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RESUMO 

O uso de múltiplos receptores de GPS (Global Positioning System) permite a determinação de 

posicionamento relativo, isto é, a determinação do vector posição entre a antena de referência e as 

restantes. Para atingir níveis elevados de exatidão e precisão é necessário o uso de medições de 

fase. Contudo, estas medições contêm uma ambiguidade inteira. A determinação da ambiguidade de 

fase é um problema normalmente resolvido recorrendo a receptores de dupla frequência L1/L2. 

Devido ao elevado custo destes receptores, existe uma necessidade de desenvolver técnicas para 

resolver este problema usando receptores mais baratos de frequência única L1. Com o intuito de 

determinar correctamente a ambiguidade de fase com receptores de frequência única, nesta 

dissertação é proposto o uso do método de LAMBDA e o uso do Ambiguity Filter, permitindo a 

determinação do vector de posicionamento relativo com precisões milimétricas. As melhorias do 

Ambiguity Filter, propostas nesta dissertação, demonstraram um aumento da confiança na correcta 

determinação da ambiguidade de fase e, consequentemente, na determinação do vector de 

posicionamento relativo, e permitiram a adaptação às variações na constelação de satélites sem que 

fosse perdida a solução milimétrica do vector de posicionamento relativo. 

Através da combinação de diversos vectores de posicionamento relativo, com normas conhecidas, 

obtidos utilizando quatro receptores L1, colocados em posições previamente conhecidas, é possível 

determinar os ângulos de atitude de um corpo rígido com elevados níveis de exatidão e precisão. 

Assim, são propostos dois modelos, um utilizando o método dos mínimos quadrados e a matriz de 

rotação, e o segundo utilizando um Filtro de Kalman Estendido para estimar o quaternião de rotação. 

As duas técnicas demonstraram bons resultados, permitindo a determinação dos ângulos de atitude 

com precisões inferiores a 1°, em cenários susceptíveis à presença de multi-percurso. 

Todos os resultados apresentados foram obtidos com recurso a dados reais. 

 

 

Palavras-chave: ambiguidade de fase inteira, Ambiguity Filter, determinação de atitude, duplas 

diferenças, GPS, método LAMBDA. 
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ABSTRACT 

The use of multiple Global Positioning System (GPS) receivers allows the determination of relative 

position, that is, the baseline vector between a reference antenna and the remaining ones. To achieve 

high levels of accuracy and precision it is mandatory the use of the carrier-phase measurements. 

However, these measurements are biased by an unknown integer ambiguity. The integer ambiguity 

determination problem is usually addressed in a context of dual-frequency L1/L2 receivers. Due to the 

high cost of these receivers, strong motivations exist to explore techniques with cheaper single-

frequency L1 receivers. In order to correctly solve the integer ambiguity problem with L1 GPS 

receivers, this thesis proposes the use of the LAMBDA method and the Ambiguity Filter, allowing the 

determination of the baseline vector with millimeter level precision. Improvements proposed within the 

Ambiguity Filter showed an increased confidence in the determination of the correct integer ambiguity, 

and hence the baseline vector, and the adaptation to the dynamic variation of the satellites’ 

constellation, without the loss of the baseline solution with millimeter precision. 

By combining multiple baselines, with known lengths, obtained by four L1 GPS receivers, placed in 

known positions, it is possible to determine a rigid body’s attitude angles with high accuracy and 

precision levels. Thus, two attitude determination techniques are presented, one using a Least 

Squares estimation algorithm and the rotation matrix, and the second one using the rotation 

quaternion that is determined resorting to an Extended Kalman Filter. Both techniques showed good 

results allowing the determination of the attitude angles with precisions smaller than 1°, in scenarios 

affected by multipath. 

All the presented results were obtained with real data. 

 

 

Keywords: Ambiguity Filter, attitude determination, double differences, GPS, integer ambiguity, 

LAMBDA method. 
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ACRONYMS 

ECEF  Earth-Centered Earth-Fixed 

EKF  Extended Kalman Filter 

ENU  East North Up 

GNSS  Global Navigation Satellite Systems 

GPS  Global Positioning System 

INS  Inertial Navigation Systems 

KF  Kalman Filter 

LoS  Line of Sight 

LS  Least Squares 

NED  North East Down 

RTK  Real Time Kinematics 

SBAS  Satellite-Based Augmentation System 

TD  Triple Difference 

UERE  User Equivalent Range Error 

WLS  Weighted Least Squares 

SYMBOLS 

 Double Difference  ∆

Δ  Single Difference 

 Pitch Angle  ߠ

 Mean  ߤ

 Standard Deviation  ߪ

߰  Heading Angle 

߶  Roll Angle 
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1 INTRODUCTION 

 1.1 Motivation 

The Global Positioning System (GPS) is a powerful navigation tool that falls within the Global 

Navigation Satellite System (GNSS). The GPS may be used in numerous applications, such as the 

single point positioning (i.e. the position determination of a single GPS receiver). The GPS also allows 

high accuracy and precision in the determination of the vector between different antennas, which is 

called the baseline vector, [1], as illustrated in Figure 1.1. 

 

Figure 1.1 – Illustration of the baselines’ definition 

By placing multiple GPS antennas (at least three) along a vehicle or a rigid body in known positions 

and combining the corresponding baselines, it is possible to fully estimate the vehicles’ orientation 

angles in space, known as the attitude angles or the Euler angles (i.e. heading, pitch and roll angles), 

with high accuracy and precision levels. The attitude determination is an important issue for the 

navigation and control of vehicles and rigid bodies. 

 1.2 State of the Art 

In the recent decades, following the path started by the USA with the GPS, completely operational 

since 1995, a great effort has been employed by numerous governmental authorities, like Russia, the 

European Union, China, Japan and India, which have embraced their own GNSS programs. The 

Russian GLONASS, with 24 operational satellites since 2011, aims a worldwide coverage. The 

European Galileo positioning system is intended for a worldwide coverage, like the GPS and the 

GLONASS, and is projected to be fully operational on 2019 and to have a constellation with 30 

satellites. The first Galileo’s satellite was launched in 2011, [2]. The Chinese BeiDou (Compass) and 

the Indian IRNSS are regional GNSS systems that are being developed. In the future, the integration 

between different GNSS systems could be a powerful tool in different precise positioning techniques, 

from the stand-alone user to differential scenarios (i.e. with multiple GNSS antennas). 
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State of the art GPS receivers are able to tracking and read the GPS signals, which are provided by 

the GPS satellites’ constellation. The GPS signals are transmitted at a carrier frequency L1 or at a 

carrier frequency L2. Some GPS receivers are capable of tracking both carrier frequencies and are 

called dual-frequency L1/L2 receivers, [1], [3]. Despite the higher precision levels that may be 

achieved by tracking the carrier signal with frequency L2, these receivers have higher costs than the 

single-frequency L1 devices. Resorting to Real Time Kinematic (RTK) techniques, [3], it is possible to 

estimate the baseline vector by using the carrier cycles information provided by the GPS receiver – 

carrier-phase measurements. However, this information is biased by an unknown integer number of 

cycles, which is called the integer ambiguity, [1], [3]. 

In order to determine the unknown integer ambiguity, and hence determine the baseline vector, many 

techniques have been developed. Accordingly to [4], the more common techniques are: the Least-

Squares Ambiguity Search Technique (LSAST); the Fast Ambiguity Resolution Approach (FARA); the 

modified Cholesky decomposition method; the Least-Squares AMBiguity Decorrelation Adjustment 

(LAMBDA); the null space method; the Fast Ambiguity Search Filter (FASF); and the Optimal Method 

for Estimating GPS Ambiguities (OMEGA). From all the existing search techniques in the ambiguity 

domain, the LAMBDA method proposed in [5], is considered the most efficient one, accordingly to [6] 

and [4]. Recently, constrained versions of the LAMBDA method (C-LAMBDA), that take into account 

the baseline length have been proposed, [7], leading to faster and better solutions for the integer 

ambiguity, and hence to the baseline vector between two GPS antennas. The constraint imposed by 

the baseline length is also used in the Ambiguity Filter, which selects the best solution provided by the 

standard LAMBDA method, as described in [8], [9], [10] and [11] . 

For attitude determination Inertial Navigation Systems (INS) may be used, combined or not with 

different sensors, such as vision sensors and range finders, [12], [13], [14]. Regarding the GPS based 

attitude determination, different types of techniques have been proposed through time. There are 

solutions using the INS/GPS coupling with a single-antenna configuration, like [15], where the position 

and velocity broadcasted by the GPS receiver is coupled with the measurements of acceleration and 

angular velocity from an accelerometer and a gyroscope. Other solutions use the coupling INS/GPS 

but with a multiple-antenna configuration, [16], where the baseline vector between GPS antennas is 

obtained, neglecting the determination of the integer ambiguity, and coupled with the measurements 

given by a gyroscope and an accelerometer. Finally, some solutions make use of multiple GPS 

receivers without the aid of INS sensors, as described in [17], where the technique proposed makes 

use of a constrained version of the LAMBDA method for the integer ambiguity resolution, and hence 

determine the Euler angles. 

The work developed in this thesis falls within the attitude determination techniques using multiple 

single-frequency L1 GPS receivers, without INS sensors’ aiding, using the LAMBDA method and the 

Ambiguity Filter for the integer ambiguity determination. 
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 1.3 Objectives and Structure 

The main objective of this thesis is the implementation of a tool, in MatLab environment, that is 

capable of determining the attitude of a vehicle by combining multiple single frequency L1 GPS 

receivers. This is done following the research line that led to the development of the Ambiguity Filter 

for the correct determination of the integer ambiguity, [8]. With that in mind, this thesis follows a 

structure that allows the understanding of fundamental concepts and implementation of important tools 

aiming the final goal of a GPS based attitude determination algorithm. 

The Chapter 2 is the starting point of the developed work, where the basic principles underlying this 

thesis are presented, from the fundamentals of GPS operation to the concepts behind the attitude 

angles (i.e. the Euler angles). 

In Chapter 3 the developed systems, using RTK techniques are presented, along with different types 

of solutions for the integer ambiguity resolution. New additions and improvements in the 

implementation of the Ambiguity Filter are proposed for the correct determination of the integer 

ambiguity. 

In Chapter 4 the two proposed techniques regarding the attitude determination, using the baselines’ 

solutions as observations, are presented in detail. 

More practical issues in the implementation of the proposed algorithms are presented in Chapter5, 

with focus on the used GPS receivers and the description of the executed trials. This chapter also 

includes a general characterization of the implemented tool. 

In Chapter 6 the practical results are presented and discussed. The main focus of this chapter is the 

performance evaluation of the Ambiguity Filter, regarding the improvements made in the algorithm, the 

comparison between different techniques that allows the integer ambiguity determination and the 

performance analyzes of the used techniques for attitude determination. The presented test results 

were obtained resorting to real data acquisition and respective post-processing, for static and dynamic 

environments. 

Finally, the results depicted in Chapter 6 are used as support for the conclusions presented in Chapter 

7. Along with the conclusions of this thesis, topics for future work regarding the improvement to the 

used techniques and possible applications are proposed. 

After the conclusions, are presented the references that were used as support for the developed work. 
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2 BASIC CONCEPTS 

 2.1 Introduction 

In this chapter the reader is presented with the basic concepts regarding GPS based attitude 

determination. It introduces fundamental topics that are essential for a better understanding of this 

thesis’ work. With that in mind, the fundamentals of GPS technology are briefly presented, from the 

operational basis to its measurements and characteristics. Finally, the definition of the Euler angles is 

presented, along with the characterization of the coordinate systems used during this work. 

 2.2 Global Positioning System: Fundamentals and Operation 

The GPS operation is well documented in a great number of bibliographies related to Geodesy and 

Navigation Systems, such as [1], [3] and [18]. It provides raw code and carrier-phase measurements, 

which may be used for single point positioning and precise point positioning algorithms. The system is 

constituted by three segments: space segment, control segment, and user segment. 

The space segment comprises the constellation of satellites in orbit that transmits the ranging signals 

and the constellation ephemerides to the passive user receiver. The constellation ephemerides consist 

in a series of parameters that describe the orbital movement of the respective satellite and are used to 

compute the satellite position. Presently, there are 31 healthy satellites in operation, [19], flying in 

medium Earth orbits at an altitude approximately 20,200	݉ܭ, in six different orbital planes with a 

nominal inclination of 55°, relative to the equator, [1], [3]. 

The control segment is responsible for tracking the GPS satellites, monitoring their status, and 

sending commands (to keep them in the ideal orbital position) and data (such as clock, ephemeris and 

almanac updates) to each satellite. For this, the control segment comprises a master control station 

located in the United Sates territory, responsible for uploading navigation messages to update each 

satellite parameters, and monitoring the system integrity, sixteen monitoring stations around the world 

responsible for tracking the satellites and sending status reports to the master control station. 

The user segment comprises the hardware devices, portable or fixed, that are able to processing the 

signals transmitted by GPS satellites, which are called GPS receivers, in the L-band, that comprises 

frequencies between 1	ݖܪܩ and 2	ݖܪܩ. 

