be the estimate of the state xi using all the measurements information up to and
including time j, zj = {z0, . . . , zk}. Thus, each cycle of the KF will output the current state estimate
which is defined by

x̂k|k
∆= E[xk|zk] (3.1)

and the correspondent state covariance matrix defined by

Pk|k
∆= E[(xk − x̂k|k)(xk − x̂k|k)′|zk]. (3.2)

For the algorithm validity the following statistical assumptions have to be met

• The initial state has known mean and covariance

E[x(0)|z0] = x̂0|0, cov[x(0)|z0] = P0|0; (3.3)
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• The process and measurement noise are zero-mean and white with known covariance matrices

E[wk] = 0, E[wkw′j ] = Qkδkj (3.4)

E[vk] = 0, E[vkv′j ] = Rkδkj ; (3.5)

• All the above are mutually uncorrelated

E[x0w
′
k] = 0, E[x0v

′
k] = 0, E[wkv′j ] = 0. (3.6)

Most of the simplifications performed below relay on these assumptions.

It is possible to define the predicted state, which for the target model considered is ideally given by
state equation (2.29), with F (ωk) = Fk

x̂k|k−1
∆= E[Fk−1xk−1 + wk−1|zk−1]. (3.7)

In the KF this variable is called a priori estimate of the state xk and is computed from the estimate
xk−1|k−1 using a noise free version of (2.29)

x̂k|k−1 = Fk−1x̂k−1|k−1. (3.8)

Similarly, it is possible to compute the a priori estimate of the sensor measurement zk using the a priori
estimate and noise free version of the measurement equation (2.38)

ẑk|k−1 = Hkx̂k|k (3.9)

which is derived from
ẑk|k−1

∆= E[Hkxk|k + vk]. (3.10)

Since the value of the sensor measurement zk is available, it is possible to compute the measurement
prediction error, commonly called measurement residual

z̃k
∆= zk − ẑk|k−1. (3.11)

The measurement residual z̃k is a zero-mean white sequence which is used to correct the a posteriori
state estimate by calculating

x̂k|k = x̂k|k−1 +Kkz̃k (3.12)

where Kk is a gain matrix generally called Kalman Filter Gain.

The KF gain derivation takes into account the stochastic nature of the process and the measurement
dynamics, in order to produce an optimal linear estimator that minimizes the mean squared error on
the state estimate xk|k. To compute the gain K it is necessary to define some more variables.
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The state prediction error is given by

x̃k|k−1 = xk − x̂k|k−1 = Fk−1x̃k|k−1 + wk−1 (3.13)

and the state prediction covariance by

Pk|k−1
∆= E[x̃k|k−1(x̃k|k−1)′|zk]
= Fk−1E[x̃k−1|k−1(x̃k−1|k−1)′|zk](Fk−1)′ + E[wk−1w

′
k−1]

(3.14)

which can be rewritten as
Pk|k−1 = Fk−1Pk−1|k−1(Fk−1)′ +Qk−1. (3.15)

The residual in (3.11) can be rewritten to

z̃k = Hkx̃k|k−1 + vk. (3.16)

Thus the predicted measurement covariance, or residual covariance, is given by

Sk
∆= E[z̃kz̃′k] = HkE[x̃k|k−1(x̃k|k−1)′|zk]H ′k + E[vkv′k] (3.17)

which can be rewritten as
Sk = HkPk|k−1H

′
k +Rk. (3.18)

The a posterior state estimate error is defined by

x̃k|k
∆= xk − x̂k|k = x̃k|k−1 −Kkz̃k (3.19)

so the state covariance matrix can be rewritten as

Pk|k
∆= E[x̃k|kx̃′k|k|z

k]

= E[(x̃k|k−1 −Kk(Hkx̂k|k−1vk))(x̃k|k−1 −Kk(Hkx̂k|k−1vk))′]
= Pk|k−1 −KkHkPk|k−1 − Pk|k−1H

′
kK
′
k +KkSkK

′
k.

(3.20)

The KF gain is calculated by minimizing the trace of the state estimate covariance. Deriving the state
estimate covariance trace in order of the KF gain results in

∂trace(Pk|k)
∂Kk

= −2(HkPk|k−1)′ + 2KkSk. (3.21)

Equating the above equation to zero, leads to the optimal filter gain equation, defined by

Kk = Pk|k−1Hk(Sk)−1. (3.22)

22



Finally, by replacing the gain K on (3.20), the posteriori state estimate covariance is defined by

Pk|k = Pk|k−1 −KkSk(Kk)′. (3.23)

The KF state estimation cycle structure is divided in two main steps

1. Time update or Predict step: projects the current state estimate ahead in time computing the a
priori variables;

2. Measurement update or Update step: adjusts the projected estimate by an actual measurement
at that time computing the a posteriori variables.

A complete description of the KF algorithm is presented in table 3.1.

Table 3.1: One Cycle of Discrete KF Algorithm.

1. Time update:
Predicted state: x̂k|k−1 = Fk−1x̂k−1|k−1

Predicted covariance: Pk|k−1 = Fk−1Pk−1|k−1(Fk−1)′ +Qk−1

2. Measurement update:
Measurement residual: z̃k = zk −Hkx̂k|k−1

Residual covariance: Sk = HkPk|k−1(Hk)′ +Rk
Filter gain: Kk = Pk|k−1(Hk)′(Sk)−1

Update state: x̂k|k = x̂k|k−1 +Kkz̃k
Update covariance: Pk|k = Pk|k−1 −KkSk(Kk)′

The KF design parameters necessary to run the KF algorithm are

• The model m;

• The system and measurement noises covariances (Q and R respectively);

• The initial state x̂0|0 and state covariance P0|0.

The covariance calculations in the Minimum Mean Squared Error (MMSE) estimation problem are
independent of the state and measurements and can, therefore, be performed offline. Combining
together the predicted covariance and update covariance from 3.1 results in the Riccatti equation given
by

Pk+1|k = Fk{Pk|k−1 − Pk|k−1H
′
k[HkPk|k−1H

′
k +Rk]−1HkPk|k−1}F ′k +Qk. (3.24)

For a time-invariant system, if it is observable, The prediction covariance matrix P(k|k−1) converges to
a constant matrix P̄ ( lim

k→∞
= P̄ ) and the Riccatti equation will converge to the steady state solution

P̄ = F{P̄ − P̄H ′[HP̄H ′ +R]−1HP̄}F ′ +Q. (3.25)
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Note that this is not the case of the system studied since the measurement noise covariance Rk is
time-dependent.

The optimal operating conditions of the KF rely on the following fundamental assumptions

A1. The true mode s is time invariant (i.e., sk = s, ∀k);

A2. The true mode s at any time has a mode space S that is time invariant and identical to the time-
invariant model m used (i.e., Sk = m, ∀k).

3.3 Simulation Examples

In this section three examples are analyzed, beginning by showing the KF ability in target tracking
under optimal conditions (subsections 3.3.1 and 3.3.2). The other example shows the performance
of the KF algorithm under non-optimal conditions as mode and model mismatch occurs (subsection
3.3.3).

One important implementation detail is how to compute the converted measurement covariance Rk

in (2.42) which is a function of the target range and bearing (in the term J(zpk)) as well as their un-
certainties (in the term Rpk). Therefore, the value of Rk should be computed using the best estimate
available ate the time instant k. The most obvious way is to use the predicted state converted to polar
coordinates using the transformation (2.36), except when in a first period after initialization when the
uncertainty in the predicted state can be large. During this period the value of the measurement should
be used to compute Rk. The threshold that determines which estimate should be used is given by [17]

det[HkPk|k−1H
′
k] ≥ det(Rk). (3.26)

If the predicted measurement covariance based on the state predicted covariance HkPk|k−1Hk is
greater that the measurement error covariance Rk, then HkPk|k−1Hk should be used.

3.3.1 Example 1 - Constant Velocity Model

In this example the target motion is described by the CV model described in subsection 2.2.1, with an
initial state given by

x(0) =
[
x(0) ẋ(0) y(0) ẏ(0)

]′
=
[
x(0) v cosφ(0) y(0) v sinφ(0)

]′
(3.27)

with
x(0) = −170 m, y(0) = −150 m, v = 5 m.s−1 and φ(0) = 45◦. (3.28)

The system noise covariance Q(t) is given by equation (2.15) with

σx = 0.001 and σy = 0.001. (3.29)
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The measurement noise covariance Rpk is given by equation (2.34) with

σr = 2 m, σθ = 1◦. (3.30)

In this example, the KF based model is equal to the target and sensor mode with equal measurement
and process noise characteristics.

In the actual implementation of the filter, the measurement noise covariance Rk (here, Rk denotes the
time-invariant covariance in the sensor coordinates Rpk) is usually easy to obtain by determining the
covariance of the easy-to-obtain offline samples of the measurement noise. In regard to the process
noise covariance Q determination, it is not as straightforward to obtain since the process usually is not
directly observable. In most of the cases, the KF has acceptable results if the covariance Q accounts
enough uncertainty.

In most cases, even if the values of noises covariances were known the dimensioning may still choose
to tune these parameters to achieve better performance, as will be discussed in subsection 3.3.3. This
tuning is frequently achieved offline and with the help of another distinct KF. For instances, if the Q and
R are constant, both the state estimate covariance Pk|k and the Kalman gain Kk will converge quickly
to the constant value, see equation (3.25), thus these parameters can be calculated a priori by running
the filter offline.

Note that the KF uses the discretized equations of the target mode, addressed in the correspondent tar-
get mode description section, in this case in subsection 2.2.1. The sampling time used in all simulation
examples in this thesis is

∆t = 1 s. (3.31)

Plus, the initial position of the target and of the filter are different from each other, which creates a more
realistic scenario. The initial state of the target is thus considered not to be known, only its distribution
is known and given by

x̂0|0 ∼ N (x(0), P0|0) (3.32)

where x(0) is the initial true target state and P0|0 is the considered variance which has the value given
by

P0|0 =


102 0 0 0
0 0.22 0 0
0 0 102 0
0 0 0 0.22

 . (3.33)

For the parameters defined above, the KF is in optimal conditions.

In this same figure it is also clear the initial filter linear velocity of the filter in contrast with the true target
linear velocity.

In this situation, the state estimate has small error has can be seen in figure 3.1. In both variables, the
error has its higher values at the first part of the simulation due to the initial estimate error.

Besides the influence of the initial state error, which is only present at the beginning of the simulation,
there is also the influence of the system disturbances, the process and the measurement noises.
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Figure 3.1: KF position and velocity error in CV model.

The influence of the process noise is constant throughout the whole simulation, more interesting is
the influence of the measurement noise that, as shown in section 2.3.1, depends on the target state,
specifically on the target range, thus it is expected an increase of the overall estimate error with the
target range due to the increase of the measurement noise.

Even though the initial state estimate error, the filter is quick to adapt itself and converges to the true
position and linear velocity value (see figure 3.1, once again). The quickness of the KF response
depends mainly on the initial value of the state estimate, its covariance and the covariance of the
disturbances (process and measurement noises).

Obviously, the closer the initial estimate is to the target state, the more quickly will the filter converge.
Under optimal conditions, the KF will always converge for all values of the state estimate covariance,
except the null value, but if its value is too small the filter will take longer to compensate the difference
in the initial value. Regarding the disturbances covariance influence, they represent the belief of the
filter in the data it receives, be the measurements data or the model description.

In figure 3.2 the KF position estimate is compared to the true target state and some state estimate error
ellipsoids with a confidence level of 95 percent. The true target position, as expected, is always inside
the ellipsoid centered at the state estimate and with shape defined by the state estimate covariance.
As expected, with time the state estimate is more precise and the state estimate covariance decreases
leading to the decrease of the ellipsoids contour.
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Figure 3.2: Target trajectory and KF estimate and error ellipsoid propagation in CV model.

3.3.2 Example 2 - Constant Turn Model

In this second example, the optimal conditions of operation for the KF are maintained but the target
mode and KF based model are now the CT model described in subsection 2.2.2, with an angular
velocity ω equal to 3 rads−1.

The initial state of the target in this simulation is given by the equation (3.27) with

x(0) = −150 m, y(0) = 50 m, v = 5 m.s−1 and φ(0) = −75◦. (3.34)

The KF initial state estimate has the same distribution from the previous example (3.32) with covari-
ance given by (3.33). The target and filter process and measurement noises characteristics are also
maintained from the previous example.

The algorithm maintains its tracking capability, its state estimate error, regarding the position and the
velocity, as in the previous example, is high at the beginning of the simulation due to the initial state
estimate error but steadily is reduced, see figure 3.3.

The target trajectory in the CT mode, KF position estimate and some state estimate error ellipsoids with
a confidence level of 95 percent are shown in figure 3.4. Once again, due to the initial state uncertainty,
the ellipsoids contour is larger at beginning of the simulations but it steadily decreases with time.
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Figure 3.3: KF position and velocity error in CT model.
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Figure 3.4: Target trajectory and KF estimate and error ellipsoid propagation in CT model.
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3.3.3 Example 3 - Mode and Model mismatch

In this example, the model used to describe the target is different from the target’s mode, thus a model
mismatch occurs.

The target mode and KF based model are the CT model described in subsection 2.2.2, with an angular
velocity equal to 3.1 rads−1 and 3 rads−1, respectively. Every other target behavior and KF parameters
are maintained from the previous simulation with the exception of the KF process noise covariance.

As mentioned before, the tune of the disturbances covariances can help the KF to deliver better esti-
mates. The process noise covariance Q contributes to the overall uncertainty, it relates to the trust the
KF has on the model used to describe the target motion. When Q is large, the Kalman Filter tracks
large changes in the measured data more closely than for smaller Q. Regarding the measurement
noise covariance R, it relates to the trust the KF has in measured data. If R is high, the Kalman Filter
considers the measurements as not very accurate.

The covariance R is unchanged and defined by equation (2.34), whereas the process noise covariance
Q is different from the true target process noise covariance to account the uncertainty of the KF model
to describe the target mode. The covariance Q(t) chosen is then higher and given by the equation
(2.15) with

σx = 0.01 and σy = 0.01. (3.35)

For the parameters defined, the target position, correspondent estimate in the 2D space and some
state estimate error ellipsoids with a confidence level of 95 percent are in figure 3.5. It can be seen
clearly the initial position difference between the KF estimation and the target and the correspondent
initial large contour of the error ellipsoid due to the initial state estimate uncertainty, directly related with
the initial state estimate covariance P0|0. Note also how, throughout the whole simulation, the error
ellipsoids contour is overall larger in this experiment than in the previous where there was not a mode
and model mismatch.

The estimate error (figure 3.6) is much higher then the previous simulations. Initially the high value
of the error is clearly due to the uncertainty on the initial state, but the KF steadily reduces this error,
indeed, after the 30th second, which seems to be the stabilization time in this example, the filter would
be able to deliver as good estimates as in the previous examples if there was no mode and model mis-
match. The error present after stabilization which is considerably higher than that of the KF estimation
in optimal conditions is solely due to the mode and model mismatch.

As seen in this simulation, even in non-optimal conditions, the KF delivers a good estimate thus the KF
operating conditions can be relaxed. Note that the track can indeed be lost if the KF is too far away
from its optimal operating conditions, for example.
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Figure 3.5: Target trajectory and KF estimate and error ellipsoid propagation with mode and model
mismatch.
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Figure 3.6: KF position and velocity error with mode and model mismatch.
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Chapter 4

Single Target Tracking

This chapter addresses the problem of tracking a single target using a Multiple Model (MM) approach.
In section 4.1, the MM tracking concept is presented.

This chapter introduces the three generations of MM algorithms, following the classification first intro-
duced in [18]: the autonomous (section 4.2), the cooperating (section 4.3), and the variable structure
(section 4.4). Each of the above sections is composed of an introduction to the peculiarity of each
generation, a description of a representative algorithm of that generation and a simulation example of
the algorithm. The algorithm chosen for the first, second and third generations are the Minimum Mean-
Square Error Autonomous Multiple Model (subsection 4.2.1), the Interacting Multiple Model (subsection
4.3.1) and the Likely Model Set (subsection 4.4.1).

In the last section, section 4.5, the three algorithms studied earlier are simulated in the equal conditions
and their performances are compared.
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4.1 Introduction to Multiple Model algorithms

In chapter 3, the tracking of the single target is based on the choice of a (best) model to describe the
maneuvering target. The chosen model is assumed as the true mode and a single filter runs based on
it. This approach has several obvious flaws. First, the estimation does not take into account a possible
mismatch between the target mode and the filter model. Second, the choice of the model is made
offline and the estimation errors are not taken into account, even though they are the best indicator of
the correctness of the chosen model.

The MM algorithms allow that more than one model can be used at a time to match the current target
mode. Besides diminishing the probability of mode and model mismatch and using the estimation
errors to output a better overall estimate, the MM algorithms greatest benefit comes when used to
solve target motion uncertainty.

By using more than one model the MM algorithms are more capable to track targets with motion
uncertainty. The basic idea is: i) to assume a set of models as possible candidates of the true mode
in effect at the time; ii) run a bank of elemental filters, each based on a unique model in the set; and
iii) generate the overall estimates by a process based on the results of these elemental filters. The
model-set is designated by M and is composed of N models, i.e., M = {m1, . . . ,mN}.

In general, four key components of MM estimation algorithms can be identified as follows (as stated
in [21]):

1. Model-set determination: This includes both offline design and possibly online adaptation of the
model set. A MM estimation algorithm distinguishes itself from non-MM estimators by the use of
a set of models, instead of a single model. The performance of a MM estimator depends largely
on the set of models used. The major task in the application of MM estimation is the design (and
possibly adaptation) of the set of multiple models.

2. Cooperation strategy: This refers to all measures taken to deal with the discrete-valued uncer-
tainties within the model set, particularly those for hypotheses about the model sequences. It
includes not only pruning of unlikely model sequences, merging of ’similar’ model sequences,
and selection of (most) likely model sequences, but also iterative strategies, such as those based
on the expectation-maximization algorithm.

3. Conditional filtering: This is the recursive (or batch) estimation of the continuous-valued compo-
nents of the hybrid process conditioned on some assumed mode sequence. It is conceptually the
same as state estimation of a conventional system with only continuous-valued state.

4. Output processing: This is the process that generates overall estimates using results of all filters
as well as measurements. It includes fusing/combining estimates from all filters and selecting the
best ones.

In figure 4.1 the above defined components of the MM algorithms is presented in a diagram.

This chapter introduces the three generations of MM algorithms: the autonomous (subsection 4.2), the
cooperating (subsection 4.3), and the variable structure (subsection 4.4).
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Figure 4.1: General structure of MM estimation algorithms with two model based filters.

4.2 Autonomous Multiple Model

The first generation is characterized by the fact that each of its elemental filters operates individually
and independently of all the other elemental filters. Its advantage over many non-MM approaches is
due to its superior output processing of results from elemental filters to generate the overall estimate.

The first generation of MM algorithms has two main assumptions

A1. The true mode s is time invariant (i.e., sk = s, ∀k);

A2’. The true mode s at any time has a mode space S that is time invariant and identical to the time-
invariant finite model set M used (i.e., Sk = M, ∀k).

Comparing with the KF assumptions in 3.2, the second assumption A2 has been relaxed introducing
the MM algorithms novelty, i.e., the simultaneous presence at each time step k of multiple different
mode-matched filters.

Assumption A1 is a defining assumption of the Autonomous Multiple Model (AMM) algorithms. Under
A1, each elemental filter does conditional filtering based on a constant model sequence. In other words,
each filter works individually and independently of other filters. As such, each conditional filtering
operation is autonomous, hence the name AMM.

In section 4.2.1 an example AMM algorithm is discussed.

4.2.1 The Minimum Mean-Square Error Autonomous Multiple Model al-

gorithm

The AMM estimator considered in this section is the Minimum Mean-Square Error Autonomous Multiple
Model (MMSE-AMM) algorithm, first introduced in [22].
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Using Baye’s formula, the probability of model i is correct given measurement data up to time step k,
is given by the recursion

µ
(i)
k

4
= P{m(i)|zk} = P{m(i)|zk, zk−1} = p[zk|zk−1,m(i)]P{Mi|zk−1}

p[zk|zk−1]

=
p[zk|zk−1,m(i)]µ(i)

k−1∑
j

p[zk|zk−1,m(j)]µ(j)
k−1

(4.1)

where p[zk|zk−1,m(i)] is the likelihood function of model m(i), which under Gaussian assumption is
given by

L
(i)
k

4
= p[zk|m(i), zk−1] assume= N (z̃(i)

k ; 0, S(i)
k ) (4.2)

where z̃(i)
k and S(i)

k are the residual and its covariance from the elemental filter matched to model m(i).

Thus each discrete KF based in one of the modelsm(i) ∈M, processes the model-conditioned filtering,
delivering the model-conditioned state estimates x̂(i)

k|k and the model-conditioned covariances P (i)
k|k. The

probability of a model mi being correct is given by 4.1. After initialization, at each time step k the filters
run recursively on their own estimations from the previous cycle. Combining the model probability with
the conditioned-model estimates the overall state estimate is given by

x̂k|k =
∑
i

x̂
(i)
k|kµ

(i)
k (4.3)

which under assumptions A1 and A2’ is unbiased with an overall state covariance given by

Pk|k =
∑
i

P
(i)
k|k[(x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)′]µ(i)

k . (4.4)

In table 4.1 the complete cycle of the MMSE-AMM algorithm is described, and a diagram of the algo-
rithm steps is presented in figure 4.2.
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Figure 4.2: General structure of MMSE-AMM estimation algorithm with two model based filters.
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Table 4.1: One Cycle of MMSE-AMM Algorithm.

1. Model-conditioned filtering (∀mi ∈M) :
Predicted state: x̂

(i)
k|k−1 = F

(i)
k−1x̂

(i)
k−1|k−1

Predicted covariance: P
(i)
k|k−1 = F

(i)
k−1P

(i)
k−1|k−1(F (i)

k−1)′ +Q
(i)
k−1

Measurement residual: z̃
(i)
k = zk −H(i)

k x̂
(i)
k|k−1

Residual covariance: S
(i)
k = H

(i)
k P

(i)
k|k−1(H(i)

k )′ +R
(i)
k

Filter gain: K
(i)
k = P

(i)
k|k−1(H(i)

k )′(S(i)
k )−1

Update state: x̂
(i)
k|k = x̂

(i)
k|k−1 +K

(i)
k z̃

(i)
k

Update covariance: P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k S

(i)
k (K(i)

k )′

2. Model probability update (∀mi ∈M) :
Model likelihood: L

(i)
k

assume= N (z̃(i)
k ; 0, S(i)

k )

Model probability: µ
(i)
k =

µ
(i)
k−1L

(i)
k∑

j µ
(j)
k−1L

(j)
k

3. Estimate fusion:
Overall estimate: x̂k|k =

∑
i

x̂
(i)
k|kµ

(i)
k

Overall covariance: Pk|k =
∑
i

[P (i)
k|k + (x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)′]µ(i)

k

The design parameters of the MMSE-AMM and of the KF parameters are alike, except for the model
set definition in contrast to a single model definition. The MMSE-AMM design parameters are:

• The model set M structure;

• The system and measurement noises covariances (Q and R respectively);

• The initial state x̂0|0 and state covariance P0|0.

Under the assumptions A1 and A2’, i.e., if the model set includes the target mode and no mode jump
occurs, the true model probability will converge to unity and the MMSE-AMM will work as an isolated
KF in sync with the true model.

If assumption A1 verifies but A2’ doesn’t, the probability of the model ”nearest” to the target mode will
be the highest (how close the probability is to one depends on how ”near” is the model to the true
mode) and the overall state estimate will be a weighted mean of all the KF (local) state estimates.

On the other hand, if assumption A2’ doesn’t verifies, the AMM fails to deliver good estimates. Its ability
to handle mode jumps is very limited. This is due to the autonomous characteristics of the algorithm:
the filters estimates have only access to their own previous estimates, there is not any cooperation
strategy between the them. The KF, when based in models different from the target mode, takes a long
time to correct its estimate, if mode jumps keep occurring there is a chance of a track loss.

In order to overcome these two limitations it is usual to apply a lower bound in the model probability, to
facilitate the algorithm model switches. This way the MMSE-AMM can provide very reasonable position
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estimates when the target is in slow maneuver. In order to improve this behavior and include it in a
more structured way, the second generation MM algorithms was developed.

4.2.2 Simulation Examples

In this section two examples are analyzed, on the first example the MMSE-AMM target tracking is under
optimal conditions (subsections 4.2.2) on the second example the MMSE-AMM is under non-optimal
conditions and its performance with and without lower bounding is presented (subsection 4.2.2).