The GPS carrier signals are centered in two frequencies: L1 ( ݂ଵ ൌ  intended for civil ,(ݖܪܯ	1575.42

and military use; and L2 ( ݂ଶ ൌ  planned for military use and with better accuracy when ,(ݖܪܯ	1227.60

compared with L1. However, due to the GPS modernization program, new civil signals, such as the 

L2C, the L5 and the L1C, are being developed, accordingly with [20]. Each signal is constituted by 

three components: the carrier, the ranging code, and the navigation data, [3]. The carrier is the 
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sinusoidal signal with frequency L1 or L2. The ranging code is a set of binary PRN codes, where PRN 

stands for pseudo-random noise, which allows accurate range measurements and the transmission of 

multiple signals in the same carrier having different spreading sequences (code division multiple 

access – CDMA). The C/A code (standing for course/acquisition code) and P(Y) code (standing for 

precise and encrypted code) are transmitted in L1 frequency, while only P(Y) code is transmitted in L2 

frequency. Each C/A code is a unique sequence of 1023	݄ܿ݅ݏ, with a chipping rate of 1.023	ݏ/ݏ݄݅ܿܯ 

and a chipping width of 300	݉. The P code is a unique sequence of approximately 10ଵସ	݄ܿ݅ݏ, with a 

chipping rate of 10.23	ݏ/ݏ݄݅ܿܯ and a chipping width of 30	݉. With a smaller wavelength, represented 

by the chipping width, the P code allow a higher accuracy than the C/A code, [3]. Finally, the 

navigation data is a binary message containing the satellite information, such as the ephemeris, status 

and clock correction, essential information to compute each satellite’s position. 

After the characterization of the GPS operational system, a briefly description of the concepts behind 

the code and carrier-phase measurements is presented 

Code measurements (or pseudoranges) are obtained measuring the time of arrival (TOA) of the GPS 

signals, that is, the time that required for the signal to travel from the satellite to the receiver. That is, 

the TOA is defined as the difference between the signal reception time, TR, as determined by the 

receiver clock, and the transmission time at the satellite, TT, which is generated by the receiver’s code 

loops based on replicas of the code transmitted by the satellite. After the estimation of the satellites’ 

transmission time, it is possible to compute the respective pseudorange between the satellite and the 

receiver, knowing that GPS signals travel at the speed of light, ܿ (where ܿ ൎ 3 ൈ  ,given by ,(ݏ/݉	10଼

 ܴܲ ൌ ܿሺ ோܶ െ ்ܶሻ (2.1)

Note that these two time measurements are in different timescales, which are asynchronous. 

The carrier phase measurement is the accumulated phase variation from an initial phase offset, and it 

is measured in cycles (i.e. modulo 2ߨ), that is, for an error-free model at a generic instant ݐ the carrier 

phase measurement is given by 

 ߶ሺݐሻ ൌ ߶ሺݐሻ   ݂ሺݏሻ ݏ݀
௧
௧బ

, (2.2)

where ݂ሺݏሻ is the time-varying frequency and ߶ሺݐሻ is the initial phase that contains an unknown 

number of cycles, which are referred to as the integer ambiguity. It is obtained resorting to a phase 

lock loop that monitors the phase changes from the initial phase difference measurement. The carrier 

phase measurement has a centimeter level precision, better than the code measurement that has a 

meter level precision. 

As aforementioned, this work focuses on techniques using L1 singe-frequency GPS receivers. Thus 

from this point, all GPS related topics are discussed regarding single-frequency L1 GPS receivers. 
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 2.3 Measurement Errors 

In order to solve the attitude determination problem with high levels of precision, precise positioning 

techniques regarding the GPS measurements may be used. The knowledge of the main disturbances 

that affect those measurements is mandatory. 

 2.3.1 Satellite Clock Error 

The GPS time estimated by the satellite is obtained with atomic clocks, which are stable and highly 

accurate. However, atomic clocks drift over time leading to errors in the measured TOA of the 

transmitted signal. A drift of 1	݉ݏ in the satellite clock leads to an error of 300	݇݉ in the code 

measurement, [1]. The satellite clock drift may be corrected resorting to a second-order polynomial. 

The Control Segment is responsible for the determination and transmission, in the navigation 

message, of the correction polynomial parameters for the satellite clock drift. 

 2.3.2 Ephemeris Error 

The ephemerides of each satellite are generated by the Control Segment, and transmitted in the 

navigation message, using a curve-fit, which leads to residual errors in the satellites positioning. 

These error in the satellites position could be translated in code errors on the order of 0.8	݉ (1ߪ), [1]. 

To minimize the effect of errors in the ephemerides’ parameters, the Control Segment updates the 

contents of the navigation message at two-hour intervals. 

 2.3.3 Relativistic Effects 

There are several errors in the GPS measurements associated to the satellite’s orbit and to the Earth’s 

rotation. The first effect is based on Einstein’s general and special theories of relativity. Since the two 

clocks are at different gravitational potentials and moving at different velocities, both clocks will have 

different rates. To correct this effect, accordingly to [1], before launch the satellite clock frequency is 

set to 10.22999999543	ݖܪܯ, so that the frequency observed at sea level is 10.23	ݖܪܯ. 

The second effect arises from the fact that the satellite’s orbit is not circular, having a small 

eccentricity. This leads to different velocities and gravitational potentials along the satellite’s trajectory, 

which is translated in differential velocity of the satellite clock through time. This effect is corrected by 

a parameter that is in the navigation message, along with the ephemerides. 

The Earth’s rotation during the GPS signal transmission, from the satellite to the receiver, leads to 

errors in the computation of the satellites’ position at the user level, since the observed signal does not 

match the actual positions but the positions at the time of transmission. This effect is known as the 

Sagnac effect and it is corrected in the positioning iterative process, until the correct satellite positions 

at the time of transmission are obtained. 
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 2.3.4 Ionospheric Effects 

The ionosphere is a layer of the atmosphere, approximately between heights 70	݉ܭ and 1,000	݉ܭ, 

composed by ions and free electrons originated by sun’s ultraviolet rays. Since it is a dispersive 

medium affects the electromagnetic waves’ propagation by delaying the group velocity and advancing 

the signal’s carrier-phase. That is, the ionospheric error in code measurements is symmetric to the 

ionospheric error present in carrier-phase measurements. 

The values of the ionospheric delay are function of the satellite’s elevation angle, since for small 

elevation angles (less than 10°) the electromagnetic waves path inside the ionosphere is bigger than 

the path for high elevation angles. An average value, for all elevation angles, for the ionospheric delay 

is approximately 7	݉ (1ߪ), [1]. 

For single-frequency GPS receivers, the ionospheric delay correction is obtained resorting to the 

Klobuchar model, as characterized in [21], by using the Klobuchar coefficients that are included in the 

navigation message. 

 2.3.5 Tropospheric Delay 

The troposphere is the first layer of the atmosphere and is not a dispersive medium for the GPS 

signals. However, due to the refraction phenomenon both phase and group velocities are equally 

delayed. Thus, the delay imposed by the troposphere, supported by the Snell’s law [22], is function of 

the refractive index, which depends on the conditions of the medium (such as temperature, pressure 

and humidity), and function of the signal’s angle of refraction, which is equal to the satellite’s elevation 

angle. The troposphere is composed of dry gases and water vapor, and hence the troposphere delay 

comprises both dry and wet components. This delay is typically translated in an error of 0.2	݉ (1ߪ) in 

code measurements, [1]. This delay is corrected using mapping functions relating the local 

meteorological parameters and the satellite’s elevation angle. One example of such technique is the 

Hopfield model, described in [1], [3] and [23]. 

 2.3.6 Receiver Noise 

The measurements are affected by noise present in the signal acquisition process, induced by the 

thermal noise caused by the used hardware and by the interference between the GPS signals and 

other signals in the same band. Typically, the values of the error in the code measurements are on the 

order of the decimeter (1ߪ) and in the carrier phase measurements on the order of the millimeter (1ߪ), 

[1]. 
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 2.3.7 Multipath 

In real environments multiple versions of the same signal reach the GPS receiver. Besides the direct 

signal (i.e. the one received from the line-of-sight path), reflected versions (on natural or man-made 

surfaces) of the same signal reach the antenna, versions that have longer paths than the direct one 

and smaller amplitudes, which introduces errors in both code and carrier phase measurements. This 

phenomenon is highly related with the scenario surrounding the receiving device. Urban scenarios are 

rich in multipath sources, since there are multiple surfaces that allow the reflection of the GPS signal 

before reaching the antenna. Also the satellites’ elevation angle may influence the multipath error, 

since signals transmitted by satellites with smaller elevation angles are more likely to be reflected. The 

multipath effect can be reduced by applying specific techniques in the antenna design and in the 

signal processing of the GPS signal, as described in [3]. 

 2.3.8 Pseudorange Error Budget 

After the description of each error source, it is possible to determine the User Equivalent Range Error 

(UERE), which is a estimation of the pseudorange error and is given by the root-sum-squared 

between all error components. Thus, the 1ߪ typical value for each error source and the UERE are 

present in Table 2.1. 

Table 2.1 – Pseudorange typical error budget, [1] 

Error Source ࣌1 Error (m)

Satellite Clock 1.1 

Ephemeris 0.8 

Ionospheric Delay 7.0 

Tropospheric Delay 0.2 

Receiver Noise 0.1 

Multipath 0.2 

UERE ૠ.  

 2.4 Single Point Positioning 

Code measurements allow the determination of the receiver’s position by using the trilateration’s 

principle, which basic idea is illustrated in Figure 2.1. However, along with the three coordinates of the 

user position, it is also necessary to estimate the receiver clock offset, leading to a system where all 

unknowns are only determined with at least four code measurements, that is, four satellites. 

Thus, a Weighted Least Squares (WLS) algorithm, using the code measurements, the satellites’ 

positions and the geometric range, allows the estimation of the user position. Note that in order to 

improve the estimation’s accuracy, the code measurements may be corrected using some of the 

techniques previously presented. The geometric range, ߩ, between the satellite and the receiver is 
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given by 

ߩ  ൌ ඥሺݔ௦௧ െ ௨ሻଶݔ  ሺݕ௦௧ െ ௨ሻଶݕ  ሺݖ௦௧ െ ௨ሻଶ, (2.3)ݖ

where the terms ݔ௦௧, ݕ௦௧ and ݖ௦௧ represent the coordinates of the satellite position, and the terms ݔ௨, 

 ௨ represent the coordinates of the user position. The coordinates of the satellite position areݖ ௨ andݕ

obtained by using the respective satellite’s ephemeris for a specific time instant, taking into account 

the correction of the relativistic effect due to the Earth’s rotation. 

 

Figure 2.1 – Trilateration’s principle [18] 

The single point positioning is not the main focus of this thesis, but it is an essential step in the 

definition of the reference position to the local coordinate system, as presented in next section. 

 2.5 Coordinate Systems and Euler Angles 

In attitude determination problems using multiple GPS receivers, the first step is to place the receivers 

in specific positions along the test platform, defined in the body fixed frame. In the body fixed frame, 

depicted in Figure 2.2, the ݔ axis is pointing in the movement direction, the ݖ axis is pointing down 

and the ݕ axis is pointing in the right side of the platform, forming a right handed coordinate system. 

The term fixed frame entails that the reference frame follows the platform movement, in terms of 

translation and rotation. Thus, the positions of the receivers will be constant in the body fixed frame. 

 

Figure 2.2 – Body fixed frame (ࢠ࢟࢞) 
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The attitude angles characterize the transformation of the receivers’ positions in the body fixed frame 

to the reference space frame. In the previous chapter, the reference space frame used was the ENU 

(East-North-Up) coordinate system, which is represented in Figure 2.3 along with the ECEF (Earth-

Centered Earth-Fixed) coordinate system. In the ECEF system the ݔ axis is pointing in the direction 

of the null longitude (0°) position, the ݕ axis is pointing in the direction of the longitude 90°ܧ and the 

ݖ axis is perpendicular to the equatorial plane, pointing in the direction of the North Pole. The ECEF 

coordinate system rotates with the Earth’s motion and is used in the determination of the user position. 

 
Figure 2.3 – ECEF frame and ENU frame, [24] 

The ENU coordinate system is a local system and it is appropriate to describe the relative position 

between two stations. As the name states, the ݁ axis is pointing in the East direction (i.e. along a 

fixed latitude line), the ݊ axis is pointing in the North direction (i.e. along a fixed longitude line) and 

the ݑ axis is pointing in the geodetic Up direction. However, in attitude determination problems the 

reference space frame used is the NED (North-East-Down) coordinate system. As it looks, it is an 

alternative form to compute the ENU coordinates. Thus, the transformation between the two 

coordinate systems is straightforward, that is  

 

ܾோ ൌ 
0 1 0
1 0 0
0 0 െ1

൩ ܾாே. (2.4)

The attitude angles (or the Euler angles) relate the orientation of the body frame to the reference 

space frame. These two frames are related by the pitch, roll and heading angles, respectively, ߠ, ߶ 

and ߰. As depicted in Figure 2.4, the pitch angle relates the about the ݕ axis, the roll angle relates the 

rotation about the ݔ axis and the heading angle relates the rotation about the ݖ axis. 
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Figure 2.4 – Euler angles: a) Body fixed frame rotation about the East axis (pitch angle); b) Body fixed 
frame rotation about the North axis (roll angle); c) Body fixed frame rotation about the Down axis 

(heading angle). 