Example 1 - MMSE-AMM under optimal target tracking conditions

In this example the target motion is described by the CT model described in subsection 2.2.2, with an
initial state given by (3.27) with

x(0) = −50 m, y(0) = −100 m, v = 3 m.s−1 and φ(0) = 0◦. (4.5)

The process noise covariance Q(t), given by the equation (2.15) is equal to the one defined in sub-
section 3.3.1, i.e., with uncertainties given by (3.35). The measurement noise covariance Rpk is given
by the equation (2.34) with uncertainties given by (3.30). To account the multiple model structure, both
process and measurement covariances definitions should be rewritten, respectively, by

Q
(i)
k = Qk ∀i, k with σ2

x = σ2
y = 0.001 (4.6)

R
p,(i)
k = diag(σ2

r , σ
2
θ) ∀i, k with σr = 2 m, σθ = 1◦ (4.7)

where, Qk is the discretized continuous process covariance (2.15) using equation (2.10).

The model set M is composed of seven models (N = 7). The models differ from each other on the
value of the angular velocity ω. Each model mi corresponds to an angular velocity ωi. The values of
the angular velocity of the models in M are listed in the table 4.2, shown below

Table 4.2: Angular velocity of the seven models.

Angular velocity
ω [rad.s−1]

0.03
0.025
0.02

0.015
0.01

0.005
0

Each elemental filter has the initial state equal given by the distribution 3.32, i.e.,

x̂
(i)
0|0 ∼ N (x(0), P (i)

0|0) ∀mi ∈M (4.8)
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with initial state covariance estimate P (i)
0|0 given by

P
(i)
0|0 =


102 0 0 0
0 0.22 0 0
0 0 102 0
0 0 0 0.22

 ∀mi ∈M. (4.9)

In this first example, the target’s angular velocity is constant and equal to the angular velocity of one
the models in the model-set. The angular velocity of the target chosen was ω = 0.03 rad.s−1.

In this example the algorithm does not have a lower bound in the probability. The initial probability of a
model being correct is equal to all models, i.e.,

µ
(i)
0 =

1
N
, ∀mi ∈M. (4.10)

The model probability of the model with angular velocity equal to the target’s angular velocity clearly
converges to unity as was expected. The convergence time is determined by the a priori models
probability, the certainty in the a priori state estimate and the covariance Q of the models in the model
set. In figure 4.3 is the graphic of the evolution of the models probability with time.
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Figure 4.3: MMSE-AMM model probabilities under optimal operating conditions.

The error under these circumstances is quite low as presented in figure 4.4. The error is higher at
the beginning when the algorithm is searching for the suitable model to match the target mode and
compensate the initial state error. The error decreases steadily, as in the case of the isolated KF, as
the probability of the correct model gets closer to unity, at that point the algorithm behaves almost like
an isolated KF matched to the true target mode.
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Figure 4.4: MMSE-AMM position and velocity error under optimal operating conditions.

The position estimate compared with the target’s position state and the estimate error ellipsoids are
represented in figure 4.5, as would be expected, due to the optimal nature of the MMSE-AMM algo-
rithm, the contour of the error ellipsoids monotonously decrease with time.
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Figure 4.5: Target trajectory and MMSE-AMM with and without lower bound position estimate and
error ellipsoid propagation under under optimal operating conditions.
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Example 2 - Influence of the model probability lower bounding

In a second example, the probability lower bound is introduced and the target has a variable angular
velocity. The target is in CT mode described in subsection 2.2.2 , with an initial state given by (3.27)
with

x(0) = 100 m, y(0) = 100 m, v = 3 m.s−1 and φ(0) = 100◦. (4.11)

The angular velocity of the target at each time step is equal to the angular velocities of one the models
in the model-set. The angular velocity ω of the target is given by the equation below and represented
in figure 4.6,

ωk =



0.03 1 ≤ k ≤ 40

0.025 41 ≤ k ≤ 80

0.02 81 ≤ k ≤ 120

0.015 121 ≤ k ≤ 160

0.01 161 ≤ k ≤ 200

0.005 201 ≤ k ≤ 240

0 241 ≤ k ≤ 280

, in rad.s−1. (4.12)
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Figure 4.6: Non constant angular velocity of the target.

Also, to include the uncertainty in how the elemental filters explain the moving target the models mi

have a higher process noise covariance than the target given by

Q
(i)
k = Qk ∀i, k with σ2

x = σ2
y = 0.01. (4.13)

where, Qk is the discretized continuous process covariance (2.15) using equation (2.10). The same
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principles discussed in subsection 3.3.3, regarding the influence of the noises covariances are main-
tained here, in the MM approach, since they consist of multiple KF.

The value chosen for the lower bound in the model probability was 10−3. All the other parameters
not specified here are identical to the ones used in the first example, including the filters initial state
distribution and its covariance.

First, observe what happens to the model probability when the lower bounding is introduced in figure
4.7. The model probability takes the same time in both algorithms to rise to (near) unity (see the
beginning of the algorithms), but the lower bounding approach is much more quickly to do the model
switch. By the end of the simulation the classic MMSE-AMM algorithm realized three model switches
against the almost six model switches of the lower bounded MMSE-AMM algorithm which are the same
number of mode switches realized by the target.
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Figure 4.7: MMSE-AMM with and without lower bound model probabilities under non optimal
operating conditions.

In figure 4.8 it is obvious the improvement of the MMSE-AMM algorithm tracking performance when
the lower bound in model probability is introduced. The classic approach the MMSE-AMM is too slow
to track the maneuvering target resulting in high errors (see figure 4.9). Regarding the error ellipsoids,
the classic MMSE-AMM at some point looses track, since the real target position fails to be inside
its estimate error ellipsoid. The lower bounded MMSE-AMM algorithm accounts for possible mode
and model mismatch thus the error ellipsoids always contain the true target position, but they do not
monotonously decrease with time revealing the non-optimality of this approach.

As the target keeps switching to different modes, without giving the classic MMSE-AMM the necessary
(large) stabilization time, the error increases with time. The lower bounded model probability MMSE-
AMM is a much faster tracker and more sensitive to the mode changes of the target.

40



−200 −150 −100 −50 0 50 100 150 200 250 300 350
−250

−200

−150

−100

−50

0

50

100

150

200

 

 

x [m]

y 
[m

]

target
AMM estimate
AMM−LB estimate
AMM error ellipsoid 95%
AMM−LB error ellipsoid 95%

start

Figure 4.8: Target trajectory and MMSE-AMM with and without lower bound position estimate and
error ellipsoid propagation under non optimal operating conditions.
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Figure 4.9: MMSE-AMM with and without lower bound position and velocity error under non optimal
operating conditions.
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4.3 Cooperating Multiple Model

The second generation of MM algorithms inherits the first generation superior output processing and
introduces the internal cooperation between elemental filters. Rather then keeping the filters working
independently, this generation brings in the filter reinitialization, where all the outputs of the filters from
the previous cycle are used in the current cycle to achieve a better performance.

This generation relaxes the first generation assumptions (see section 4.2):

A1’. The true mode sequence {sk} is Markov, i.e., the mode evolves accordingly to the memoryless
random process described by P{s(j)

k+1|s
(i)
k } = πij,k ∀i, j;

A2’. The true mode s at any time has a mode space S that is time invariant and identical to the time-
invariant finite model set M used (i.e., Sk = M, ∀k).

A new variable is introduced to account the model history or model sequence

mk,l = {m(i1,l), . . . ,m(ik,l)}, l = 1, . . . , (N)k (4.14)

where ik,l is the model index at time k from history l and 1 ≤ ik,l ≤ N ∀k.

As the size of model sequence increases exponential with time ((N)k), a exponentially increasing
number of filters are needed to optimally estimate the state thus making the optimal solution not viable.
Suboptimal approaches are commonly and successfully adopted, generally consisting in only keeping
a limited number of model sequences associated with the largest probabilities, discard the rest, and
normalize the model probability to ensure it sum is equal to unity.

In section 4.3.1, one of the most representative algorithms of the Cooperating Multiple Model (CMM),
the Interacting Multiple Model (IMM) algorithm, is analyzed.

4.3.1 The Interacting Multiple Model algorithm

The IMM estimator was originally proposed by Bloom in [11]. It is one of the most cost-effective class
of estimators for a single maneuvering target. The IMM has been receiving special attention in the last
few years, due to its capability of being combined with other algorithms to resolve the multiple target
tracking problem.

The sequence of events consisting of the true target mode sequence, sk = {s1, . . . , sk}, and the
correspondent matching models sequence, m(ik) = {m(i1), . . . ,m(ik)}, m(in) ∈ M, through time k, is
denoted as

{sk = m(ik)} = mk
(ik) = mk

i1,...,ik
= {mi1

1 , . . . ,m
ik
k } = {mk−1

(ik−1)
,mik

k } (4.15)

where mk−1
(ik−1)

is a parent sequence and mik
k is the last element. For simplicity the notation mk

(ik) ∈ M
will be replaced by ik = 1, . . . , Nk.
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Also of interest, is the definition of the mode transition probability, which given the Markov property, can
be written as

P{mk−1
(i) ,m

(j)
k } = P{mi

k−1,m
j
k}
4
= πji (4.16)

under the assumptions A1’ and A2’ the above equation is equal to (2.27).

The base state estimator under the same assumptions at time k is given by

x̂k|k = E[xk|zk] =
(N)k∑
ik=1

E[xk|mk
(ik), z

k]P{mk
(ik)|z

k} =
(N)k∑
j=1

x̂
(ik)
k|k µ

k
(ik) (4.17)

which has an exponential increasing number of terms reveling the impracticability of the CMM optimal
approach.

The IMM simplifies the optimal approach by keeping only N filters, i.e., only N hypotheses, resulting in

x̂k|k =
N∑
j=1

E[xk|m(j)
k , zk]P{m(j)

k |z
k} =

N∑
j=1

x̂
(j)
k|kµ

k
(j) (4.18)

where the posterior mode-sequence probability is defined by

µk(ik) = P{mk
(ik)|z

k} (4.19)

and the posterior mode probability under assumptions A1’ and A2’ by

µ
(j)
k = P{m(j)

k |z
k}. (4.20)

Like in the previous generation, under the assumptions A1’ and A2’, the base state estimate is unbiased
with covariance given by

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)′|zk]

≈
N∑
j=1

[E[(xk − x̂(j)
k|k)(xk − x̂(j)

k|k)′|zk] + (x̂k|k − x̂
(j)
k|k)(x̂k|k − x̂

(j)
k|k)′]P (m(j)

k |z
k)

=
N∑
j=1

[P (j)
k|k + (x̂k|k − x̂

(j)
k|k)(x̂k|k − x̂

(j)
k|k)′]µ(j)

k . (4.21)

The simplification from equation (4.17) to equation (4.18) and from the first to the second line in the
above equation, reflects the approximation that the past zk−1 can be explained entirely by a model-set
of size N .

The input of each filter matched to model i consists in a mixture of the estimates x̂(i)
k−1|k−1 with the

mixing probabilities µj|ik−1, i.e.,

x̄
(i)
k|k = E[xk−1|zk−1,m

(i)
k ] = E{E[xk−1|m(i)

k−1,m
(j)
k zk−1]|zk−1,m

(i)
k }

=
N∑
j=1

x̂
(j)
k−1|k−1P{m

(j)
k−1|z

k−1,m
(i)
k } =

N∑
j=1

x̂
(j)
k−1|k−1µ

j|i
k−1 (4.22)
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where the estimate x̂(i)
k−1|k−1 is computed by the KF based on model mi and mixing probabilities µj|ik−1

are given by

µ
j|i
k−1 = P{m(j)

k−1|z
k−1,m

(i)
k } =

πjiµ
(j)
k−1∑

i πjiµ
(j)
k−1

. (4.23)

Thus at time step k−1 there are only N estimates x̂(i)
k−1|k−1 (∀mi ∈M) and the associated covariances

P
(i)
k|k which approximately summarize the past zk−1. This is one of the key features of the IMM algorithm

resulting in a low computational complexity and still providing excellent state estimates.

The complete description of IMM algorithm cycle is in table 4.3. The model probability update step is
inherited from the previous generation and the final combination step (step 4) is not part of the recursive
algorithm but a final mixture for output purposes. A diagram of the IMM algorithm steps is presented in
figure 4.10.