 2.6 Accuracy and Precision 

Two important concepts when using estimation techniques for the determination of disturbed variables 

are the accuracy and precision concepts. A variable is accurately estimated if its value is equally 

distributed around the correct value. Contrarily, a variable is estimated with precision if its value has 

small oscillations over time, that is, if its value has a small standard deviation. These two concepts are 

illustrated in Figure 2.5. 

 

Figure 2.5 – Illustration of both accuracy and precision concepts 
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3 BASELINE DETERMINATION AND INTEGER 
AMBIGUITY RESOLUTION 

 3.1 Introduction 

The determination of the baseline vector is done by using interferometric techniques. This technique 

consists on the differentiation of two receivers’ measurements. Thus, in the GPS case the 

measurements at hand lead to both carrier phase and code (pseudoranges) double differences, which 

are used as observations in the developed system. However, to use carrier phase measurements the 

integer ambiguities must be determined. In this chapter the developed system and the techniques 

used for the baseline determination are presented. 

 3.2 System Definition 

 3.2.1 Observables 

Generation of both carrier-phase and code double differences is essential for the determination of the 

baseline vector between two GPS antennas. The double differences allow the cancellation of the 

receiver and satellite clock biases and great part of ionospheric propagation delay. Considering that 

the distance between both antennas is small, when compared with the receiver-satellite distance, one 

may assume that the elevation angle is the same for both receivers. Hence, the tropospheric 

propagation delay will largely cancel as well. 

The carrier phase measured, in meters, for satellite  and receiver ݇ has the form 

 ߶
 ൌ ߩ

  ߣ ܰ
  ܿ൫ݐ  ݐ  ܶ

 െ ܫ
൯  ߳

, (3.1)

where, 

 ߩ
 is the geometric distance between the satellite and the receiver (in meters); 

 ߣ is the carrier wavelength (in meters); 

 ܰ
 is the unknown integer ambiguity (in cycles); 

 ܿ is the speed of light in vacuum (meters per second); 

 ݐ and ݐ are the satellite and the receiver clock offset (in seconds), respectively; 

 ܶ
 and ܫ

 are the tropospheric and ionospheric delay (in seconds), respectively; 

 ߳
 is unmodeled noise due to different factors (hardware, multipath). 

The carrier phase integer ambiguity, ܰ
, is kept constant within the receiver as long as the satellite is 

continuously tracked. 
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Adding another receiver measurement (let the new receiver be ݉) and assuming that both phase 

measurements Φ
 and Φ

  correspond to the same instant, it is possible to generate a single 

difference by subtracting both measurements. That is, the single difference for phase measurements 

(ΔΦ
 ) would have the form 

 Δߔ
 ൌ ߔ

 െ ߔ
 ൌ Δߩ

  Δߣ ܰ
  ܿΔݐ  Δ߳

 . (3.2)

Equation (3.2) proves the cancellation of the satellite clock bias and the tropospheric and ionospheric 

delays, since they are common term between the two receivers. However, the receiver clock bias is 

not cancelled by operation (3.2). This can be done by double differencing. 

Adding a new satellite (ݍ) it is possible to generate a double difference. This is done by subtracting 

two single differences, the first one relative to receivers ݇, ݉ and satellite  and the second one 

relative to the same set of receivers but for satellite ݍ. That is, 

 

ߔ∆ߘ
 ൌ ߔ߂

 െ ߔ߂
 ൌ ߩ߂ߘ

  ߂ߘߣ ܰ
  ߳߂ߘ

 . (3.3)

As previously said, the formation of double differences the receiver clock bias now cancelled. In order 

to use the carrier phase double differences it is necessary the integer ambiguity determination. 

The same process can be applied to code measurements that are defined as 

 ܴܲ
 ൌ ߩ

  ܿ൫ݐ  ݐ  ܶ
  ܫ

൯  ߳
, (3.4)

and the code double difference generation is straightforward, based on the process presented above. 

Thus, code double differences are given by 

ܴܲ∆ߘ 
 ൌ ߩ߂ߘ

  ߳߂ߘ
 . (3.5)

Despite unambiguous, code double differences are noisier when compared whit carrier phase double 

differences. Accordingly with [3] and [1], the standard deviation of the error in code double differences 

is meter level, while in the carrier phase double differences is centimeter level, as illustrated in Figure 

3.1 where the triple differences, that consist in the differentiation through time and whose definition is 

presented in the following sections, are used for comparison the precision levels between carrier 

phase and code double differences. In Figure 3.2 is presented a zoom of the carrier-phase triple 

differences depicted in Figure 3.1. Thus, for a precise baseline determination, one must make use of 

carrier phase double differences and, consequently, calculate the integer ambiguities. 
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Figure 3.1 – Comparison between the triple differences of both carrier phase and code double differences 

 

Figure 3.2 – Zoom of the carrier-phase triple differences 

 3.2.2 Observation Model 

With the definition of the double differences at hand, the next step is the description of the relation 

between them and the baseline, which is the vector between a reference antenna and an auxiliary 

antenna, as aforementioned. The single differences can be calculated by the inner product between 

the baseline vector, ܾ, and the Line of Sight (LoS), or direction cosine, unit vector to the used satellite, 

݁. Recovering the situation with satellite  and receivers ݇ and ݉ 

ߩ߂ 
 ൌ ܾ ⋅ ݁. (3.6)

That is, the single difference corresponds to the projection of the baseline vector onto the LoS to the 

respective satellite, as depicted in Figure 3.3. It is assumed that the paths of propagation between the 

satellite and the two receivers are parallel, due to the distance between them (satellites are in orbit at 

a mean distance of 20,200	݇݉ [1], while the distance between antennas is meter level). 
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By differentiating equation (3.6) for satellites  and ݍ, the double difference obtained would have the 

form 

ߩ∆ߘ 
 ൌ ܾ ⋅ ሺ݁ െ ݁ሻ ൌ ܾ ⋅ ݁. (3.7)

The determination of the direction cosines ݁ and ݁, which are assumed to be equal for both 

receivers due to the big difference between the baseline length and the satellite-receiver distance, is 

done by computing the user position and the respective satellite position. 

 

Figure 3.3 – GPS interferometer for one satellite [1] 

Combining (3.3) and (3.5) with (3.7), and expanding to a case with ݊ satellites, one would obtain the 

system 
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. (3.8)

Note that the superscript 1 present in all differential terms is relative to the reference satellite, which is 

the one with highest elevation. This definition of reference satellite is in order to maximize the 

constellation geometry and stability. 

The system (3.8) can be reduced to the form 

 
ଶሺିଵሻൈଵݕ ൌ ଶሺିଵሻൈଷܾଷൈଵܤ  ଶሺିଵሻൈሺିଵሻܽሺିଵሻൈଵܣ  ݁ଶሺିଵሻൈଵ, 

(3.9)

in which the subscript in each matrix represents its dimension and, 
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 ݕ is the measured double differences’ vector; 

 ܤ is the system matrix for the baseline coordinates, containing the differenced direction 

cosines; 

 ܾ is the baseline coordinates’ vector; 

 ܣ is the system matrix for the ambiguity set, containing the carrier wavelength; 

 ܽ is the aforementioned ambiguity set; 

 ݁ is the measurement noise vector. 

Defining the augmented system matrix ܪ ൌ ሾܣ ሿ, with dimension 2ሺ݊ܤ െ 1ሻ ൈ ൫ሺ݊ െ 1ሻ  3൯, one 

would have an augmented state vector ݔ ൌ ሾ்ܽ ்ܾሿ், with dimension ൫ሺ݊ െ 1ሻ  3൯ ൈ 1. Analyzing the 

augmented system is possible to conclude that there are enough equations to estimate all the states 

(i.e. baseline vector coordinates and the double differences integer ambiguities), if the full rank of the 

augmented system matrix ܪ is equal to the number of states, that is, equal to ൫ሺ݊ െ 1ሻ  3൯. This 

equality is only verified when the constellation has, at least, four satellites, that is for ݊  4. 

To use the system defined above, one must define the covariance matrix of the measurement error, ݁, 

which is the next step of this thesis. 

 3.2.3 Observables Covariance 

Both carrier phase and code measurements’ noise is assumed to be Gaussian distributed, with 

expected value zero and variance ߪఃଶ and ߪఘଶ, respectively and assumed to be equal for all satellites. 

Considering that measurements from different satellites are independent, this entails that those 

measurements are uncorrelated. Hence, for a generic set of measurements, given by the column 

vector ݖ and with the disturbance column vector ߳, distributed like code and carrier phase (with 

expected value zero and variance ߪ௭ଶ), the respective covariance matrix is defined by, 

 

ሻݖሺݒܿ ൌ ሼሺ߳ܧ െ ሺ߳ሻሻሺ߳ܧ െ ሺ߳ሻሻ்ሽܧ ൌ ሼ்߳߳ሽܧ ൌ  ,ൈܫ௭ଶߪ
(3.10)

for a constellation with ݊ satellites and where ܫൈ represents the identity matrix.  

By the definition of single difference, as shown in equation (3.2) for receivers ݇ and ݉ (which for each 

satellite leads to measurement error Δ߳୩୫ ൌ ߳ െ ߳), the derivation of the corresponding covariance 

matrix is straightforward 

ሻݖ߂ሺݒܿ  ൌ ߳߂ሼሺܧ െ ߳߂ሻሻሺ߳߂ሺܧ െ ሻሻ்ሽ߳߂ሺܧ ൌ ሼሺ߳ܧ െ ߳ሻሺ߳ െ ߳ሻ்ሽ

ൌ ሼ்߳߳ܧ  ்߳߳ሽ ൌ  .ൈܫ௭ଶߪ2
(3.11)
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Equation (3.11) results in a diagonal matrix and this shows that the single differences are 

uncorrelated. 

As showed in the two previous sections, double differences are formed by the difference between the 

single difference of the reference satellite and the single difference of the other satellites. Thus, the 

double differences’ vector, for ݊ satellites, is given by 

ݖ߂  ൌ  (3.12)ݖ߂ܯ

where ܯሺିଵሻൈ ൌ ൦

1 െ1 0 … 0
1 0 െ1 … 0
⋮ ⋮ ⋮ ⋱ 0
1 0 0 … െ1

൪. Finally, it is possible to determinate the double differences’ 

covariance matrix 

ሻݖ߂ߘሺݒܿ  ൌ ߳߂ߘሼሺܧ െ ߳߂ߘሻሻሺ߳߂ߘሺܧ െ ሻሻ்ሽ߳߂ߘሺܧ

ൌ ߳߂߳߂ܯ൛ܧ
ൟ்ܯ் ൌ ்ܯܯ௭ଶߪ2

ൌ ௭ଶߪ2 ൦

2 1 … 1
1 2 … 1
⋮ ⋮ ⋱ ⋮
1 1 1 2

൪. 

(3.13)

Thus, one may conclude that the double differences are correlated, which is evident since all double 

differences are generated for the same reference satellite. 

To conclude, both carrier phase and code double differences have the following covariance matrices, 

correspondingly, 

ሻߔ߂ߘሺݒܿ  ൌ (3.14) ,்ܯܯఃଶߪ2

ሻܴܲ߂ߘሺݒܿ  ൌ ோଶߪ2 (3.15) .்ܯܯ

 3.3 Integer Ambiguity Resolution 

The system defined in (3.9) can be solved by a weighted least squares algorithm. From [6] it is known 

that the usual problem in WLS is to minimize the error norm of the type ‖ݑ‖ௐଶ ൌ   that is ,ݑ்ܹݑ

 ݉݅݊,‖ݕ െ ܽܣ െ ௐ‖ܾܤ
ଶ , (3.16)

where ܹ is the weight matrix. 

The minimization gives floating point solutions that are highly contaminated by code’s noise and we 

know that the correct ambiguities are integers, which is called the fixed solution. Such estimates are 

called float solutions. This noisy solution can be improved by smoothing code double differences. The 

correct integer ambiguities can be determined by search techniques that make use of the float 

solution. All these tools will be better explained in next subsections. 
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 3.3.1 Float Solution 

As aforementioned, the system (3.9) can be solved by a weighted least squares estimator. For a 

generic system ݔܪ ൌ ܾ, the estimator is given by, [6], 

ොݔ  ൌ ሺܪ்ܹܪሻିଵ(3.17) .்ܾܹܪ

Remembering the notion of augmented system introduced before, where ܪ ൌ ሾܣ                  ሿ andܤ

ݔ ൌ ሾ்ܽ ்ܾሿ், the estimator (3.17) can be applied to the problem at hand. The weight matrix is given 

by the inverse of the measurements covariance matrices (3.14) and (3.15), that is 

 
ܹ ൌ 

ሻܴܲ߂ߘሺݒܿ 0
0 ሻߔ߂ߘሺݒܿ

൨
ିଵ

. (3.18)

Thus, our estimator should have the form 

 ቂ ොܾܽቃ ൌ ሺሾܣ ܣሿ்ܹሾܤ ܣሿሻିଵሾܤ (3.19) .ݕሿ்ܹܤ

It is important to obtain the float solution estimation’s covariance matrix, since it will have an important 

role on fixed solution determination. Defining the estimation error as ݔ ൌ ݔ െ  ො and using someݔ

mathematical manipulation, one should obtain 

ݔ  ൌ െሺሾܣ ܣሿ்ܹሾܤ ܣሿሻିଵሾܤ ሿ்ܹ݁, (3.20)ܤ

where ݁ represents the double differences’ noise with covariance matrix ܹ, as defined above. The 

covariance matrix for the estimation error can be calculated from (3.20) with the form 

 ܳ௫ො ൌ ܳ௫ ൌ ܧ ቄ൫ݔ െ ݔሻ൯൫ݔሺܧ െ ሻ൯ݔሺܧ
்
ቅ ൌ ሺሾܣ ܣሿ்ܹሾܤ ሿሻିଵܤ

ൌ ቂܣ
ܣ்ܹ ܤ்ܹܣ

ܣ்ܹܤ ܤ்ܹܤ
ቃ
ିଵ

ൌ 
ܳො ܳො
ܳො ܳ

൨. 
(3.21)

 3.3.2 Code Smoothing 

In this section, a code smoothing technique to improve the accuracy of the float solution is presented. 

But for a better comprehension of this technique, the Kalman Filter will be briefly described. 

 Kalman Filter 

The Kalman Filter (KF), introduced by [25], is a recursive mathematical model to estimate the state of 

a system minimizing the mean of the squared error. In a first step, the filter “predicts” the system’s 

state in that instant, and then in a second step using a feedback control, based on the noisy 

measurements, the filter “updates” the system’s state. Thus, two different steps constitute the KF: the 

prediction step, and the update step, as depicted in Figure 3.4. 
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Figure 3.4 – Illustration of the KF loop 

The model of a generic linear discrete system, at instant ݇, is represented by 

ݔ  ൌ ିଵݔܣ  ିଵݑܤ  ିଵ, (3.22)ݓ

which has measurements in the form 

ݖ  ൌ ݔܪ  . (3.23)ݒ

Both ݓ and ݒ are random variables, respectively the process and measurement noise, with zero mean 

normal probability distributions, that is 

,ሻ~ܰሺ0ݓሺ  ܳሻ, (3.24)

,ሻ~ܰሺ0ݒሺ  ܴሻ, (3.25)

where ܳ is the process noise covariance and ܴ is the measurement noise covariance. 

The equations of the prediction step are given by 

 
ොݔ
ି ൌ ොିଵݔܣ   ,ିଵݑܤ

(3.26)

 ܲ
ି ൌ ܣ ܲିଵ்ܣ  ܳ. (3.27)

In equation (3.26), the state at the previous instant, ݔොିଵ, is projected to the new instant, based on the 

system’s dynamic. The same is done with the error covariance matrix, ܲିଵ, in equation (3.27). The 

state estimation and the error covariance matrix at this step, ݔො
ି and ܲ

ି, are called the a priori 

estimate. 

For the update step equations are defined as 

 
ܭ ൌ ܲ

ܪሺ்ܪି ܲ
்ܪି  ܴሻିଵ, 

(3.28)

ොݔ  ൌ ොݔ
ି  ݖሺܭ െ ොݔܪ

ିሻ, (3.29)

 ܲ ൌ ሺܫ െ ሻܪܭ ܲ
ି, (3.30)

where ܭ is the Kalman gain and it is obtained using (3.28). The residual, or innovation process, which 

is calculated by the difference between the measurements and the a priori estimates, that is,          

ݖ െ ොݔܪ
ି, is weighted by the Kalman gain and is used to correct the  a priori estimate, as represented 
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in equation (3.29). In equation (3.30) the new error covariance matrix is obtained. Note that the term ܫ 

is the identity matrix. After these two steps, the process is repeated for a new instant, ݇  1, using the 

previous estimated state, ݔො, and the estimation covariance matrix, ܲ, as inputs for the new prediction 

step. 

For linear systems, the KF ensures stability, reachability and observability, and converges to the 

optimal solution, [26] and [27]. However, for non-linear systems the direct application of the algorithm 

presented above is not possible. The estimation for non-linear systems will be addressed during this 

thesis. 

 Complementary Kalman Filter 

Based on the KF, described in the previous section, the reader is now presented with the technique 

used for code smoothing. This technique, used by [28], makes use of the combination between the 

noisy code double differences and the less noisy carrier phase double differences with a 

Complementary Kalman Filter. The technique uses the average of the noisier measurement to center 

the quieter one, limiting the size of the integer ambiguity. Thus, the filter’s output, at instant, ݇, is a 

smoothed (less noisier) code double difference, ∆ܵ. 

For that, the filter has the form 

ܵ∆ 
ି ൌ ିଵܵ∆

ା  ሺ∆߶ െ ିଵሻ, (3.31)߶∆

 ܲ
ି ൌ ܲିଵ

ା  ሻ, (3.32)߶∆ሺݒܿ

ܭ  ൌ ܲ
ିሺ ܲ

ି  ሻሻିଵ, (3.33)ܴܲ∆ሺݒܿ

ܵ∆ 
ା ൌ ܵ∆

ି  ܴܲ∆ሺܭ െ ܵ∆
ିሻ, (3.34)

 ܲ
ା ൌ ሺܫ െ ሻܭ ܲ

ି. (3.35)

The first two lines (equations (3.31) and (3.32)) compose the prediction step. In the first one, the 

smoothed code double differences are propagated from the previous instant with the change rate of 

the carrier phase double differences. By differencing two carrier phase double differences, the integer 

ambiguity is canceled, hence the propagated ∆ܵ
ି is unambiguous. In the second line, the error 

covariance matrix is obtained by adding the new covariance matrix of the carrier phase measurements 

to the previous error covariance. 

For the update step, the Kalman gain is calculated as described in equation (3.33). In equation (3.34), 

the predicted smoothed code double differences are propagated with the weighted residual between 

the measured code double differences and the smoothed code double differences. Finally, in equation 

(3.35) the estimation error covariance is propagated to the new instant, maintaining the balance 

between the unambiguous but noisier code measurements and the ambiguous but smoother carrier 

phase measurements. 
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 3.3.3 LAMBDA Method 

As aforementioned, the LAMBDA method was chosen as the search technique to use in this thesis 

and it will be presented in detail. It has three steps: float solution, integer ambiguity estimation, and 

fixed solution, [29]. 

The float solution step consists in the initialization of the LAMBDA method. The inaccurate solution 

obtained by the weighted least squares estimator, ොܽ in equation (3.19), is used in the search process 

as the central point. The error estimation covariance, ܳො , defines the search space to finding the 

correct integer ambiguity vector, ܽු, that minimizes the cost function, 

 ܽු ൌ ݎܽ ݃ ቀ݉݅݊∈Ժ‖ ොܽ െ ܽ‖ொෝೌషభ
ଶ ቁ, (3.36)

that is the integer ambiguity estimation step. 

Note that, the float solution obtained using the code smoothing technique, instead of the unsmoothed 

float solution, could be used as an input in the LAMBDA method. However, it was decided to use the 

unsmoothed float solution as an input rather than the smoothed float solution, which is only used as 

comparison in the results section 

The correlated nature of double differences leads to a non diagonal covariance matrix, as depicted in 

the derivation of (3.13), which entails that the covariance matrix of the float solution is also not 

diagonal, leading to an elliptical search space. This means that the search space can be more 

elongated in one direction than in another, which results in integer ambiguity sets that have lower 

values of the cost function but appear much farther away than those which appear nearby but are 

outside of the search space. To fix this issue, the LAMBDA method uses a transformation matrix to 

decorrelate the error and, therefore, diagonalizing (as much as possible, where the non diagonal 

elements are close to zero) the covariance matrix of the float solution. This process will create a 

search space that is nearly spherical, leading to an easier and faster search process. 

This diagonalization process is accomplished by a ܼ transformation defined as 

 ܳ ൌ ்ܼܳොܼ, (3.37)

where both ܼ and ܼିଵ must have integer entries, so that the original and the transformed ambiguities 

remain integer. 

Next, the covariance matrix of the float solution can be decomposed as 

 ܳො ൌ (3.38) ,ܮܦ்ܮ

where ܮ is a lower matrix and ܦ is a diagonal matrix. Assuming that ܼ is close to ିܮଵ one must have 
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 ܳ ൌ ෨, (3.39)ܮ෩ܦ෨்ܮ

where the non diagonal elements of this new covariance matrix, represented by ܮ෨, are close to zero, 

leading to a nearly diagonal covariance matrix. 

After the ܼ transformation and the decorrelation process, the new cost function is defined as 

ݖ̌  ൌ ݃ݎܽ ቀ݉݅݊௭‖̂ݖ െ ொೋ‖ݖ
షభ

ଶ ቁ, (3.40)

where ݖ ൌ ்ܼܽ and ̂ݖ ൌ ்ܼ ොܽ. 

The volume of the search space is controlled by the value ߯ଶ, that is constant during the search 

process and takes into account the new nearly diagonal covariance matrix and the number of 

candidates desired by the user. That is, the LAMBDA method outputs those ambiguities that verify the 

inequality 

 ሺ̂ݖ െ ሻ்ܳݖ
ିଵሺ̂ݖ െ ሻݖ  ߯ଶ. (3.41)

The number of candidates selected by the user must consider the distance between the float solution 

and the true integer solution, and the computation time available. That is, a number of candidates too 

small could lead to a solution that do not include the true integer solution and a number of candidates 

too big won’t permit the adaptation to real-time applications. A study on the influence of the number of 

candidates is presented in [8]. 

At the end of the LAMBDA method, the required number of candidates is transformed back to the 

initial form, resorting to 

 ܽු ൌ (3.42) ,ݖ்̌ିܼ

where the solution remains integer, due to the aforementioned nature of ܼ and ܼିଵ. Note that the 

candidates outputted from the LAMBDA method are sorted in ascending order of the distance to the 

float solution. 

 3.3.4 Ambiguity Filter 

Following the methodology developed in [8], the Ambiguity Filter developed in this thesis chooses the 

best integer ambiguity set from LAMBDA method’s output. For each candidate set ܽු, as resulting from 

LAMBDA method, the corresponding baseline, ෘܾሺܽුሻ, is computed with the objective of attributing merit 

to each candidate. For that, the developed method has three steps: validation, selection and 

stabilization. Before the description of these three steps, the tests used in this thesis for merit 

attribution are presented. 



24 

 

 Merit Attribution 

In merit attribution were used three types of metrics. The first two, also present in [8], were the 

residual ratio and the baseline length constraint. The third one, proposed in this thesis, makes use of 

the Up coordinate while the ambiguity set is not stabilized. 

The residual ratio: for each ambiguity set and the respective baseline solution, the phase residual 

vector ܸ is calculated as the difference between the estimated phase double differences and the 

measured ones. That is, the phase residual vector is given by 

 ܸ ൌ ܤ ෘܾ  ුܽܣ െ (3.43) ,ߔ∆ߘ

and its Euclidean norm is obtained by 

 ‖ܸ‖ଶ ൌ ்ܸ൫ܿݒሺߘΔΦሻ൯
ିଵ
ܸ. (3.44)

The baseline length constraint: with the knowledge of the truth baseline distance, ݈, the error of the 

estimated baseline is obtained as 

ߜ  ൌ หฮ ෘܾሺܽුሻฮ െ ݈ห. (3.45)

The Up coordinate constraint: this test is similar to the previous one, but only considers the Up 

coordinate resulting from the candidate set that is being tested. It is assumed that during the 

initialization (i.e. while there is no stabilized solution) the platform is stopped, which leads to a constant 

baseline vector. By measuring the altitude difference between the reference antenna and the auxiliary 

antenna, it is possible to obtain the real Up coordinate, ݑ. Thus, the Up coordinate error is given by 

௨ߜ  ൌ ሺܽුሻݑු| െ |. (3.46)ݑ

For each of the three tests defined above, the errors of the candidates are grouped in a vector with 

ascending order of the respective error, which is the descending order of merit. So, the merit, ܯ, of a 

candidate set will be attributed according with the position, ݅, of the error in the sorted vector, that is 

 
ܯ ൌ

1
݅
. (3.47)

 Validation Step 

The validation step makes use of the baseline length error, described in (3.45), and defining a 

threshold. This threshold was set to be 10	ܿ݉, due to the nature of the errors present in the baseline 

vector. That is, 

ߜ  ൌ หฮ ෘܾሺܽුሻฮ െ ݈ห  0.1. (3.48)
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The candidates that have a baseline length error bigger than the threshold are excluded. 

 Selection Step 

This step is where the merit is attributed. This is done by combining two of the tests defined previously 

in two different metrics: 

1. Residual ratio and baseline length constraint; 

2. Baseline length constraint and Up coordinate constraint. 

The candidate set with higher merit, using the metric 1 or the metric 2, will be selected as the fixed 

solution for the respective epoch. 

 Stabilization Step 

The candidate set selected as the fixed solution by the Ambiguity Filter in each epoch is stored in a 

data base. As debated in [8], the ambiguity set that first achieves 50 occurrences as the fixed solution 

(i.e. a candidate is selected as the fixed solution in 50 different epochs) is the correct fixed solution. 