Filter 1

Filter 2

Estimate 
Fusion

Model Conditioned 
Reinitialization

Algorithm Cycle

Model Probability 
Update

m1

m2

zk

xk−1|k−1
(2) ,Pk−1|k−1

(2)

xk−1|k−1
(1) ,Pk−1|k−1

(1)

Model-set 
Determination

x̂k |k
(1) ,Pk |k

(1)

x̂k |k
(2),Pk |k

(2)

µk
(1),µk

(2) x̂k |k ,Pk |kµk
(1),µk

(2)

Sensor Data

Figure 4.10: General structure of IMM estimation algorithm with two model based filters.

The IMM design parameters, which are once again the key to the algorithm performance, are

• The model set M structure;

• The system and measurement noises covariances (Q and R respectively);

• The initial state x̂0|0 and state covariance P0|0;

• The jump structure (usually Markov) and the transition probability πji between the models from
the selected set.

As mention in 4.2.1, one of the main drawbacks of the first generation MM algorithms is its inability
to handle mode jumps because each elemental filters are not aware of the overall estimate. The IMM
enables mode jumps in two ways: 1) by reinitialization of the filters, each elemental filter computes
estimates based on the overall estimate making the residuals smaller and facilitating mode jumps; 2)
by introducing a transition probability πji, which facilitates specific mode jumps, a priori considered to
be more likely.
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Table 4.3: One Cycle of IMM Algorithm.

1. Model-conditioned reinitialization (∀mi ∈M) :
Predicted model probability: µ

(i)
k|k−1 =

∑
j πjiµ

(j)
k−1

Mixing probabilities: µ
j|i
k−1 = πjiµ

(j)
k−1/µ

(i)
k|k−1

Mixing estimate: x̄
(i)
k−1|k−1 =

∑
j x̂

(j)
k−1|k−1µ

j|i
k−1

Mixing covariance: P̄
(i)
k−1|k−1 =

∑
j [P

(j)
k−1|k−1 + (x̄(i)

k−1|k−1 − x̂
(j)
k−1|k−1)(x̄(i)

k−1|k−1 −
x̂

(j)
k−1|k−1)′]µj|ik−1

2. Model-conditioned filtering (∀mi ∈M) :
Predicted state: x̂

(i)
k|k−1 = F

(i)
k−1x̄

(i)
k−1|k−1

Predicted covariance: P
(i)
k|k−1 = F

(i)
k−1P̄

(i)
k−1|k−1(F (i)

k−1)′ +Q
(i)
k−1

Measurement residual: z̃
(i)
k = zk −H(i)

k x̂
(i)
k|k−1

Residual covariance: S
(i)
k = H

(i)
k P

(i)
k|k−1(H(i)

k )′ +R
(i)
k

Filter gain: K
(i)
k = P

(i)
k|k−1(H(i)

k )′(S(i)
k )−1

Update state: x̂
(i)
k|k = x̂

(i)
k|k−1 +K

(i)
k z̃

(i)
k

Update covariance: P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k S

(i)
k (K(i)

k )′

3. Model probability update (∀mimi ∈M) :
Model likelihood: L

(i)
k

assume= N (z̃(i)
k ; 0, S(i)

k )

Model probability: µ
(i)
k =

µ
(i)
k|k−1L

(i)
kP

j µ
(j)
k|k−1L

(j)
k

4. Estimate fusion:
Overall estimate: x̂k|k =

∑
i x̂

(i)
k|kµ

(i)
k

Overall covariance: Pk|k =
∑
i[P

(i)
k|k + (x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)′]µ(i)

k

The IMM degenerates in the MMSE-AMM (without probability lower bounding) when the IMM’s transi-
tion probability matrix πij is the identity matrix.

Other well studied CMM algorithms include the first order Generalized Pseudo-Bayesian (GPB1) and
the second order Generalized Pseudo-Bayesian (GPB2) that, along with the IMM, are extensively dis-
cussed in [9].

4.3.2 Simulation Example

In this example the target and the model-set have exactly the same configuration as in the example in
subsection 4.2.2. The only extra parameter not defined in the example mentioned and that is specific
to the IMM algorithm is the transition probability matrix which has the value
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πji =



0.99 0.01 0 0 0 0 0
0.01 0.98 0.01 0 0 0 0

0 0.01 0.98 0.01 0 0 0
0 0 0.01 0.98 0.01 0 0
0 0 0 0.01 0.98 0.01 0
0 0 0 0 0.01 0.98 0.01
0 0 0 0 0 0.01 0.99


. (4.24)

Note that the algorithm is only allowed to switch from a model to ”neighbor” model, i.e., models with
closest angular velocity. This is taken from the target characteristics which is believed to have soft
maneuvers. The target is also assumed to have a higher probability in keeping its current angular
velocity than switching to another.

An interesting function to observe is the model probability µ(i)
k , see figure 4.11. Note that the maximum

model probability saturates in a lower value than in the classic MMSE-AMM and that the probabilities
of the models associated to the extreme angular velocities reach higher values, this is due to the format
of the transition probability matrix (4.24).
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Figure 4.11: IMM model probabilities.

The error for the position and the velocity of the target is in figure 4.12, which is relatively small. The
IMM tracker is fast to recognize mode changes, specially if the mode transition probability matrix is well
defined, delivering a much smoother estimate and monotonously decreasing estimate error ellipsoids
as can be observed in figure 4.13.
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Figure 4.12: IMM position and velocity error.
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Figure 4.13: Target trajectory and IMM estimate and error ellipsoid propagation.
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4.4 Variable Structure Multiple Model

Most existing MM algorithms have a fixed structure (FSMM), i.e., they have a fixed model set at all
times. The first two generations of MM algorithms regard this type of model set structure and they
have been shown to be quite capable of tracking targets in the presence of structural or parametric
uncertainty. However these FSMM algorithms have little more room for improvement, since they have
been exhaustively studied and improved for the last decades. In an attempt to break away from the
FSMM a new force has been applied into the development of MM estimation with variable structure
(VSMM), i. e, with a variable set of models. This approach intends to overcome the FSMM algorithms
especially for problems involving many structural modes.

The VSMM algorithm aimed to tackle the estimation problems when the set of all true system models
S is too large and when there is uncertainty in the models of the model set. To add more models to
a FSMM may result in a huge computational burden and more, the excessive competition of ”unnec-
essary” models can degrade the overall estimate, as was shown in [4]. The solution is to improve the
model set and use a FSMM or, on the other hand, accept the fact that a perfect model set is hard to
achieve and use an appropriate VSMM algorithm.

Still under active development, this generation is potentially much more advanced and has an open
architecture. The VSMM algorithms’ most interesting feature is its ability to adapt to the target maneu-
vering by creating new elemental filters if the existing ones are not good enough and by eliminating
filters with poor performances. A filter with poor performances has its estimate so far away from the
correct one that the overall estimate would be improved if that model was not present at all in the model
set.

A VSMM should be applied to a tracking problem if the mode space is too large causing an unbearable
computational burden for the available resources (possibly by being highly time invariant) or if the mode
space is not known (possibly by scarce or highly complex a priori available information).

The third generation abandons the constant mode space, and consequently the fixed model-set ,as-
sumption. Thus the second fundamental assumption of the second generation, which related to a fixed
structure of the model set, is eliminated. The only fundamental assumption valid is:

A1”. The true mode s is Markov.

The above assumption is maintained because most of the VSMM algorithms incorporate blocks of MM
algorithms of the second generation.

A key innovative concept of this generation is the state dependency of a model set, i.e., given a current
mode (and base state), the set of possible modes at the next time is a subset of the mode space,
determined by the mode transition law.

To describe state dependency, it is usual to resort to graph theory, where each node is a mode and
each directed edge a dependency determined by the mode transition law. The state dependency of
the model set is the basis of the VSMM algorithms.

As in the previous generation, the optimal VSMM estimator, as described in [3] and [4], is computa-
tionally unfeasible. At each time k, there is a new possible mode set Sk which is the union of the state
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dependent mode set at time k, i.e., Sk = {S(1)
k , . . . ,S(n)

k } that can be variable sized depending on the
previous possible mode set Sk−1 and the target’s maneuvering restrictions. Thus the set of possible
mode sequences through time k, defined as Sk = {S1, . . . ,Sk}, grows exponentially.

Most of the applicable VSMM algorithms replace the set of possible mode sequences at time k by one,
and hopefully the best, model-set sequence Mk. Note that the size of each state dependent model
set may be variable trough time, when this happens a variable size model-set is clearly preferable to a
fixed model-set.

This results in the two main tasks of the VSMM algorithm that are

1. Model-set adaptation;

2. MM estimation given a model-set.

To guarantee that no track loss occurs a perfect match between the modes and models at all the time
should be assured by the model-set adaptation, i.e., {sk ∈Mk} ∀k.

Perhaps, the most important task is the development of a good model-set adaptation. The model
set adaptation consists of i) Model-set candidation and ii) Model-set decision given candidate sets.
As for the model-set decision given candidate sets which mainly includes the termination of models,
there exists general solutions with acceptable results based mainly on the models likelihood. The real
ongoing not yet concluded study regards the model-set candidation, or model activation, where there
are two main streams/classes of VSMM algorithms.

1. The active model-set family has a finite and defined a priori total model set. At each given time,
a subset of the total model-set, called active or working model-set, is determined adaptively;

2. The model-set generation family generates the models in real time so it is not possible to define
a total model-set in advance.

The MM estimation given the model-set addresses the question on how to initialize new activated mod-
els: i) assign initial probabilities to new models, and ii) obtain initial estimates and error covariances for
the filters based on new models. The key to the optimal initialization is based on the state dependency
of the model set concept, meaning that the new model probability is computed using only the probabil-
ities of the models that may jump to this new model and the initial state estimate and covariance of a
filter is computed using only the state estimate and covariance (and probabilities) of the filter based on
those models that may jump to that model.

Defining En as a set of the models in Mk−1 that are allowed to switch to the new model m(n), i.e.,

En = {ml : ml ∈Mk−1, πln 6= 0}. (4.25)

The initial state of the filter based on mn can be obtained by

x̄
(n)
k−1|k−1 = E[xk|m(n)

k ,Mk−1, zk−1]

=
∑
ml∈En

E[xk−1|m(l)
k−1,Mk−2, zk−1]P{m(l)

k−1|m
(n)
k ,Mk−1}

=
∑
ml∈En

x̂
(l)
k−1|k−1µ

l|n
k−1

(4.26)
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where the sequence at time k of sets of the total model-set is Mk = {M1, . . . ,Mk} and

µ
l|n
k−1 = P{m(l)

k−1|m
(n)
k ,Mk−1} =

πjiµ
(j)
k−1∑

mj∈En
πjiµ

(j)
k−1

. (4.27)

The assignment of initial model probabilities for new models follows the same logic

P{m(n)
k−1|M

k−1, zk−1} =
∑

mj∈En

P{m(n)
k |m

(j)
k−1}P{m

(j)
k−1|M

k−1, zk−1}. (4.28)

Analyzing the equations (4.26), (4.27) and (4.28) it is clear the similarity with the second generation
IMM algorithm. This conclusion leads to the recursive variable structure version of the IMM algorithm
called Variable Structure Interacting Multiple Model (VSIMM). The general cycle of the VSIMM algo-
rithm based on time-varying model-set is presented in table 4.4.

Table 4.4: One Cycle of VSIMM [Mk,Mk−1] Algorithm.

1. Model-conditioned (re)initialization (∀mi ∈Mk):
Predicted model probability: µ

(i)
k|k−1 =

∑
mj∈Mk−1

πjiµ
(j)
k−1

Mixing weight: µ
j|i
k−1 = πjiµ

(j)
k−1/µ

(i)
k|k−1

Mixing estimate: x̄
(i)
k−1|k−1 =

∑
mj∈Mk−1

x̂
(j)
k−1|k−1µ

j|i
k−1

Mixing covariance: P̄
(i)
k−1|k−1 =

∑
mj∈Mk−1

[P (j)
k−1|k−1 + (x̄(i)

k−1|k−1 −
x̂

(j)
k−1|k−1)(x̄(i)

k−1|k−1 − x̂
(j)
k−1|k−1)′]µj|ik−1

2. Model-conditioned filtering (∀mi ∈Mk) :
Predicted state: x̂

(i)
k|k−1 = F

(i)
k−1x̄

(i)
k−1|k−1

Predicted covariance: P
(i)
k|k−1 = F

(i)
k−1P̄

(i)
k−1|k−1(F (i)

k−1)′ +Q
(i)
k−1

Measurement residual: z̃
(i)
k = zk −H(i)

k x̂
(i)
k|k−1 − v̄

(i)
k

Residual covariance: S
(i)
k = H

(i)
k P

(i)
k|k−1(H(i)

k )′ +R
(i)
k

Filter gain: K
(i)
k = P

(i)
k|k−1(H(i)

k )′(S(i)
k )−1

Update state: x̂
(i)
k|k = x

(i)
k|k−1 +K

(i)
k z̃

(i)
k

Update covariance: P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k S

(i)
k (K(i)

k )′

3. Model probability update (∀mi ∈Mk):
Model likelihood: L

(i)
k

assume= N (z̃(i)
k ; 0, S(i)

k )

Model probability: µ
(i)
k =

µ
(i)
k|k−1L

(i)
kP

mj∈Mk
µ

(j)
k|k−1L

(j)
k

4. Estimate fusion:
Overall estimate: x̂k|k =

∑
mi∈Mk

x̂
(i)
k|kµ

(i)
k

Overall covariance: Pk|k =
∑
mi∈Mk

[P (i)
k|k + (x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)′]µ(i)

k

Note that the model transition probability πij regards the total model-set and not only the current active
model-set.