Thereafter the correct baseline vector will be determined by the best fixed solution. 

In dynamic environments variations in the satellite constellation occur quite often (i.e. change of the 

reference satellite, loss of lock, cycle slips), that entails to the lost of the correct ambiguity set. The 

algorithm proposed in this thesis uses the same constellation in the maximum number of epochs. 

Even if a new satellite becomes visible, the algorithm uses those satellites for which the correct integer 

ambiguity set is known. When the number of satellites falls to less than four, the algorithm uses the 

last baseline’s estimate (i.e. calculated using the correct ambiguity set) and recovers the correct 

ambiguity set for the new constellation. Then the recovered ambiguity set is used to calculate the 

present baseline vector. This adaptation to a new constellation represents an improvement in the use 

of the Ambiguity Filter and the techniques used will be presented next. If neither of the recovery 

techniques is capable of maintaining the integer ambiguity solution, the Ambiguity Filter must be 

reinitialized and start the process from the beginning. 

 3.3.5 Constellation Changes: Recovery Techniques 

As said before, constellation changes lead to the loss of both correct ambiguity set, obtained after 

stabilization, and the ambiguities stored through the different epochs. However, some techniques can 

be used to recover from this scenario, without resetting the system. 

 Reference Satellite Transformation 

As aforementioned, the reference satellite is the one with highest elevation. However, during the 
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acquisition time the reference satellite may change, due to the variation of elevation or to the loss of 

lock of the actual reference satellite. 

Remembering the definition of the carrier phase double differences, in equation (3.3), for a reference 

satellite , a rover satellite ݍ and receivers ݇ and ݉, one must have 

 

ߔ∆ߘ
 ൌ ߔ߂

 െ ߔ߂
 ൌ ߩ߂ߘ

  ߂ߘߣ ܰ
  ߳߂ߘ

 . (3.49)

Assuming that a new reference satellite is used (e.g. satellite ݃), through manipulation of the equation 

(3.49), [8], the integer ambiguity element for the reference satellite ݃ and the rover satellite ݍ is given 

by 

 

∆ߘ ܰ
 ൌ ∆ߘ ܰ

 െ ∆ߘ ܰ
 

߶∆ߘ
 െ ߶∆ߘ

  ߶∆ߘ


ߣ
. (3.50)

Using this technique, if the reference satellite changes the new correct ambiguity set (or for the 

ambiguity sets stored as previous solutions) can be obtained. However, it is mandatory that the new 

reference satellite had been visible in previous epochs, or the term ∆ ܰ
  is unknown and this 

technique cannot be applied. 

 Cycle Slips 

A cycle slip occurs when there is a loss of signal continuity, between the satellite and the receiver, 

resulting in a gain of carrier cycles when the signal is reacquired by the receiver. From the 

observables used, the cycle slips can be detected in carrier phase measurements and, consequently, 

in carrier phase double differences, as depicted in Figure 3.5 for data acquisition in static environment. 

 

Figure 3.5 – Carrier phase double differences evolution with a cycle slip, in static environment 

At this point, it is clear that double differences affected by cycle slips should have new ambiguities. 
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Thus, it is mandatory that the algorithm track the evolution of the carrier phase double differences in 

order to detect these events. This may be done by using triple differences (TD), which is the difference 

between two epochs’ measurements, and defining a threshold. That is, 

ܦܶ  ൌ ௧߶∆ߘ െ ௧ିଵ߶∆ߘ  (3.51) ,ߙ

where ߙ is the user defined threshold, in meters. As discussed in [8], the threshold must be chosen by 

taking into account the platform’s dynamic. For surveying scenarios, triple differences’ variation is low 

and the threshold may be set up to ߙ ൌ 0.01݉. In Figure 3.6 the triple differences evolution for the 

case in Figure 3.5, where the cycle slip is easily identified by the peak, respecting the previously 

defined threshold. 

 

Figure 3.6 – Carrier phase triple difference evolution with a cycle slip, in static environment 

In Figure 3.7, the evolution in static environment of the carrier phase double difference without a cycle 

slip is illustrated, followed by the respective triple differences, in Figure 3.8. By analyzing the 

histogram for the carrier phase triple differences, in Figure 3.9, one may see that the triple differences 

are characterized only by the normal distributed residuals of the carrier phase double differences and 

that the threshold defined as ߙ ൌ 0.01	݉ allow a confidence interval of ൎ ߤ) ߪ10 ൌ 0 and ߪ ൌ 0.001). 

 

Figure 3.7 – Carrier phase double differences evolution without cycle slips, in static environment 
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Figure 3.8 – Carrier phase triple differences evolution without cycle slips, in static environment 

 

Figure 3.9 – Histogram of triple differences without cycle slips, in static environment 

As described in [8], the worst scenario is the type of movement with high angular velocities, which 

imposes a sinusoidal evolution to the double differences, that is, 

߶∆ߘ  ൌ ݈ ሻ, (3.52)ݐሺ߱݊݅ݏ

where ݈ is the baseline length and ߱ is the maximum angular velocity of the vehicle. Thus from the 

conclusions described in [8], the maximum value for the TD in this type of scenario is function of the 

baseline length and the vehicle’s angular velocity, that is, 

ሻܦሺܶݔܽ݉  ൌ ݊݅ݏ2݈ ቀߨ െ
߱߬
2
ቁ. (3.53)

Since the dynamic trials were performed with slow movements, a small value for the vehicle’s angular 

velocity (ൎ  was considered. However, improvements in the estimation of the vehicle’s (ݏ/݀ܽݎ	0.5

angular velocity could be addressed, in order to validate this technique for different dynamics. 

When a cycle slip is detected in an explicit double difference, the stored integer ambiguities and the 

correct integer ambiguity, if known, must be corrected. In this thesis, the recovery of an ambiguity set 
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from a cycle slip is done by adding the rounded triple difference to the previous integer ambiguity. That 

is, 

 

∆ߘ ܰ
 ൌ ∆ߘ ܰ

  ሻ. (3.54)ܦሺܶ݀݊ݑݎ

 Variation in the Number of Satellites 

During the data acquisition in real environments the number of satellites used to compute the baseline 

vector changes quite often, due to the loss of signal or even loss of data in the interface. Instead of 

resetting the Ambiguity Filter, the algorithm deletes the ambiguity component relative to the lost 

satellite and keeps tracking the remaining satellites with the previously obtained ambiguities. 

As aforementioned, the algorithm uses the same satellites as much as possible, so that the stability is 

maximized, that is, even if a new satellite becomes visible the algorithm uses the satellites for which 

the correct ambiguities are known. 

When the number of used satellites falls to less than four, the algorithm uses the last estimation of the 

baseline vector to estimate the ambiguity set for all visible satellites, that is, from (3.19) one may 

obtain 

 

ܰ∆ߘ ൌ ሺܣ்ܹܣሻିଵሺݕ்ܹܣ െ  ,௧ିଵሻܾܤ்ܹܣ
(3.55)

where ܾ௧ିଵ is the last baseline’s estimation. It is assumed that between two epochs the baseline vector 

has small changes and can be used to estimate the new ambiguity set.  
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4 ATTITUDE DETERMINATION 

 4.1 Introduction 

The configuration of multiple baselines allows the attitude determination. By using the Ambiguity Filter, 

described in the previous chapter, for baseline determination, two techniques for attitude 

determination are proposed. 

With the definition of the Euler angles presented in the Chapter 2 in mind, two techniques for the 

attitude determination are presented. First, a simple technique using rotation matrices is presented. 

Finally, a more complex solution using a rotation quaternion and a generalization of the Kalman Filter 

(KF) is proposed. 

 4.2 Attitude Determination Using a Rotation Matrix 

As discussed in [1] and in [28], among other possible solutions assume that the attitude is defined by 

the rotation transformation which relates a coordinate frame fixed in space NED to a coordinate frame 

fixed in the body (ݖݕݔ). Due to its nature, the coordinates of the baselines will be constant in the body 

frame and are known. 

The rotation of the body fixed frame can be represented as a series of rotations from the body fixed 

frame to the reference space frame. First a rotation about the ݖ axis (angle ߰), followed by a rotation 

about the new ݕ axis (angle ߶) and , finally, a rotation about the newest ݔ axis (angle ߠ). That is, 

 

,ሺ߰ݐܴ ,ߠ ߶ሻ ൌ  ,௫ሺ߶ሻݐሻܴߠ௬ሺݐ௭ሺ߰ሻܴݐܴ
(4.1)

where each rotation matrix is a 3 ൈ 3 square matrix and with |ܴݐ௭ሺ߰ሻ| ൌ หܴݐ௬ሺߠሻห ൌ |௫ሺ߶ሻݐܴ| ൌ 1 

The resulting rotation matrix, also a 3 ൈ 3 square matrix and with |ܴݐሺ߰, ,ߠ ߶ሻ| ൌ 1, is represented 

by 

 

,ሺ߰ݐܴ ,ߠ ߶ሻ ൌ ⋯ 

ۏ
ێ
ێ
ێ
cosሺ߰ሻۍ cosሺߠሻ ൬

െ sinሺ߰ሻ cosሺ߶ሻ 
cosሺ߰ሻ sinሺߠሻ sinሺ߶ሻ

൰ ൬
sinሺ߰ሻ sinሺ߶ሻ 

cosሺ߰ሻ sinሺߠሻ cosሺ߶ሻ
൰

sinሺ߰ሻ cosሺߠሻ ൬
cosሺ߰ሻ cosሺ߶ሻ 

sinሺ߰ሻ sinሺߠሻ sinሺ߶ሻ
൰ ൬

െ cosሺ߰ሻ sinሺ߶ሻ 
sinሺ߰ሻ sinሺߠሻ cosሺ߶ሻ

൰

െ sinሺߠሻ cosሺߠሻ sinሺ߶ሻ cosሺߠሻ cosሺ߶ሻ ے
ۑ
ۑ
ۑ
ې

. 

(4.2)

The transformation from the body fixed frame to the space frame is given by 
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ோܤ ൌ ,ሺ߰ݐܴ ,ߠ ߶ሻܤ௫௬௭, 
(4.3)

where ܤோ ൌ 
| … |

ܾோଵଶ … ܾோ
ଵ

| ⋯ |
 and ܤ௫௬௭ ൌ 

| … |
ܾ௫௬௭ଵଶ … ܾ௫௬௭ଵ

| ⋯ |
 are matrices of baselines (as columns) in 

the respective coordinate frame. 

Thus, using the baselines vectors, in the space frame, calculated in each epoch, the rotation matrix at 

each epoch may be calculated by solving  as a simple Least Squares (LS) problem, that is 

 

,ሺ߰ݐܴ ,ߠ ߶ሻ ൌ ௫௬௭்ܤோܤ ൫ܤ௫௬௭ܤ௫௬௭் ൯
ିଵ
. (4.4)

After the determination of the rotation matrix, one may obtain the attitude angles using simple 

trigonometric relations, as represented next 

 

ߠ ൌ  ,ଷଵሻݐଵሺെܴି݊݅ݏ
(4.5)

 

߶ ൌ ଵି݊݅ݏ ቀܴݐଷଶ cos ሺߠሻൗ ቁ, 

(4.6)

 

߰ ൌ ଵିݏܿ ቀܴݐଵଵ cos ሺߠሻൗ ቁ, 

(4.7)

where the subscript in the rotation matrix represents its index. The expressions for the pitch and roll 

angles (equations  and (4.6), respectively) assume a rotation between ሾെߨ 2⁄ ; ߨ 2⁄ ሿ, and the 

expression for the heading angle (equation (4.7)) assume a rotation between ሾ0;  ሿ, thus one cannotߨ

have all possible orientations. To correct this issue, depending on the signal of the baselines’ 

coordinates the attitude angles must be corrected to the real quadrant. 

This approach has singularities for pitch angles of േߨ 2⁄ . However, it is easy to obtain the attitude 

angles for situations where such attitude is not experienced. For a more robust and stable 

implementation, a rotation quaternion may be used. 
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 4.3 Quaternion-Based Extended Kalman Filter for Attitude 
Determination 

 4.3.1 Quaternion and Euler Angles 

As described in [30], instead of rotation matrices, a quaternion may be used as rotation operator. A 

quaternion is a hyper-complex number of rank 4, and it is defined as 

 

ݍ ൌ ݍ  ଵݍ݅  ଶݍ݆   ,ଷݍ݇
(4.8)

where ݍ is called the scalar part and ݅ݍଵ  ଶݍ݆   .ଷ are called the vector partݍ݇

The computation of a baseline vector in the coordinate frame NED from the Body fixed frame, in terms 

of a rotation quaternion, is given by 

 

ܾோ ൌ  ,ݍ௫௬௭ܾ∗ݍ
(4.9)

where ݍ∗ ൌ ݍ െ ଵݍ݅ െ ଶݍ݆ െ  An important .ݍ ଷ represents the complex conjugate of the quaternionݍ݇

property is that the quaternion ݍ is a unit vector, that is 

 

ଶ‖ݍ‖ ൌ ݍ
ଶ  ଵଶݍ  ଶݍ

ଶ  ଷݍ
ଶ ൌ 1, 

(4.10)

which consists in a crucial constraint when using a quaternion for attitude determination, as presented 

in the development of the Extended Kalman Filter (EKF) proposed in next section. 

Thus, the rotation matrix ܴݐ, in terms of quaternions is represented by 

ܣ ൌ 
െ1  2ሺݍଶ  ଵଶሻݍ 2ሺݍଵݍଶ െ ଷሻݍݍ 2ሺݍଵݍଷ  ଶሻݍݍ
2ሺݍଵݍଶ  ଷሻݍݍ െ1  2ሺݍଶ  ଶଶሻݍ 2ሺݍଶݍଷ െ ଵሻݍݍ
2ሺݍଵݍଷ െ ଶሻݍݍ 2ሺݍଶݍଷ  ଵሻݍݍ െ1  2ሺݍ

ଶ  ଷݍ
ଶሻ
. 

By substituting the matrix ܴݐሺ߰, ,ߠ ߶ሻ with the quaternion matrix, ܣ, equation  should have the new 

form 

 

ோܤ ൌ  .௫௬௭ܤܣ
(4.11)

The Euler angles can be obtained from the quaternion matrix as 
 

ߠ ൌ  ,ଷଵ൯ܣଵ൫െି݊݅ݏ
(4.12)
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߶ ൌ ଵି݊ܽݐ ቌ
ଷଶܣ

ଷଷܣ
൘ ቍ, 

(4.13)

 

߰ ൌ ଵି݊ܽݐ ቌ
ଶଵܣ

ଵଵܣ
൘ ቍ, 

(4.14)

where the superscript in the matrix represents its index. 

 4.3.2 Extended Kalman Filter 

Instead of the LS presented in Section 4.2, which provide an epoch-by-epoch solution, the KF allow 

better results since it is a recursive estimation algorithm. However, with the observables at hand it is 

not possible to apply the linear KF due to the measurement model, as depicted during this section. 

To obtain the Euler angles based on the rotation quaternion it is necessary to estimate the parameters 

 ଷ. The system dynamics of the quaternion is represented byݍ ଶ andݍ ,ଵݍ ,ݍ

 

ሶݍ ൌ
1
2
Ω(4.15) ,ݍ

where ݍ is the vector with the quaternion components, that is, ݍ ൌ ሾݍ	ݍଵ	ݍଶ	ݍଷሿ், and Ω is the skew-

symmetric matrix, defined as 

 

Ω ൌ

ۏ
ێ
ێ
ێ
ۍ
0 ߱௭ െ߱௬ ߱௫

െ߱௭ 0 ߱௫ ߱௬
߱௬ െ߱௫ 0 ߱௭
െ߱௫ െ߱௬ െ߱௭ 0 ے

ۑ
ۑ
ۑ
ې
, (4.16)

where ߱ ൌ ൣ߱௫	߱௬	߱௭൧
்
 are the angular velocities in the body frame axis. The observations of angular 

velocities may be provided by a rate gyro. However, in this thesis only GPS observables and its 

derivations are used as observations. Thus, the angular velocities must be estimated along with the 

quaternion components. It is assumed a constant angular velocity model, which is a good 

approximation for a short measurement interval and for a vehicle with low dynamics, [31], with the 

disturbances being interpreted as inputs to the system. 
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So, this leads to a linear time-varying discrete system defined as 

 

ାଵݔ ൌ ሻݔሺܨ   ,ݓܩ
(4.17)

with each component being 

 

ାଵݔ ൌ ቂ
ାଵݍ
߱ାଵ

ቃ, 

(4.18)

 

ܨ ൌ ݍ 
1
2
ΔݐΩ୩ݍ
߱

൩, (4.19)

 

ܩ ൌ െ
1
2
Ξ 0

0 ܫ
൩, 

(4.20)

 

Ξ ൌ ൦

ସݍ െݍଷ ଶݍ
ଷݍ ସݍ െݍଵ
െݍଶ ଵݍ ସݍ
െݍଵ െݍଶ െݍଷ

൪, 

(4.21)

where Δݐ is the sampling time (Δݐ ൌ   is the process noise, Gaussianݓ ,(for the GPS case ݏ	1

distributed with zero mean and covariance ܳ, and Ξ߱ ൌ Ωݍ, accordingly with [32]. 

By using the baselines’ coordinates, from the previously presented Ambiguity Filter, as 

measurements, the relation between measurements and the system’s sate vector is given by equation 

(4.11). In addition, the measurement model takes into account the constraint imposed by the 

quaternion nature, which is a unit vector as represented in equation (4.10). This is done by using this 

constraint as a perfect measurement, as described in [27]. So, the measurement model is non linear 

time-varying and has the form 

 

ݖ ൌ ݄ሺݔሻ   ,ݒ
(4.22)

where ݒ is the measurement noise, Gaussian distributed with zero mean and covariance ܴ, and 

 

ݖ ൌ

ۏ
ێ
ێ
ۍ
ܾோଵଶ

ܾோ
ଵଷ

ܾோଵସ

1 ے
ۑ
ۑ
ې
, (4.23)
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݄ሺݔሻ ൌ

ۏ
ێ
ێ
ێ
ۍ
ܾோܣ

ଵଶ

ܾோܣ
ଵଷ

ܾோܣ
ଵସ

ݍ்ݍ ے
ۑ
ۑ
ۑ
ې

. 

(4.24)

Since the system model is linear time-varying and the observation model is non linear time-varying, to 

estimate the quaternion components and the angular velocities it is necessary to implement an EKF. 

The EKF consists in the system’s linearization around the nominal solution that results from the KF 

estimation. 

Thus with the system at hand, it is mandatory the linearization of the measurement model. This is 

done by Taylor Series expansions, where neglecting the high order terms (assumed to have small 

numeric value), [33], leads to the Jacobian matrix defined as 

 

ܪ ൌ 
߲݄ሺݔሻ
ݍ߲

߲݄ሺݔሻ
߲߱

൨. 

(4.25)

The process noise characterizes the small disturbance in the system’s dynamics and is given by, [33] 

and [34], 

 

ܳ ൌ ݓݓሾܧ
்ሿ ൌ න ,ାଵݐሺܨ ߬ሻܩሺ߬ሻ்ܳܩሺ߬ሻ்ܨሺݐାଵ, ߬ሻ ݀߬

௧ೖశభ

௧ೖ

, (4.26)

where ܳ, accordingly with [32], is a diagonal matrix and containing the covariance of the disturbances 

present in the angular velocities, that is, 

 

ܳ ൌ 
ܳఠ 0
0 ܳఠ್ೌೞ

൨
ൈ

, (4.27)

where ܳఠ is the covariance of the angular velocity noise and ܳఠ್ೌೞ is the covariance of the angular 

velocity bias noise. These two parameters must be tuned in order to obtain the best solution, but since 

it is not used any rate gyro, it is assumed that the value of ܳఠ್ೌೞ is close to zero. 

To solve the equation (4.26), in order to obtain the process covariance matrix, it is assumed that the 

time interval between two measurements (1ݏ for the GPS) is small enough to use the approximation 

 

ܳ ൎ ܩܳܩ
 .ݐ∆்

(4.28)
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Since the measurements used are the coordinates of the baseline vectors (assumed to be 

independent), the measurement covariance matrix is diagonal with each component regarding the 

corresponding coordinate, that is for a single baseline observation one must have 

 

ܴோ ൌ 
ேߪ
ଶ 0 0
0 ாଶߪ 0
0 0 ଶߪ

. (4.29)

Thus, for three baselines and the quaternion-norm perfect measurement, the observation covariance 

matrix of the EKF is defined as 

 

ܴ ൌ ݒݒሾܧ
்ሿ ൌ

ۏ
ێ
ێ
ۍ
ܴோଵଶ 0 0 0
0 ܴோ

ଵଷ 0 0
0 0 ܴோଵସ 0
0 0 0 ے0

ۑ
ۑ
ې
. (4.30)

Finally, the EKF should have the form 

 
ොݔ
ି ൌ  ,ሻݔሺܨ

(4.31)

 ܲ
ି ൌ ܨ ܲିଵܨ

்  ܳ. (4.32)

 
ܭ ൌ ܲ

ܪି
்ሺܪ ܲ

ܪି
்  ܴሻିଵ, 

(4.33)

ොݔ  ൌ ොݔ
ି  ݖሺܭ െ ݄ሺݔො

ିሻሻ, (4.34)

 ܲ ൌ ሺܫ െ ሻܪܭ ܲ
ି. (4.35)

where, as previously described, the first two lines are the prediction step, where the state vector and 

the respective covariance matrix, estimated in the previous instant, are propagated to the new time 

step. The remaining lines correspond to the update step, where the Kalman gain is determined and is 

used to weight the state prediction, based on the innovation process given by the difference between 

the measured baseline vectors and the ones obtained from the estimated quaternion, ݖ െ ݄ሺݔො
ିሻ. 

This innovation process is used in the results section as a tool to evaluate the performance of the 

EKF. 

Instead of the linear KF, the EKF solution is optimal only around the linearization nominal point and 

the conditions for stability are not necessarily sufficient. The stability in non-linear systems is possible 

only inside bounded regions, [27] and [33]. The reachability and observability will be addressed in next 

section. 

 4.3.3 Reachability and Observability 

The concept of reachability for a discrete-time system, which is analogous to controllability for a 

continuous-time system, defines how well the system is reachable (or controllable). Thus, accordingly 
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with [27], a discrete-time system is reachable if for any initial state ݔ and some final time ݇ there 

exists a control that transfers the state to any desired value at time ݇. 

Accordingly with [35], this may be verified by the rank of the reachability matrix, which for the system 

defined in the previous section and for the time interval ൣ݇, ݇൧ is defined by 

 

ܴ൫݇, ݇൯ ൌ ൫݇ܩൣ െ 1൯ ,൫݇ܨ ݇ െ 1൯ܩ൫݇ െ 2൯ … ,൫݇ܨ ݇  1൯ܩሺ݇ሻ൧. 
(4.36)

That is, the linear time-varying system by (4.17), with ݊ state variables, is reachable on the time 

interval ൣ݇, ݇൧, if and only if the reachability matrix verifies 

 

݇݊ܽݎ ቀܴ൫݇, ݇൯ቁ ൌ ݊. (4.37)

The next important concept is the observability, that relates how well it is possible to determinate the 

initial conditions through the observations. Thus, accordingly with [27], a discrete-time system is 

observable if for any initial state ݔ and some final time ݇, the initial state can be uniquely determined 

by the corresponding zero-input response ݖ. 

Accordingly with [35], this may be verified by the rank of the observability matrix, which for the system 

at hand and for the time interval ൣ݇, ݇൧ is defined by 

 

ܱ൫݇, ݇൯ ൌ

ۏ
ێ
ێ
ۍ

ܳሺ݇ሻ
ܳሺ݇  1ሻܨሺ݇  1, ݇ሻ

⋮
ܳ൫݇ െ 1൯ܨ൫݇ െ 1, ݇൯ے

ۑ
ۑ
ې
. (4.38)

That is, the linear time-varying system by (4.17), with ݊ state variables, is observable on the time 

interval ൣ݇, ݇൧, if and only if the observability matrix verifies 

 

݇݊ܽݎ ቀܱ൫݇, ݇൯ቁ ൌ ݊. (4.39)

In the system (4.17) the state variables are the quaternion elements and the angular velocities 

components, thus it is a system with ݊ ൌ 7 state variables. By computing the desired matrices for 

formation of both reachability and observability matrices, in a significant time interval, it was possible 

to verify that the conditions for reachability and observability were respected, that is, 

 

݇݊ܽݎ ቀܴ൫݇, ݇൯ቁ ൌ 7, (4.40)
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݇݊ܽݎ ቀܱ൫݇, ݇൯ቁ ൌ 7. 

(4.41)

Finally, based on the results of (4.40) and (4.41), it is possible to conclude that the EKF implemented 

can provide a solution for the problem at hand and is unique. 
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5 SOLUTION IMPLEMENTATION 

 5.1 Introduction 

After the description of the tools used to solve the problem of the attitude determination using multiple 

baselines, and how to determine those baselines, this section addresses the practical issues of this 

thesis. Two types of GPS receivers were used: Magellan AC12 and U-Blox 6. Thus, it is important to 

introduce a general description for both receivers and the antennas used. Following the receivers’ 

introduction, a description of the developed algorithm, using the previously discussed tools, is 

presented. Finally, the reader is presented with the description of the trials, static and dynamic, used 

to validate the developed algorithm. 

 5.2 GPS Receivers and Antennas 

 5.2.1 Magellan AC12 GPS Receivers 

In order to have a three baselines system, four Magellan AC12 GPS receivers were used, two 

evaluation and development kits and two OEM boards as illustrated in Figure 5.1, [36], respectively. 