Also included in the VSMM task of MM estimation given a model-set is the fusion of two MM estimation.
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This situation arises when after obtaining the MM estimation for a model-set M1 the model-set adapta-
tion algorithm decides to add to it a new set of models M2. The efficient solution is to add the new set in
the current cycle avoiding repeating the already performed computation, this is achieved by having two
distinct MM estimators and a fusion algorithm. Both MM estimators have the same model-set history
Mk−1 but a different active model sets M1 and M2 characterized by

{x̂(i)
k|k, P

(i)
k|k, L

(i)
k , µ

(i)
k }mi∈Ml

l = {1, 2} (4.29)

which can be computed, for instance, by a cycle of the VSIMM [Ml,Mk−1] l = {1, 2} algorithm (table
4.4).

The optimal MM estimator base on the model set Mk = M1 ∪M2 and the common model-set history
Mk−1 is given by

x̂k|k =
∑

mi∈Mk

x̂
(i)
k|kµ

(i)
k (4.30)

Pk|k =
∑

mi∈Mk

P
(i)
k|k[(x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)′]µ(i)

k (4.31)

where

µ
(i)
k

4
= P{m(i)

k |M
k = M1 ∪M2,Mk−1, zk} =

µ
(i)
k|k−1L

(i)
k∑

m(j)∈Mk
µ

(j)
k|k−1L

(j)
k

. (4.32)

If there are common models in M1 and M2, i.e., M1 ∩M2 6= ∅,extra computation is needed to calculate
the value of the model probability µ(i)

k .

The section 4.4.1 describes the Likely Model Set (LMS) algorithm.

4.4.1 The Likely Model-Set algorithm

The LMS algorithm, described in [8], belongs to the family of active model set of the VSMM algorithms.
When compared to other VSMM algorithms like Recursive Adaptive Model-Set (RAMS) [7] and the
Model-Group Switching (MGS) [5], the LMS algorithm can be applied to a larger class of hybrid esti-
mation problems, it is simpler with fewer design parameters, it is more cost effective. Its basis is to use
a subset of the total model set as the active set for any given time. The total model set is finite and
can be determined offline, prior to any measurements. The active or working model-set is determined
adaptively. On the LMS algorithm this is achieved by implementing a simple rule of: 1) discarding
the unlikely models; 2) keeping the significant models; and 3) activating the models adjacent to the
principal models.

The adjacency of models is determined by wether one model is allowed to switch to another, if so, the
first model is adjacent to the second one. By an appropriated setting of parameters, the number of
principal models at any given time can be small and the number of unlikely models as large as needed.
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This means that the number of active models at time step k can be much smaller than the total model
set leading to a computational complexity saving and possibly to an improvement in estimation.

The LMS algorithm, regarding the VSMM tasks, can be decomposed in

1. Model-set adaptation

(a) Model classification: Identify each model in Mk−1 to be unlikely (if its probability is below
the threshold t1) , principal (if its probability exceeds the threshold t2) or significant (if its
probability is between t1 and t2);

(b) Model-set adaptation: Obtain Mk by deleting all the unlikely models in Mk−1 and by activat-
ing all the models adjacent from any principal models in Mk−1.

2. MM estimation given a model-set

(a) Model-set sequence conditioned estimator: Obtain at least one MM estimative using VSIMM
algorithm based on the previous model-set Mk−1 and a new model-set. The new and re-
quired model-set has all the models in Mk−1 minus the unlikely ones. The optional new
model-set contains all the models adjacent from the principal models if they did not belong
to the new and required model-set;

(b) Fusion of two MM estimators (if existing): Obtain the optimal estimation by fusing two MM
estimators applying equations (4.30), (4.31) and (4.32).

The LMS algorithm has two variants regarding the logic of models deletion: 1) AND logic: A model is
deleted only if its probability is both below the threshold t1 and not among the K largest. This means
that the model-set has at least K models; 2) OR logic: A model is deleted if its probability is below the
threshold t1 or it is not among the K largest. This means that the model-set has always K models.

The AND logic guarantees performance and relaxes computation while the OR logic guarantees com-
putation but relaxes performance; the AND logic is more interesting. In table 4.5 is a description of the
steps in a cycle of the LMS algorithm with AND logic. The flowchart diagram representing the LMS
algorithm’s process and decision steps is in figure 4.14.

As mentioned before, and confirmed in the algorithm description, one of the advantages of the LMS
algorithm is the reduced number of design parameters. These are the same as for the IMM algorithm
(since it previous uses a variation of the latter) with the addiction of the following parameters

• The unlikely and principal models probability thresholds, t1 and t2 respectively.

4.4.2 Simulation Example

In this example the target and the model-set have exactly the same configuration as in the example in
subsection 4.3.2.

The total model-set is a priori defined, but at each time step only a subset of the total model-set is
used. This subset has a minimum of K = 3 active models and can contain models with a value for the
angular velocity from table 4.2.
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Figure 4.14: Flowchart of LMS estimation algorithm.
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Table 4.5: One Cycle of LMS Algorithm.

1. Increase the time counter k by 1. Run the VSIMM [Mk,Mk−1] cycle.
2. Classify all the models mi’s in Mk to be principal (i.e., µik > t2), unlikely (i.e., µik < t1) or

significant (i.e., t1 ≥ µik ≤ t1). Let the set of unlikely models be Mu. If there is neither unlikely
nor principal model, output x̂k|k, Pk|k and {µ(i)

k }m(i)∈Mk
, let Mk+1 = Mk and go to step 1.

3. If there is no principal model, then let Ma = ∅ and got to step 4. Otherwise, identify the set
Ma of all models adjacent to any principal model. Find the set of new models Mn = Ma

⋂
M̄k

(where M̄k is the complement of Mk and the union set Mk := Mn

⋃
Mk.

Then

• Run VSIMM [Mn,Mk−1] cycle, where Mn is the set of new and only new models.

• Fusion: Calculate the estimates, error covariances, and mode probabilities for the union
set Mk:

µ
(i)
k =

µ
(i)
k|k−1L

(i)
k∑

mj∈Mk
µ

(j)
k|k−1L

(j)
k

,∀mi ∈Mk

x̂k|k =
∑

mi∈Mk

x̂
(i)
k|kµ

(i)
k

Pk|k =
∑

mi∈Mk

P
(i)
k|k[(x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)′]µ(i)

k

where the estimates {x̂(i)
k|k}, error covariances {P (i)

k|k}, likelihoods {L(i)
k }, and pre-

dicted probabilities {µ(j)
k|k−1} were obtained in the above VSIMM [Mk,Mk−1] and VSIMM

[Mn,Mk−1] cycles.

4. Output x̂k|k, Pk|k and {µ(i)
k }m(i)∈Mk

.
5. If there is no unlikely model, go to step 1; otherwise, identify the discardable set Md = Mu

⋂
M̄a,

that is, the set of unlikely models that are not adjacent from any principal model.
6. Eliminate the models in Md from Mk that have the smallest probability such that Mk has at least

K models, that is, let the likely model-set be Ml = Mk −Mm, where Mm is the set of models in
Md with smallest probabilities such that Ml has at least K models.

7. Let Mk+1 = Ml and go to step 1.

For more clarity, the initial state estimate is redefined, based on equations (4.8) and (4.9),

x̂
(i)
0|0 ∼ N (x(0), P (i)

0|0) ∀mi ∈MO (4.33)

with initial state covariance estimate P (i)
0|0 given by

P
(i)
0|0 =


102 0 0 0
0 0.22 0 0
0 0 102 0
0 0 0 0.22

 ∀mi ∈MO. (4.34)
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where MO is the initial active model-set, which for this simulation, is considered to be the total model-
set.

The transition probability matrix is the same as the one defined by the equation (4.24) and all the mod-
els are considered to have equal a priori probability of being correct, i.e., the a priori model probability
is given by (4.10), which can also be redefined by

µ
(i)
0 =

1
N0

, ∀mi ∈MO (4.35)

where N0 is the size of the initial active model set MO, in this case, is equal to the total model-set size,
i.e., N0 = N .

The digraph associated with the total the model-set is quite linear and represented in figure 4.15, along
with the correspondent transition probabilities.

m1 m2 m3 m4 m5 m6 m7

0.01

0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01

Figure 4.15: Digraph associated with the total the model-set.

By maintaing the size of the total model-set the main advantage will be the reduction of computer
complexity. As mention before, the VSMM algorithms capability of providing a better estimates than
the previous generations MM algorithms is most notorious when large models sets are needed.

In figure 4.16, it is possible to identify the models active at each time step. Note that there are times
when the active model-set has more than three models. The number of active models is influence by
the model probability thresholds. In this example, has the model-set is relatively small this thresholds
can be relaxed, if they were more limitative the model-set would always be of size three.

The chosen thresholds, which are the only extra parameters needed to be define, were

t1 = 0.1, t2 = 0.4. (4.36)

Although, these thresholds, guarantee a that the correct model is active during almost all the simulation,
at the beginning, when the uncertainty is high and an incorrect model can have the highest probability,
the correct model is discarded. A solution, to compensate this flaw, could be the definition of pre and
after stabilization thresholds, specially if there is a considerable uncertainty in the target initial state.
The pre stabilization thresholds should be more conservative, and not discard the models so soon, i.e.,
t1 << 0.1.

The position and velocity error in this circumstances is represented in figure 4.17, which besides the
initial state estimate uncertainty, is quite small. The representation of the target trajectory and LMS
position estimate and error ellipsoid propagation in the state space with time will be omitted since it is
similar to the IMM response in figure 4.13
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Figure 4.16: LMS active models.
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Figure 4.17: LMS position and velocity error.
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4.5 Comparison of the MM algorithms

In this section a total of 30 simulations were made and the mean value of them was used to compute
the results shown below.

Regarding the target trajectory the initial position of the target is given by (3.27) with

x(0) = 100 m, y(0) = −100 m, v = 1 m.s−1 and φ(0) = 45◦. (4.37)

It is in CT mode described in subsection 2.2.2 with an angular velocity represented in figure 4.18 and
given by

ωk =


0.03 1 ≤ k ≤ 40

−0.06k−40
1000 k 41 ≤ k ≤ 1040

−0.03 1041 ≤ k ≤ 1080

, in rad.s−1. (4.38)
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Figure 4.18: Non-constant and smoothed angular velocity of the target.

Note that the target’s motion is smoothed and the current target mode may or may not be present in
the mode-set. Under this motion non of the three generations of the MM algorithms are in optimal
conditions. Tough, as will be observes later, the MM algorithms are still capable of tracking the target
with satisfactory results.

Regarding the model-set, all the MM algorithms have the same model-set composed of thirteen models
(N = 13) each associated with one of the angular velocities in table 4.6, where the positive sign means
a anti-clockwise turn and the negative sign means clockwise turn.

The option to alter the values of the angular velocity was to allow a larger range of trajectories for target
and better test the algorithms capability.

All the models are considered to have equal a priori probability of being correct, i.e., the a priori model
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Table 4.6: Angular velocity of the thirteen models.

Angular velocity
ω [rad.s−1]

0.03
0.025
0.02

0.015
0.01

0.005
0

-0.005
-0.01

-0.015
- 0.02
-0.025
-0.03

probability for the FSMM and the VSMM algorithms is given by (4.10) and (4.35), respectively. The
initial active model-set in the LMS algorithm is the total model-set.