 

Figure 5.1 – a) AC12 sensor evaluation and development kit; b) AC12 OEM board [36] 

The receiver processes signals, on the L1 frequency band, from the GPS satellite constellation, for 

which uses ten channels, and SBAS, in two channels, leading to a total of twelve signal tracking 

channels. The receiver provides real-time position, velocity, and time measurement, amongst other 

significant information, in NMEA format. The receiver also provides the satellites ephemeris, which are 

essential for the development of single positioning algorithms, through a binary message. However, 

this receiver does not provide the ionospheric correction parameters, which allow an improvement on 

the single positioning. Regarding the double differences computation, the AC12 receiver provides a 

binary message containing both carrier phase and code raw measurements. The communication with 

the receiver is made with RS-232 interface. 
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 5.2.2 U-Blox 6 GPS Receivers 

The single positioning of the reference antenna is part of the developed algorithm. In order to improve 

the positioning accuracy, one may use the ionospheric parameters to correct the code measurements. 

Since the Magellan AC12 receivers do not provide such parameters, one U-Blox 6 GPS receiver, 

illustrated in Figure 5.2, was used for this purpose, [37]. As for the AC12, the U-Blox provides real-

time positioning, velocity, and time measurements, amongst other significant information, through 

NMEA messages, and binary messages containing raw measurements, satellite ephemeris and 

ionospheric corrections, and along with other important information. 

 
Figure 5.2 – U-Blox 6 GPS receiver [37] 

The reader may ask why not use only U-Blox receivers. However, the performance of the Ambiguity 

Filter, using these receivers, was lower than the performance when using AC12 receivers. For this 

reason, it was decided to adopt the described set of GPS receivers. 

The communications with the receiver is made using the RS-232 interface and through USB 

connection. 

 5.2.3 Antennas 

For the Magellan AC12 GPS receivers presented above, three types of antennas were used. For static 

(or survey) tests with two GPS receivers, two Novatel model 531 GPS antennas with Chocke Ring 

model A032 [38], depicted in Figure 5.3. This type of antenna operates at the L1 frequency. Antenna 

optimization in the shape of the radiation pattern along with the Chocke Ring allows the minimization 

of multipath and interference errors. 

 

Figure 5.3 – Novatel model 531 GPS antenna with Chocke Ring Model A032 [38] 
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For multiple baselines (more than two receivers) in static and dynamic trials, the AC12 receivers used 

a NAIS Magnetic antenna, [36], illustrated in Figure 5.4. Smaller than the previous antenna, allow 

more versatility in the set up. However, is subject to higher levels of interference and multipath errors. 

 

Figure 5.4 – NAIS magnetic antenna [36] 

Finally, the U-Blox 6 receiver uses an ANN-MS-0-005 magnetic antenna, [39], which is similar to the 

NAIS magnetic antenna depicted in Figure 5.4. 

 5.3 Algorithm Overview 

Using the techniques presented so far in this thesis, the algorithm illustrated by the flowchart of Figure 

5.3 was developed in MatLab. Note that the data acquisition of the GPS measurements was done 

previously and then inputted to the algorithm in post-processing mode. So, the first process with the 

name “Data Acquisition” regards the acquisition of the raw data previously stored. However, this 

program could be adapted in order to use data in real time, being the “Data Acquisition” process 

responsible for reading the measurements provided by the GPS receiver. With the data at hand, it is 

mandatory that measurements from different receivers are synchronized, which is done by the “Data 

Synchronization” process. This is done by comparing the measured time of week of each receiver, 

which represents the number of seconds passed since the beginning of the corresponding week 

(beginning at Saturday/Sunday midnight). 

To determine the baseline vector coordinates it is mandatory to know the origin of the local coordinate 

system (ENU or NED) in the ECEF coordinate system, which coincides with the position of the 

reference antenna. This is done in the “Reference Antenna Stand-Alone Positioning” process, 

resorting to code measurements, code corrections and satellite ephemeris, as described in [21]. The 

“Double Differences Formation” process is responsible for the selecting satellites, common to the 

receivers that compose the baseline vector, and computing the double differences. For the satellite 

selection process an elevation mask of 5° was used, which neglect noisier satellite measurements. 
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Figure 5.5 – Flowchart of the developed algorithm 

After computing the double differences some tests must be accomplished. The first test is to verify of 

there is any change in the number of satellites. If this test output the logic value “true”, the respective 

algorithm correct this issue by excluding the ambiguity (from the correct ambiguity set and from the 

stored ambiguities) corresponding to the lost satellite. After this correction, the flowchart converges 

with the node that would be reached if the tested turned out “false”. The second test verifies if there is 

a new reference satellite. If the output is the logic true, the transformation of equation (3.50) must be 
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applied. The last test that is applied to the double differences is the cycle slip verification. If a cycle slip 

is detected, returning the logic true in the detection test, the respective correction is applied. 

With the double differences accomplishing the previous tests, the algorithm determines the float 

solution of both baseline vector and ambiguity set, in “Float Solution” process, by solving the WLS 

defined in equation (3.19). An alternative float solution is obtained by smoothing the code double 

differences using the respective algorithm, and then determining the corresponding float solution. 

By using the non-smoothed float solution as an input, the LAMBDA method outputs the intended 

number of candidates sorted by the distance from the float solution, as described in Section 3.3.3. 

From these candidates, the Ambiguity Filter selects the one with highest merit/confidence as the 

correct fixed ambiguity set, which is outlined in Section 3.3.4. The ambiguity set selected by the 

Ambiguity Filter is then stored in a data base, where is verified if the correct solutions was already 

achieved, which consists on the stabilization process of the Ambiguity Filter. If there is not an optimal 

solution, the Algorithm proceeds to the next iteration from this point. However, if the optimal solution 

was already achieved, the attitude angles are obtained resorting to one of the two methods presented 

in Sections 4.3 and 4.4. After obtaining the attitude angles, the algorithm proceeds to the next 

iteration. 

Note that in multiple baseline scenarios, each vector is calculated separately and only in the attitude 

determination step all the baselines are computed to obtain the Euler angles. 

 5.4 Trials Description 

To validate the developed algorithm, static and dynamic trials were made. For the static trials, the first 

type is a test using a single baseline (i.e. two GPS receivers), and the second type is a test using 

three baselines (i.e. four GPS receivers). For the dynamic trials, the platform using multiple baselines 

was in motion along a route. 

 5.4.1 Static Trials 

 Single Baseline 

The objective of this first type of static test is the performance evaluation of the Ambiguity Filter. For 

high accuracy in the baseline determination, minimizing the multipath effect, the Novatel 531 antennas 

with Chocke Ring were used. These antennas are placed in the rooftop of the North Tower, at Instituto 

Superior Técnico, as depicted in Figure 5.6, which allow a scenario with very low levels of multipath. 
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Figure 5.6 – Top view of the antennas’ position, for the single baseline static trial (Google Earth, [40]) 

For this configuration, the distance between the two GPS antennas is 10.665	݉ and the south antenna 

is the reference one, as illustrated in the above figure. This leads to a baseline vector pointing to north 

and to an expected heading angle between ሾെ4°; െ3.5°ሿ. Both antennas’ support structures are placed 

at the same height, and hence it is expected that the baseline’s Up coordinate is close to zero. 

With this trial, a comparison between the baseline vector obtained with various solutions (i.e. un-

smoothed float baseline, smoothed float baseline, baseline with the best ambiguity set from LAMBDA 

method and baseline with the best ambiguity set from Ambiguity Filter) is possible. 

 Multiple Baselines 

Since multiple baselines are used, this trial is intended to validate the attitude determination 

techniques and it is made in an urban scenario. For that, the GPS antennas were placed accordingly 

with Figure 5.7, leading to the baseline vectors depicted in the same figure. In the results section, 

different baselines are distinguished by the respective GPS receivers’ number, that is, “baseline 1-2” 

corresponds to the vector between GPS receivers 1 and 2. 

 

Figure 5.7 – GPS receivers’ disposition and baseline vectors 

Both baselines’ length, between receivers 1 and 2, and between receivers 1 and 3, is approximately 

0.8	݉. The baseline length between receivers 1 and 4 is approximately 1.34	݉. Accordingly with the 
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studies presented in [11], these values for the baseline length allow high accuracy in the baseline 

determination. 

For this trial, four NAIS magnetic antennas were used. Since the data acquisition was made in an 

urban scenario and the antennas used are more exposed to multipath, than the ones used in the 

single baseline trial, it is expected to increase the multipath effect, when compared with the single 

baseline test. The scenario in which the data acquisition took place and the platform’s orientation, with 

an expected heading angle between ሾെ120°;െ110°ሿ, are depicted in Figure 5.8. Since the platform 

was stopped in a flat surface, it is expected that the Up coordinate of each baseline is close to zero. 

 

Figure 5.8 – Top view of the platform’s orientation for the multiple baselines static trial (Google Earth, 
[40]) 

 5.4.2 Dynamic Trial 

This trial intended to evaluate the performance of the attitude determination techniques in a dynamic 

environment, that is, for data acquired in a moving platform. The GPS receivers and the antennas’ 

disposition used were the same as presented in the previous section, that is, for the static trial in the 

multiple baselines case. The platform was in motion along a flat surface and with considerable 

variation on the heading angle, as depicted in Figure 5.9. The maneuvers made by the platform along 

the trajectory were slow, so it is not excepted very aggressive angular velocities estimated by the EKF. 

During the trajectory it was imposed to the platform a positive rotation about the ݔ axis, that is, a 

positive roll angle. This test was made between epochs ݐ ∈ ሾ235; 255ሿ	ݏ, when the platform’s heading 

was ൎ െ30°. Despite this test, the remaining variations in pitch and roll angles are due to surface 

irregularities and multipath noise. 
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The orientation of the initial and the final position, as depicted in Figure 5.9, is expected to be between 

ሾെ30°;െ20°ሿ and ሾെ115°;െ110°ሿ, respectively. 

 

 

Figure 5.9 – Top view of the platform’s path and orientation, for initial and final position, for the dynamic 
trial (Google Earth, [40]) 
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6 RESULTS 

 6.1 Introduction 

In this chapter the results from the trials previously described are presented. Along with the results, a 

critical discussion is made to evaluate the performance of the developed techniques. 

The single baseline static trial is used to evaluate the Ambiguity Filter performance, by analyzing the 

corresponding baseline solution. This solution is compared with the one obtained from LAMBDA 

method’s best candidate integer ambiguity set, with the float solution and with the smoothed version of 

the float solution. This performance evaluation is done by comparing the evolution and the precision 

levels given by the mean (ߤ) and standard deviation (ߪ) – with a confidence interval of 68.2	%. The 

same is done with pitch and heading angles, which can be determined with a single baseline 

configuration. 

In the multiple baseline static trial it is done the same performance evaluation made in the single 

baseline case, for a more conclusive and robust evaluation of the developed techniques since the 

scenario introduces higher disturbance levels. Along with the comparison between the different 

techniques for baseline determination, the multiple baselines configuration allows the full 

determination of the attitude angles. Thus the performance of the developed algorithms for attitude 

determination is discussed. For the EKF, the respective innovation process, between the measured 

baseline coordinates and the ones estimated based in the quaternion elements, and the estimated 

angular velocities are analyzed. 

Finally, the dynamic trial is analyzed in terms of the attitude angles’ performance. This is done by 

comparing both attitude solutions, along with the performance of the EKF, that is given by the 

innovation process and the performance of the estimated angular velocities. 

 6.2 Static Trials Results 

 6.2.1 Single Baseline Results 

 Ambiguity Filter Performance 

The first exercise is the performance comparison between the Ambiguity Filter’s metrics. Using the 

metric 1, taking into account the carrier-phase residual ratio and the knowledge of the baseline length, 

or the metric 2, with the previous knowledge of the baseline Up coordinate in the place of the carrier-

phase residual ratio, the evolution of the baseline solution may be different. As depicted in Figure 6.1, 

both metrics have different baseline lengths through time. While the baseline length of the solution 

using metric 2, characterized by the red line, instantaneously converges to the correct solution, the 

first metric’s solution, sketched by the blue line, takes more epochs to stabilize. However, both 
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solutions converge to the correct solution, despite the longer time needed by the first metric’s solution. 

 

Figure 6.1 – Baseline length evolution, using the Ambiguity Filter’s metrics 1 and 2 to solve the integer 
ambiguity problem for the single baseline static trial 

This is emphasized by the evolution of the baseline coordinates for both metrics, illustrated in Figure 

6.2. As presented during the trials description, both GPS antennas are at the same height, and thus it 

is expected that the correct solution is the one with an Up coordinate close to zero. Since the baseline 

solution using the metric 2, again depicted by the red line, shows a better performance than the 

solution using metric 1 (blue line), since converges faster to the correct solution (with the Up 

coordinate being close to zero). In Figure 6.3 is presented a zoom of the baseline ENU coordinates 

using metric 2. By analyzing it, along with the evolution of the number of visible satellites in Figure 6.4, 

it is possible to verify that the baseline solution is not affected, despite the variation in the number of 

visible satellites. This is possible due to technique developed to manage the stored ambiguity 

candidates and the correct solution determined by the Ambiguity Filter.  