The measurement noise covariance of the models is equal to the target’s, while the process noise
covariance is little higher and given by equation (3.35) like in previous simulations where there were
target motion had mode switches.

Once again, for a realistic scenario, the filters do not know the initial state, only its distribution; thus
each of the filters for each of the simulations has an initial state given by 4.8 and with variance given
by 4.9. For the LMS algorithm, the equations are redefined to (4.33) and (4.34), respectively.

Regarding specific parameters of the MM algorithms, the values chosen are

• the MMSE-AMM model probability lower bound is of 10−3;

• the IMM and LMS transition probability matrix, of size (13× 13), is given by

πji =



0.98 0.02 0 . . . 0
0.01 0.98 0.01 . . . 0

...
. . . . . . . . .

...
0 . . . 0.01 0.98 0.01
0 . . . 0 0.02 0.98


; (4.39)

• the LMS thresholds were t1 = 0.01 and t2 = 0.4 and the minimum number of active models is
K = 3.

The target trajectory and the mean of all simulations of the position estimate delivered from the three
MM algorithms is represented in figure 4.19.

In this experiments, the mean of the MSE of the state vector in all simulations throughout the time of
the estimate error was also calculated. Those values are represented in figure 4.20, and their mean
values in table 4.7.
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Figure 4.19: Target trajectory and the three generations of MM algorithms mean position estimate for
30 simulations.
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Figure 4.20: The three generations of MM algorithms’ mean of the state MSE for 30 simulations.
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Table 4.7: Mean state MSE for 30 simulations throughout the time.

Algorithm MSE x [m] MSE y [m] MSE vx [m/s] MSE vy [m/s]
MMSE-AMM 1.0729 1.9382 0.0044 0.0056

IMM 0.7424 1.2809 0.0025 0.0029
LMS 0.7425 1.2686 0.0023 0.0030

The superiority of the second and third generations over the first generation is obvious.

Regarding the second generation algorithm, the IMM, it is specially interesting since the implementing
complexity doesn’t suffer a tremendous increase and its specific parameters are of easy definition,
delivering good estimates even when a fair dimensioning is made.

On the other had the third generation, the LMS, even when using a limited number of active models is
able to deliver good estimates with a very low computer complexity. Its ability to overcome the second
generation results isn’t as obvious as the difference between the first two generations, and it highly
depends on the choice of the simulation parameters. There is still a big need for improvement but this
algorithm, but as it is now, it presents as a very good alternative to the IMM algorithm when dealing
with large model-sets.
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Chapter 5

Multiple Target Tracking

This chapter extends the previous studied target tracking problem to the scenario where multiple targets
are detected by the sensory system. This chapter includes the main contribution of this thesis, since
the new developed algorithm is here described.

In section 5.1, the problem of multiple target tracking and the main differences from the single target
tracking problem are presented. Also some of the most common algorithms to solve the data associa-
tion issue are mentioned.

In sections 5.2 and 5.3, two algorithms are presented and studied in depth. The first algorithm consists
of a combination of the Interacting Multiple Model and the Joint Probabilistic Data Association Filter.
The second algorithm is the new proposed algorithm that combines the Likely Model-Set with the
Joint Probabilistic Data Association Filter. The tracking abilities of both algorithms are discussed and
simulated separately in subsections 5.2.1 and 5.3.1. The section 5.4 contains a comparison of the two
algorithms, regarding their simulated results under the same scenario.
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5.1 Tracking Multiple Targets

The Multiple Target Tracking (MTT) problem extends the single target tracking to a situation where
the number of targets may not be known and can also be variable variable with time. Moreover, the
measurements obtained are also not known, since they can be originated from any of the targets.
False alarms or measurements originated from clutter are an extra source of complexity in realistic
applications. Thus, tracking multiple maneuvering targets is much more difficult than tracking a single
maneuvering target since there is a challenge in correctly associating the measurements with the
targets.

The MTT problem is composed of the following subproblems

• Single Target Tracking (STT): addresses the problem of tracking a single target. In the previous
chapter, tracking a maneuvering target using MM has been shown to be highly effective. As
studied earlier the STT estimates the positions of a target based on noisy observations of the
target and with some prior regarding the target and sensor characteristics;

• Data association (DA): usually consists in ensuring that the correct measurement is given to each
STT tracker so that the trajectories of each target can be accurately estimated.

The strategies to tackle the STT tracking problem resorting to MM were discussed in chapter 4. The
DA problem has three classical approaches: the Nearest Neighbour Standard Filter [23], the Joint
Probabilistic Data Association Filter [1], and the Multiple Hypothesis Tracking Filter [1].

In the following section 5.2.1, the STT algorithm IMM is combined with the DA filter Joint Probabilistic
Data Association (JPDAF). In section 5.3 a new algorithm is described combining the LMS with the
JPDAF algorithm.

5.2 Interacting Multiple Model Joint Probabilistic Data Associ-

ation Filter

The algorithm presented in this section combines two well known approaches in target tracking: the
IMM algorithm, discussed in 4.3.1 shown to be quite effective in estimating the state of highly maneu-
vering targets, and the JPDAF for resolving the MTT problem of data association. The IMM-JPDAF
combination was introduced in literature in [2].

Assume that there are a total T targets r (r = {1, . . . , T}). At each time step k there are total of n
measurements z

(j)
k (z(j)

k ∈ Zk = {z1
k, . . . , z

nk

k }), only nk ≤ n of this measurements are considered
valid.

A measurement z(j)
k is valid if at least one target r lies inside the validation gate Gk(r). The validation

gate of a target r is taken to be same for all models in M and chosen as the largest of them. The
validation gate for each target r is given by

Gk(r) = {y(j)
k = z

(lj)
k : [z(lj)

k − ẑ(ir),(r)
k|k−1 ]′(S(ir),(r)

k )−1[z(lj)
k − ẑ(ir),(r)

k|k−1 ] ≤ γ} (5.1)
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where ir is the index of the model in the model set corresponding to the largest residual covariance

ir := argmaxi∈M det(S(i)
k ). (5.2)

Also, γ is an appropriated threshold, S(ir),(r)
k = H

(ir)
k P

(ir),(r)
k|k−1 (H(ir)

k )′ + R
(ir)
k is the largest model-

conditioned residual covariance for the target r and ẑ(ir),(r)
k|k−1 = H

(ir)
k x̂

(ir),(r)
k|k−1 is the correspondent pre-

dicted measurement.

Note that setting of the validation gate threshold value too low may make cause the algorithm to not
associate any measurement with a target, and setting the value too high increases the computational
burden as the algorithm is always trying to resolve target-measurement association. Ideally γ should
allow the IMM-JPDAF to work as T isolated IMM algorithms when targets are far apart.

The set of validated measurements is denominated Yk = {y1
k, . . . , y

nk

k } with nk ≤ n.

The key to the JPDAF algorithm is the definition of the marginal events θjr and the evaluation of their
conditional joint probabilities. A marginal association event θjr is said to be effective at time k when a
validated measurement y(j)

k is associated with a target r, i.e., y(j)
k ∈ Gk(r). A joint association event Θ

happens when a set of marginal events holds true simultaneously, i.e.,

Θ =
nk⋂
j=1

θjrj
(5.3)

where rj is the index of the target to which the measurement y(j)
k is associated with.

The validation matrix is given by

Ω = [ωjr], j ∈ {1 . . . nk} and r ∈ {1 . . . T} (5.4)

where ωjr is a binary variable indicating whether measurement j lies in the validation gate of target r
in event Θ.

Based on the validation matrix Ω, an association event Θ may be represented by the matrix

Ω̂ = [ω̂jr], j ∈ {1 . . . nk} and r ∈ {1 . . . T} (5.5)

where

ω̂jr =

1 if θjr ⊂ Θ

0 otherwise
. (5.6)

A feasible association event is one where each measurement has only one source, i.e.,
∑N
r=0 ω̂jr =

1 ∀j (where r = 0 indicates the measurement is a false alarm, originated from clutter for instances) and
where at most one measurement is originate from each target δr :=

∑nk

j=0 ω̂jr ≤ 1 (∀r ∈ {1, . . . , T})
also called target indicator.

Other important indicators using the permutation matrix information are the binary measurement asso-
ciation indicator, given by τj :=

∑N
r=1 ω̂jr, with j = {1, . . . , nk} which indicates whether the validated
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measurement y(j)
k is associated with a target in event Θ; and the number of false alarms (unassociated

measurements) given by φ =
∑nk

j=1[1− τj ].

The marginal association probability is the sum of the probabilities of the joint association events given
that measurement j belongs to target r

βjr =
∑
Θ

P{Θ|zk}ω̂jr[Θ], j = 1, . . . , nk; r = 1, . . . , T (5.7)

with, assuming Gaussian distribution for the residual,

P{Θ|zk} =
1
c

φ!
V φ

nk∏
j=1

{N (y(j)
k ; ẑrj , Srj )}τj

T∏
r=1

(P rD)δr (1− P rD)1−δr (5.8)

where c is a normalization factor, V is the volume limited by the validation gate, rj is the index of the
target that measurement j is associated with and P rD is the probability of detection of target r.

In table 5.1, the full description of the IMM-JPDAF algorithm is presented. The novelty regarding the
classic IMM in table 4.3 appears in the filtering step (step 2), where the marginal association probability
is introduced in the computation of the weighted measurement residual and on each local estimative
off the state covariance. Regarding the state covariance update P

(i),(r)
k|k , its last term is a positive

semidifinite matrix which increases the update covariance and the uncertainty of the state estimation
due to incorrect measurements.

The IMM-JPDAF design parameters are

• The number of targets T ;

• The model set M structure of each target r = 1, . . . , T ;

• The system and measurement noises covariances (Q and R respectively) of each target r =
1, . . . , T ;

• The initial state x̂0|0 and state covariance P0|0 of each target r = 1, . . . , T ;

• The jump structure (usually Markov) and the transition probability πji between the models from
the selected set of each target r = 1, . . . , T ;

• The probability of detection P rD of each target r = 1, . . . , T ;

• The validation gate threshold γ.
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Table 5.1: One Cycle of IMM-JPDAF Algorithm.

For all targets r, (r ∈ {1 . . . T}):

1. Model-conditioned reinitialization (∀mi ∈M) :
Predicted model probability: µ

(i),(r)
k|k−1 =

∑
j π

(r)
ji µ

(j),(r)
k−1

Mixing probabilities: µ
j|i,(r)
k−1 = π

(r)
ji µ

(j),(r)
k−1 /µ

(i),(r)
k|k−1

Mixing estimate: x̄
(i),(r)
k−1|k−1 =

∑
j x̂

(j),(r)
k−1|k−1µ

j|i,(r)
k−1

Mixing covariance: P̄
(i),(r)
k−1|k−1 =

∑
j [P

(j),(r)
k−1|k−1+(x̄(i),(r)

k−1|k−1−x̂
(j),(r)
k−1|k−1)(x̄(i),(r)

k−1|k−1−
x̂

(j),(r)
k−1|k−1)′]µj|i,(r)k−1

2. Model-conditioned joint probabilistic data association filtering (∀mi ∈M and j = {1, . . . , nk}) :
Predicted state: x̂

(i),(r)
k|k−1 = F

(i)
k−1x̄

(i),(r)
k−1|k−1

Predicted covariance: P
(i),(r)
k|k−1 = F

(i)
k−1P̄

(i),(r)
k−1|k−1(F (i)

k−1)′ +Q
(i)
k−1

Measurement validation: Find y(j)
k ∈ Gk(r)

Association probability: βjr =
∑

Θ P{Θ|zk}ω̂jr[Θ]
Measurement residual: z̃

(ji),(r)
k = y

(j)
k −H

(i)
k x̂

(i),(r)
k|k−1

Weighted measurement residual: z̃
(i),(r)
k =

∑nk

j=1 βjr z̃
(ji)
k (r)

Residual covariance: S
(i),(r)
k = H

(i)
k P

(i),(r)
k|k−1 (H(i)

k )′ +R
(i)
k

Filter gain: K
(i),(r)
k = P

(i)
k|k−1(r)(H(i)

k )′(S(i),(r)
k )−1

Update state: x
(i),(r)
k|k = x

(i),(r)
k|k−1 +K

(i),(r)
k z̃

(i),(r)
k

Update covariance: P
(i),(r)
k|k = P

(i),(r)
k|k−1 − (

∑nk

j=1 βjr)K
(i),(r)
k S

(i),(r)
k (K(i),(r)

k )′ +

K
(i),(r)
k [

∑nk

j=1 βjr z̃
(ji),(r)
k (z̃(ji),(r)

k )′ −
z̃

(i),(r)
k (z̃(i),(r)

k )′](K(i),(r)
k )′

3. Model probability update (∀mi ∈M) :
Model likelihood: L

(i),(r)
k

assume= N (z̃(i),(r)
k ; 0, S(i),(r)

k )

Model probability: µ
(i),(r)
k =

µ
(i),(r)
k|k−1L

(i),(r)
kP

j µ
(j),(r)
k|k−1L

(j),(r)
k

4. Estimate fusion:
Overall estimate: x̂

(r)
k|k =

∑
i x̂

(i),(r)
k|k µ

(i),(r)
k

Overall covariance: P
(r)
k|k =

∑
i[P

(i),(r)
k|k + (x̂(r)

k|k − x̂
(i),(r)
k|k )(x̂(r)

k|k − x̂
(i),(r)
k|k )′]µ(i),(r)

k

5.2.1 Simulation Example

In this section, the simulation results of the IMM-JPDAF algorithm will be shown and discussed. One
example will be exhibited with the objective to demonstrate the algorithm’s capability of tracking two
targets undergoing different trajectories. There will be some assumptions made regarding the data
association problem. First, begin to assume that

• All events are feasible, thus δr = 1, ∀Θ;

• There is no clutter so a validated measurement is always associated with a target τj = 1 (j =
{1, . . . , nk} and ∀Θ);
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• There are no unassociated measurements thus φ = 0 ∀Θ;

• The target probability of detection is equal to all targets and equal to unity, i.e., P rD = PD = 1 r ∈
{1, . . . , T}.

This means that at each time step k there are T targets and T measurements (nk = n = T ). This
results in a simplified combined version of 5.7 and 5.8

βjr =
∑
Θ

nk∏
j=1

{N (z(j)
k ; ẑrj , Srj )}ω̂jr[Θ] (5.9)

The targets obey the models described in section 2.1 and they differ from each other in their initial state
and angular velocity. The process and measurement noises covariances are equal to both targets and
given by the equation (2.15) and (2.34) with uncertainties given by (3.35) and (3.30), respectively.

The target 1 angular velocity is constant equal to 0.01 rad.s−1, while the angular velocity ω of the target
2 (with graphical interpretation in figure 5.1) is defined by

ωk =



−0.01 1 ≤ k ≤ 40

0 41 ≤ k ≤ 50

0.01 51 ≤ k ≤ 60

0.02 61 ≤ k ≤ 150

, in rad.s−1. (5.10)
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Figure 5.1: Angular velocity of target 2.

The initial state of target 1 is given by (3.27) with

x(0) = −200 m, y(0) = −50 m, v = 3 m.s−1 and φ(0) = 0◦ (5.11)
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while initial state of target 2 is given by (3.27) with

x(0) = −100 m, y(0) = −150 m, v = 3 m.s−1 and φ(0) = 90◦. (5.12)

Firstly, observe the representation of the targets trajectory in figure 5.2. In this circumstances the
targets cross each others paths once, and for that single time a target-measurement association switch
occurs.
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Figure 5.2: IMM-JPDAF targets trajectory three dimensional representation.

The two banks of filters in the IMM-JPDAF algorithm are equal to both targets and have a structure
equivalent to the one studied in the previous simulations but with different values for the angular velocity
ωi which are listed in table 5.2, where the positive sign means an anti-clockwise turn and the negative
sign means clockwise turn. The values chosen for ω guarantee that the multiple target tracker is able to
identify a relatively wide range of maneuvers, similar to the simulation in subsection 4.5, while keeping
a small model-set, similar to the other simulations in chapter 4.

The models have equal process and measurement noises covariances defined by the equation (4.13)
and (4.7), respectively. To account the multiple target scenario, the process and measurement noises
covariances should be rewritten to

Q
(i),(r)
k = Qk ∀i, k, r with σ2

x = σ2
y = 0.01 (5.13)

R
p,(i),(r)
k = diag(σ2

r , σ
2
θ) ∀i, k, r with σr = 2 m, σθ = 1◦ (5.14)

where, Qk is the discretized continuous process covariance (2.15) using equation (2.10).
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Table 5.2: Angular velocity of the seven models equal in both banks of filters.

Angular velocity
ω [rad.s−1]

0.03
0.02
0.01

0
-0.01
-0.02
-0.03

The initial state estimate of the bank of filters associated with target r is given by

x̂
(i),(r)
0|0 ∼ N (x(0), P (i),(r)

0|0 ) ∀mi ∈M (5.15)

with initial state covariance estimate P (i),(r)
0|0 given by

P
(i),(r)
0|0 =


102 0 0 0
0 0.22 0 0
0 0 102 0
0 0 0 0.22

 ∀mi ∈M (5.16)

with r = {1, . . . , T}.

The transition probability matrix is the same as the one defined by the equation (4.24) and all the mod-
els are considered to have equal a priori probability of being correct, i.e., the a priori model probability
is given by (4.10). Finally the validation threshold γ is equal to 30 m.

In figure 5.3 it is clearly presented which measurement is associated with each target at the target
position. In this example, at the same time, the targets cross each other and the measurement asso-
ciated with each target changes. Note that at the beginning of the simulation, the measurement-target
association is believed to be known, since the targets initial position is approximately known.

The innovation of the IMM-JPDAF algorithm is the introduction of the target-measurement association
probability β, calculated using (5.9). The evolution of the probability β for each target with time for the
example here studied, is shown figure 5.4. It is observable that the algorithm is very quick to switch the
target-measurement association.

The root squared error for the position and the velocity of the target is represented in figure 5.5. As in
the previous simulations, the error is higher at the beginning of the simulation, due to the initial state
estimate error, which in this case is higher for target 1. During the course of the simulation, the error
is overall larger for target 2, as excepted due to the nature of its switching motion. When the target’s
cross each other, right before the measurement associate with each target changes, there is a peak
on the position and velocity error, which, in fact, is what helps the JPDAF detect that a measurement
and target association has occur.

It is also interesting to observer the estimate error ellipsoid propagation of each target in figure 5.6 and
how they do not suffer an increase on the targets cross, the same happens to the model probabilities of
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Figure 5.3: IMM-JPDAF targets trajectory and measurement association.
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Figure 5.4: IMM-JPDAF measurement and target association regarding the value of β.
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Figure 5.5: IMM-JPDAF root squared error for the position and velocity of each target

both filter banks (figure 5.7). Since the JPDAF is quick to resolve the DA problem, the two filter banks
are almost ”blind” to the targets cross thus behave like two almost isolated IMM trackers.

−250 −200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

250

 

 

x [m]

y 
[m

]

target 1
target 2
estimate target 1
estimate target 2
error ellipsoid 95% target 1
error ellipsoid 95% target 2

start

start

Figure 5.6: Trajectory of the two targets and correspondent IMM-JPDAF estimate and error ellipsoid
propagation.

On another note, if the targets did not cross each other but there was a change in the measurement
associated with each target, the error would have a similar form, since the novelty of the MTT is the DA
problem, which has a much higher associated error than the caused by the STT problem.
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Figure 5.7: IMM-JPDAF model probabilities of the two filter bank associated with each target.

All the above results are quite astonishing, the algorithm performance in the presence of two targets is
almost equivalent to the best performance of the MM algorithms studied earlier. Even when the targets
cross each other the state estimate error increase is quite acceptable. This extraordinary performance
is helped by the characteristics of the targets’ motions which are very distinguishable, making the DA
easier. Thus the algorithm is quick to find which measurement belongs to whom when they are moving
close to each other or even when crossing each other.

5.3 Likely Model-Set Joint Probabilistic Data Association Filter

The algorithm presented in this section was elaborated with the belief that the evolution of the MTT
algorithms will necessary pass by the VSMM. The improvement that these algorithms can bring to the
MTT algorithms performance are the a direct consequence of the improvement on they have already
brought to STT problem. Furthermore, by having different model-sets associated with each target, the
data association performance can be improved.

The new algorithm that combines two previous studied approaches in this thesis: the LMS algorithm,
the STT discussed in 4.4.2, and JPDAF algorithm, the DA solver discussed in the previous section.
Analogously, to the IMM-JPDAF, this algorithm will be named LMS-JPDAF. This algorithm appears as a
natural evolution in this thesis, after the IMM-JPDAF it seems logic to try the combination LMS-JPDAF.

The first step in the description of this new algorithm is the redefinition of the VSIMM algorithm, de-
scribed in section 4.4, into a VSIMM-JPDAF, i.e., an algorithm that combines the JPDAF with the
variable structure IMM algorithm. This algorithm appears as an empirical variable structure adaptation
of the IMM-JPDAF, and is described in table 5.3.

71



In relation to the DA problem, in this algorithm at each time step, it is solved regarding only the active
model-set, reducing the computational burden and making it easier to determine which measurement
is associated with each target. For each cycle of the LMS-JPDAF, the DA association problem should
only be solved once, thus there is the need to define an adapted VSIMM-JPDAF, which will be named
VSIMM-JPDAF*. The VSIMM-JPDAF* will be run whenever there are newly activated models and uses
the association probability β previously calculated. This algorithm is also described in table 5.3.

Table 5.3: One Cycle of VSIMM-JPDAF and VSIMM-JPDAF* Algorithm.

For all targets r, (r ∈ {1 . . . T}):

1. Model-conditioned reinitialization (∀mi ∈Mk) :
Predicted model probability: µ

(i),(r)
k|k−1 =

∑
mj∈Mk−1

π
(r)
ji µ

(j),(r)
k−1

Mixing probabilities: µ
j|i,(r)
k−1 = π

(r)
ji µ

(j),(r)
k−1 /µ

(i),(r)
k|k−1

Mixing estimate: x̄
(i),(r)
k−1|k−1 =

∑
j x̂

(j),(r)
k−1|k−1µ

j|i,(r)
k−1

Mixing covariance: P̄
(i),(r)
k−1|k−1 = mj ∈Mk−1[P (j),(r)

k−1|k−1 + (x̄(i),(r)
k−1|k−1 −

x̂
(j),(r)
k−1|k−1)(x̄(i),(r)

k−1|k−1 − x̂
(j),(r)
k−1|k−1)′]µj|i,(r)k−1

2. Model-conditioned joint probabilistic data association filtering (∀mi ∈Mk and j = {1, . . . , nk}) :
Predicted state: x̂

(i),(r)
k|k−1 = F

(i)
k−1x̄

(i),(r)
k−1|k−1

Predicted covariance: P
(i),(r)
k|k−1 = F

(i)
k−1P̄

(i),(r)
k−1|k−1(F (i)

k−1)′ +Q
(i)
k−1

* Measurement validation: Find y(j)
k ∈ Gk(r)

* Association probability: βjr =
∑

Θ P{Θ|zk}wjr[Θ]
Measurement residual: z̃

(ji),(r)
k = y

(j)
k −H

(i)
k x̂

(i),(r)
k|k−1

Weighted measurement residual: z̃
(i),(r)
k =

∑nk

j=1 βjr z̃
(ji)
k (r)

Residual covariance: S
(i),(r)
k = H

(i)
k P

(i),(r)
k|k−1 (H(i)

k )′ +R
(i)
k

Filter gain: K
(i),(r)
k = P

(i)
k|k−1(r)(H(i)

k )′(S(i),(r)
k )−1

Update state: x
(i),(r)
k|k = x

(i),(r)
k|k−1 +K

(i),(r)
k z̃

(i),(r)
k

Update covariance: P
(i),(r)
k|k = P

(i),(r)
k|k−1 − (

∑nk

j=1 βjr)K
(i),(r)
k S

(i),(r)
k (K(i),(r)

k )′ +

K
(i),(r)
k [

∑nk

j=1 βjr z̃
(ji),(r)
k (z̃(ji),(r)

k )′ −
z̃

(i),(r)
k (z̃(i),(r)

k )′](K(i),(r)
k )′

3. Model probability update (∀mi ∈Mk) :
Model likelihood: L

(i),(r)
k

assume= N (z̃(i),(r)
k ; 0, S(i),(r)

k )

Model probability: µ
(i),(r)
k =

µ
(i),(r)
k|k−1L

(i),(r)
kP

j µ
(j),(r)
k|k−1L

(j),(r)
k

4. Estimate fusion:
Overall estimate: x̂

(r)
k|k =

∑
mi∈Mk

x̂
(i),(r)
k|k µ

(i),(r)
k

Overall covariance: P
(r)
k|k =

∑
mi∈Mk

[P (i),(r)
k|k + (x̂(r)

k|k − x̂
(i),(r)
k|k )(x̂(r)

k|k −
x̂

(i),(r)
k|k )′]µ(i),(r)

k

* These two steps are omitted on the VSIMM-JPDAF* algorithm.

In table 5.4, the full description of the LMS-JPDAF algorithm is presented. It has exactly the same
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structure as the LMS algorithm described in table 4.5, only the steps regarding the VSIMM algorithm
are replace by the VSIMM-JPDAF (and VSIMM-JPDAF*) cycle.

Table 5.4: One Cycle of LMS-JPDAF Algorithm.

1. Increase the time counter k by 1. Run the VSIMM-JPDAF [Mk,Mk−1] cycle.
2. Classify all the models mi’s in Mk to be principal (i.e., µik > t2), unlikely (i.e., µik < t1) or

significant (i.e., t1 ≥ µik ≤ t1). Let the set of unlikely models be Mu. If there is neither unlikely
nor principal model, output x̂k|k, Pk|k and {µ(i)

k }m(i)∈Mk
, let Mk+1 = Mk and go to step 1.

3. If there is no principal model, then let Ma = ∅ and got to step 4. Otherwise, identify the set
Ma of all models adjacent to any principal model. Find the set of new models Mn = Ma

⋂
M̄k

(where M̄k is the complement of Mk and the union set Mk := Mn

⋃
Mk.

Then

• Run VSIMM-JPDAF* [Mn,Mk−1] cycle, where Mn is the set of new and only new models.

• Fusion: Calculate the estimates, error covariances, and mode probabilities for the union
set Mk:

µ
(i)
k =

µ
(i)
k|k−1L

(i)
k∑

mj∈Mk
µ

(j)
k|k−1L

(j)
k

,∀mi ∈Mk

x̂k|k =
∑

mi∈Mk

x̂
(i)
k|kµ

(i)
k

Pk|k =
∑

mi∈Mk

P
(i)
k|k[(x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)′]µ(i)

k

where the estimates {x̂(i)
k|k}, error covariances {P (i)

k|k}, likelihoods {L(i)
k }, and predicted

probabilities {µ(j)
k|k−1} were obtained in the above VSIMM-JPDAF [Mk,Mk−1] and VSIMM-

JPDAF* [Mn,Mk−1] cycles.

4. Output x̂k|k, Pk|k and {µ(i)
k }m(i)∈Mk

.
5. If there is no unlikely model, go to step 1; otherwise, identify the discardable set Md = Mu

⋂
M̄a,

that is, the set of unlikely models that are not adjacent from any principal model.
6. Eliminate the models in Md from Mk that have the smallest probability such that Mk has at least

K models, that is, let the likely model-set be Ml = Mk −Mm, where Mm is the set of models in
Md with smallest probabilities such that Ml has at least K models.

7. Let Mk+1 = Ml and go to step 1.

The LMS-JPDAF design parameters are

• The number of targets T ;

• The model set M structure of each target r = 1, . . . , T ;

• The system and measurement noises covariances (Q and R respectively) of each target r =
1, . . . , T ;

• The initial state x̂0|0 and state covariance P0|0 of each target r = 1, . . . , T ;
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• The jump structure (usually Markov) and the transition probability πji between the models from
the selected set of each target r = 1, . . . , T ;

• The unlikely and principal models probability thresholds, t1 and t2, respectively, of each target
r = 1, . . . , T , as where defined in the LMS section 4.4.1;

• The probability of detection P rD of each target r = 1, . . . , T ;

• The validation gate threshold γ.

5.3.1 Simulation Example

In this section, simulation results of the LMS-JPDAF algorithm will be shown and discussed. The
example from the previous section will be maintained with all its assumptions, the only difference is in
the MTT algorithm used. The only new parameters needed to be defined are the unlikely and principal
models probability thresholds, t1 and t2. They are chosen differently for each target since they have
different maneuver motions, which are considered to be known superficially, i.e., there is the knowledge
if a target is in high or slow maneuver. These thresholds are given by

t1 = 0.01, t2 = 0.4 and t1 = 0.01, t2 = 0.2 (5.17)

for target 1 and target 2, respectively.

Using these thresholds the active models at each time step, by each of the LMS algorithms associated
with each target, are represented in figure 5.8. By maintaing different active models for each target, the
algorithm eases the DA problem, besides reducing the computer complexity. Also this figure illustrates
the novelty of this algorithm by revealing its variable structure.

The evolution of the probability β for each target with time for the example here studied is quite similar
to the IMM-JPDAF response in figure 5.4, this algorithms maintains the same speed of solving the DA
problem present in the IMM-JPDAF algorithm.

The root squared error for the position and the velocity of the target is represented in figure 5.9, which
are of the same range of values than the root squared error of the IMM-JPDAF, represented in fig-
ure 5.5. The LMS-JPDAF state estimate and error ellipsoid propagation is similar to the IMM-JPDAF
response in figure 5.6.

Since the performance of a MTT algorithm is closely related to the DA algorithm performance, the LMS-
JPDAF can achieve better results than the IMM-JPDAF by differentiating the targets active model-sets.
Note that the IMM-JPDAF can also have different model-sets for each target, but this would only happen
if the targets did not share the same motion. The LMS-JPDAF allows the targets to have the same total
model-set, but can have different active models for each target at each time.
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Figure 5.8: LMS-JPDAF active models for each target.
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Figure 5.9: LMS-JPDAF root squared error for the position and velocity of each target.

5.4 Comparison of the MTT algorithms

In this section, a resume comparison of the two studied algorithms to solve the MTT problem is pre-
sented. Only an analysis of the root squared error of the position and velocity will be made. Similarly
to section 4.5, a total of 30 simulations were made and the mean value of them was used to compute
the results shown below.

Once again, the simulation parameters are the same used in sections 5.2 and 5.3. The only difference
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is on the choice of the following parameters

• The validation threshold given by γ = 70;

• The initial state covariance estimate P (i),(r)
0|0 given by equation

P
(i),(r)
0|0 =


102 0 0 0
0 0.22 0 0
0 0 102 0
0 0 0 0.22

 (5.18)

with r = {1, . . . , T}, ∀mi ∈M and ∀mi ∈MO, for the IMM-JPDAF and LMS-JPDAF, respectively.

The mean value of β for each of the algorithms is shown in figure 5.10. From this example, its possible
to observe that the LMS-JPDAF provides a softer, though longer, measurement and target association
switch. This provides a softer error as will be seen below, but also increases this algorithm’s inertia to
change.
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(a) IMM-JPDAF algorithm.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

time [s]

pr
ob

ab
ili

ty

target 1

 

 
j=1
j=2

0 50 100 150
0

0.2

0.4

0.6

0.8

1

time [s]

pr
ob

ab
ili

ty

target 2

 

 
j=1
j=2

(b) LMS-JPDAF algorithm.

Figure 5.10: IMM-JPDAF and LMS-JPDAF measurement and target association regarding the value
of β.

The mean of the root squared error for the position and velocity of each target for the 30 simulations is
shown in figure 5.11. Although the overall error is larger for the LMS-JPDAF, specially at the beginning
of the simulation, the peak during the targets crossover and data association switch is much smaller,
since this is the highest value of the error, the LMS-JPDAF can be useful for some applications where
the error maximum needs to be smaller.
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Figure 5.11: MTT algorithms mean of the root squared error for the position and velocity of each
target for 30 simulations.
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Chapter 6

Conclusion

In this chapter the main conclusions of this thesis are presented. It does not intent to prove which of
the algorithms studied is the best nor does it compare the algorithms performances, since they were
analyzed based on the results of specific simulated scenarios and not based on theoretical deductions.
This conclusion intents to resume the work on this thesis and presents the overall behavior of the
studied algorithms behavior has it can be drawn from the simulated results.

To finalize, in section 6.1 some additional research regarding the scope of this thesis is purposed in
order to make this overview on target tracking using multiple models even more complete.
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The aim of this thesis was to present an overview of a collection of tools used in the problem of target
tracking. Under this thesis scope, a new algorithm for target tracking was developed. This chapter will
thus emphasize the main results drawn from the algorithms studied, bearing in mind that the validity of
these conclusions may be limited to the scenarios simulated.

The MM algorithms all revealed capable trackers under target motion uncertainty. The first generation
of MM algorithms is the most limitative, since it assumes the target is in constant maneuver, i. e, the
target has one (unknown) constant mode. The other two generations have more complex concepts,
even though they are not computationally more complex. Their tracking capability is much better, since
they assume the target can have multiple maneuver motions. The CMM generation has little more room
for improvement, leading to the general belief in the tracking community, that the VSMM algorithms will
be the future of target tracking, since they allow lower computational complexity with larger model-sets.
The VSMM algorithms are relatively new and need more research to be well established as a robust
alternative algorithm to STT.

Regarding the MM comparison realized in section 4.5, this results represent only an example since
the algorithms may have different responses for different target motions. In the simulations performed
in this thesis, the MMSE-AMM clearly stands out negatively, since it is the poorer tracker. The IMM
and LMS responses are similar, but the LMS is quite sensitive to its design parameters, specifically
to the probability thresholds which lack a mathematical dimensioning and are not easy to choose intu-
itively. With further development, the VSMM algorithms have it all to surpass their previous generations
performance.

The MTT algorithms, besides solving the target motion uncertainty also deal with measurement origin
uncertainty. The JPDAF algorithm revealed to be a successful DA algorithm, but the assumptions
made, regarding the false alarms, presence of clutter and the number of detected targets, reduced
drastically the measurement origin uncertainty. Nevertheless, the results were quite satisfactory.

The IMM-JPDAF combines the superior tracking capabilities of the CMM algorithm with a classic DA
algorithm. The LMS-JPDAF arises as a natural evolution from the CMM multiple target trackers to
the VSMM multiple target trackers. There is still the need and the capability for improvement under
the group of CMM multiple target trackers, but the study of the VSMM multiple target trackers seems
pertinent.

For the example analyzed the LMS-JPDAF surpassed the IMM-JPDAF performance under measure-
ment origin uncertainty, although provided a worse STT when the targets were far apart. The better
solving of the target measurement association can be explained by the accentuating of the targets
different motions by the LMS-JPDAF, i.e., by making the active model-sets for each target different it
becomes easier to identify which measurement belongs to each target. Also for the example analyzed,
the LMS-JPDAF provided a softer, though longer, measurement and target association switch. Tough
this leads to a softer error it also can cause an increases on this algorithm’s inertia to change.

6.1 Additional Research Proposed

The additional research that can be realized in this area is vast. There are several additional topics
to extend this thesis work, they are: i) Test further and study even more in depth the algorithms in
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simulation environment, ii) Analyze the algorithms performance in a real life implementation and iii)
Study alternative algorithms.

Regarding the test of the already studied algorithms, more simulations could be realized, specially for
the IMM-JPDAF algorithm, where some simplifying assumptions were made regarding the number of
targets detected by the sensor which was time-invariant. Also further algorithm development could
be done in order to study its performance in the presence of clutter, a subject which has also a great
coverage in literature.

The LMS-JPDAF algorithm needs also further study and performance improvement to make it a com-
petitor of the available MTT algorithms. Regarding this performance improvement, it it would be inter-
esting to analyze possible mathematical designs of the model probability thresholds, characteristic of
the LMS algorithm, and study whether they should be static or adaptive, for instances, if there is a high
uncertainty on the state estimate, the thresholds can be relaxed.

More theoretical work could be done to fundament the algorithms results, namely the study of the
Cramer Rao lower bounds.

Since all the discussed algorithms, are studied in environments that try simulate a real life situation,
it would be valuable to analyze their performances in a real life application. It would be interesting to
implement the algorithms using real sensor measurements and real targets, and test their capability
and robustness. Of course, the more interesting algorithms would be the second and third generations
of MM and LMS, since they represent more recent algorithms with real implementations not study
profoundly.

Regarding the study of alternative algorithms, there are a lot to choose from, more or less documented
and more or less studied. With special interest, there are the VSMM and MTT algorithms, which are
relatively new areas with constant development, in contrast with the first two MM generations, which
have already been deeply studied.

An interesting subject with plenty room for exploration is the MTT problem, with the study of more
alternative algorithms, such as the Monte Carlo techniques known as Particle Filtering [15], which
have drawn the attention of the tracking community.
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