 

Figure 6.2 – Baseline ENU coordinates evolution, using the Ambiguity Filter metrics 1 and 2 to solve the 
integer ambiguity problem for the single baseline static trial 
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Figure 6.3 – Zoom of the baseline ENU coordinates evolution, using the metric 2 of the Ambiguity Filter to 
solve the integer ambiguity problem for the single baseline static trial 

 

Figure 6.4 – Number of satellites visible during the data acquisition in the single baseline static trial 

 Comparison between Ambiguity Filter, LAMBDA Method, Float Solution and Smoothed 

Float Solution 

At this point, it is important the comparison between the Ambiguity Filter’s solution, using the better 

solution given by metric 2, with other techniques for the integer ambiguity resolution, as described in 

this thesis. From Figure 6.5, where the evolution of the baseline length is depicted, and from Figure 

6.6, where the evolution of the baseline ENU coordinates is illustrated, it is possible to verify that the 

solution obtained from the LAMBDA method’s best candidate in this, method’s sense, and the float 

solution are very similar. In fact, the float solution has better precision, which is proved by the 

performance results present in Table 6.1, for the baseline length, and in Table 6.2, for the baseline 

ENU coordinates. This approximation between the two solutions is expected, since the best integer 

ambiguity candidate of the LAMBDA method is the integer that is close to the center of the search 
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space, which is defined by the float solution. As expected the smoothed float solution has a better 

precision than the first two techniques since it uses a smoothed version of the code measurements. 

However, the technique that has better precision is the solution using the Ambiguity Filter. Comparing 

the four techniques, in the scale of the Figure 6.5, the baseline length is noise free, which is not 

completely correct as depicted in Figure 6.3 with the appropriate scale. The same fact is illustrated by 

Figure 6.6 with the baseline’s ENU coordinates. 

 

 

 

Figure 6.5 – Baseline length evolution using different techniques to solve the integer ambiguity problem 

 

 

Table 6.1 – Performance of the baseline length using different techniques to solve the integer ambiguity 
problem 

 Ambiguity Filter LAMBDA method Float Solution Smoothed Float Solution

 10.660 11.411 11.329 10.274 (m) ࣆ

 0.002 2.308 2.210 0.745 (m) ࣌
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Figure 6.6 – Baseline ENU coordinates evolution using different techniques to solve the integer ambiguity 
problem 

Table 6.2 – Performance of the baseline ENU coordinates in the single baseline static trial using different 
techniques to solve the integer ambiguity problem 

 Ambiguity Filter LAMBDA method Float Solution Smoothed Float Solution

 െ0,713 െ0,371 െ0,346 െ0,327 (m) ࢚࢙ࢇࡱࣆ

 0,002 1,953 1,889 0,804 (m) ࢚࢙ࢇࡱ࣌

10,636 9,981 (m) ࢎ࢚࢘ࡺࣆ 9,977 9,935 

0,002 1,878 (m) ࢎ࢚࢘ࡺ࣌ 1,809 0,816 

0,007 0,446 (m) ࢁࣆ 0,414 0,408 

0,007 5,311 (m) ࢁ࣌ 5,149 2,247 

By analyzing both tables above, for the baselines’ length and ENU coordinates, it is possible to 

evaluate quantitatively each technique. The Ambiguity Filter solution has millimeter level precision, 

which is much better than any of the other techniques. With the smoothed float solution it is possible to 

achieve a centimeter level horizontal precision (ൎ 80	ܿ݉), that is, with the East and North coordinates. 

A common characteristic to all the techniques is the degradation of the Up coordinate when compared 

with the horizontal precision, from a decrease of few millimeters with the Ambiguity Filter to several 

meters with the other techniques. These results ensure a great confidence in the use of the Ambiguity 

Filter to determine the integer ambiguity and hence use the baseline vectors in attitude determination. 

 Single-Baseline Attitude: Heading and Pitch Angles 

A single baseline configuration allows the determination of pitch and heading, since these two angles 

relate the rotation of the baseline vector in both vertical and horizontal planes. The heading angle is 
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obtained with the baseline’s North and East coordinates, that is, the components in the horizontal 

plane. The pitch angle is calculated using the baseline’s projection in the horizontal plane and the Up 

coordinate. Heading and pitch angles’ evolution is depicted in Figure 6.7 and in Figure 6.8, 

respectively. 

 

Figure 6.7 – Heading angle evolution using different techniques to solve the integer ambiguity problem 

 

Figure 6.8 – Pitch angle evolution using different techniques to solve the integer ambiguity problem 

As expected, the solution obtained by the Ambiguity Filter, which is zoomed in Figure 6.9, has higher 

precision than the other solutions. The dispersion of several centimeters, for the smoothed float 

solution, and a few meters for the LAMBDA method and the float solution is projected in heading and 

pitch angles with a precision of several degrees, which is not the best scenario when trying to 

determine a rigid body orientation. The worst case is the pitch angle that is obtained using the Up 
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coordinate, which is the component that is most affected by disturbances, as previously discussed. 

These results are resumed in Table 6.3. 

 

Figure 6.9 – Zoom of the heading and pitch angles, using the solution from the Ambiguity Filter 

 

 

 
Table 6.3 – Heading and pitch angles’ performance using different techniques to solve the integer 

ambiguity problem 

 Ambiguity Filter LAMBDA method Float Solution Smoothed Float Solution

 െ3.836 െ2.466 െ2.363 െ1.867 (°) ࢍࢊࢇࢋࡴࣆ

 4.801 11.319 11.679 0.011 (°) ࢍࢊࢇࢋࡴ࣌

 2.368 2.322 2.382 0.037 (°) ࢎࢉ࢚ࡼࣆ

 12.291 24.975 25.533 0.035 (°) ࢎࢉ࢚ࡼ࣌

These results show that the best solution for attitude determination is the Ambiguity Filter, despite of 

only pitch and heading angles are considered in this single baseline case. The baseline vector 

obtained with the Ambiguity Filter allows the determination of angles with centesimal precision (in 

degrees). 

 6.2.2 Multiple Baselines Results 

 Ambiguity Filter Performance 

The first exercise is, once again, the evaluation of the Ambiguity Filter’s performance, but in this case 

with multiple baselines. As described in the algorithm overview, each baseline is calculated 

separately. However, it is important to test again the ambiguity Filter performance since the scenario is 

more exposed to different types of disturbances, such as multipath, than the scenario of the single 
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baseline static trial. 

In previous results it demonstrated that the Ambiguity Filter metric 2 gives more confidence (in 

accuracy) than the metric 1 in the determination of the correct integer ambiguity set. In the multiple 

baseline static trial, both Ambiguity Filter solutions using metric 1 and metric 2 converge to the correct 

integer ambiguity, which is proved by the Up coordinate that is expected to be close to zero, as 

depicted in Figure 6.10 and in Figure 6.11. 

 

Figure 6.10 – Baseline ENU coordinates evolution, between the GPS receivers 1 and 2, with the Ambiguity 
Filter solution using metrics 1 and 2 

 

Figure 6.11 – Baseline ENU coordinates evolution, between the GPS receivers 1 and 3, with the Ambiguity 
Filter solution using metrics 1 and 2 
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However, for the baseline 1-4 only the solution obtained by metric 2 is correct. The solution obtained 

using the metric 1 stabilizes in an incorrect integer ambiguity set, since the baseline Up coordinate is 

ൎ െ40	ܿ݉, as depicted in Figure 6.12, which is not the correct baseline vector as presented in the 

trials description section. Thus these results prove that, in a scenario exposed to bigger disturbances, 

the metric 2 has better chances to determine the correct integer ambiguity, and hence is more 

accurate. 

From the results presented in these two static trials, it was decided to use the Ambiguity Filter 

resorting only to metric 2, since in both scenarios are better with this technique. The following results 

presented in this thesis take into account this decision, and the results obtained resorting to metric 1 

are neglected. 

 

Figure 6.12 – Baseline ENU coordinates evolution, between the GPS receivers 1 and 4, with the Ambiguity 
Filter solution using metrics 1 and 2 

In contrast with the results presented for the single baseline static trial, in this environment the 

baseline coordinates are more affected by the variation in the number of visible satellites. However, by 

comparing the ENU coordinates of each baseline vector in Figures 6.13, 6.14 and 6.15 with the 

evolution in the number of visible satellites in Figure 6.16, the oscillation is not bigger than a few 

centimeters, which guarantee that the precise and accurate solution is not lost. This oscillation may be 

seen in Figure 6.13 for the baseline 1-2 ENU coordinates, where the North component has a small 

increment due to the reduction of the number of visible satellites from 8 to seven before the instant 

 and where the East component is increased and Up component decreases few centimeters ,ݏ	100

almost instantaneously between epochs ሾ200; 300ሿ	ݏ, which is coincident with the reduction in the 

number of visible satellites from 6 to 5, as represented in Figure 6.16 for the respective baseline. 
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Figure 6.13 – Zoom of the baseline ENU coordinates evolution, between the GPS receivers 1 and 2, with 
the Ambiguity Filter solution using metrics 2 

 

From the three baseline vectors, the baseline 1-3 is the one that is less affected by the variation in the 

number of visible satellites, since in Figure 6.14 is not possible to distinguish bigger oscillations 

despite small spikes that coincide with variations sketched in Figure 6.16, for the respective baseline. 

 

Figure 6.14 – Zoom of the baseline ENU coordinates evolution, between the GPS receivers 1 and 3, with 
the Ambiguity Filter solution using metrics 2 

 

Finally, the baseline 1-4 is mostly affected by the variation in the number of visible satellites between 

the epochs ሾ200; 300ሿ	ݏ, from 7 to 6 satellites, as illustrated in Figure 6.16, for the respective baseline. 
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This centimeter-level oscillation is verified in an instantaneous increment of the East component and a 

decrease of the Up component. 

 

 

Figure 6.15 – Zoom of the baseline ENU coordinates evolution, between the GPS receivers 1 and 4, with 
the Ambiguity Filter solution using metrics 2 

 

 

Figure 6.16 – Number of visible satellites for the three baseline vectors 
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These results prove that, even in noisier environments, the technique used to avoid the lost of the 

correct integer ambiguity set solution, by resetting the Ambiguity Filter, is a big addition to the 

algorithm improving the results presented in [8], keeping a precise and accurate solution for the 

baseline vectors. 

 Comparison between Ambiguity Filter, LAMBDA Method, Float Solution and Smoothed 

Float Solution 

For the comparison between the Ambiguity Filter and the remaining techniques, the baseline vectors’ 

ENU coordinates, obtained with different methods, are presented in Figures 6.17, 6.18 and 6.19, for 

the respective baseline. 

 

 

 

Figure 6.17 – Baseline ENU coordinates evolution, between the GPS receivers 1 and 2, using different 
techniques to solve the integer ambiguity problem 
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Figure 6.18 – Baseline ENU coordinates evolution, between the GPS receivers 1 and 3, using different 
techniques to solve the integer ambiguity problem 

 

Figure 6.19 – Baseline ENU coordinates evolution, between the GPS receivers 1 and 4, using different 
techniques to solve the integer ambiguity problem 

For the three baselines the results are analogous to the ones presented for the same comparison for 

the single baseline case. In fact, due to higher disturbances present in this scenario, there is 

degradation in the precision level, which may be verified by comparing Tables 6.2 and 6.4. By 

analyzing the Up coordinates’ performance, in Table 6.4, for all techniques it is possible to 

demonstrate that in this case the precision of the solution obtained by using the Ambiguity Filter is 

close to 1.3	ܿ݉, which is  worst when compared with an accuracy of 7	݉݉ for the single baseline case. 

However this loss of precision is small when compared with the precision of the remaining solutions 
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that have levels in the order of several meters. This fact is illustrated in above Figures, where the 

Ambiguity Filter solution is almost undisturbed when compared with the remaining ones.  

Table 6.4 – Performance of the baseline ENU coordinates in the multiple baseline static trial using 
different techniques to solve the integer ambiguity problem 

  
Ambiguity 

Filter 

LAMBDA 

method

Float 

Solution

Smoothed Float 

Solution 

Baseline 

1-2 

 െ0.368 െ0.306 െ0.262 െ0.202 (m) ࢚࢙ࢇࡱࣆ

 0.005 4.855 4.820 3.861 (m) ࢚࢙ࢇࡱ࣌

 0.675 െ0.999 െ1.017 െ1.199- (m) ࢎ࢚࢘ࡺࣆ

 0.005 4.232 4.176 3.489 (m) ࢎ࢚࢘ࡺ࣌

 െ0.005 െ0.964 െ1.096 െ1.131 (m) ࢁࣆ

 0.015 8.034 7.991 6.217 (m) ࢁ࣌

Baseline 

1-3 

 െ0.793 െ0.687 െ0.677 െ0.645 (m) ࢚࢙ࢇࡱࣆ

 0.003 3.201 3.183 2.373 (m) ࢚࢙ࢇࡱ࣌

 0.103 െ0.328 െ0.327 െ0.326 (m) ࢎ࢚࢘ࡺࣆ

 0.003 3.422 3.372 2.608 (m) ࢎ࢚࢘ࡺ࣌

 െ0.009 0.487 0.544 0.550 (m) ࢁࣆ

 0.010 6.727 6.662 5.003 (m) ࢁ࣌

Baseline 

1-4 

 െ1.166 1.353 1.328 1.355 (m) ࢚࢙ࢇࡱࣆ

 0.006 4.005 3.976 3.013 (m) ࢚࢙ࢇࡱ࣌

 െ0.597 0.891 0.895 0.893 (m) ࢎ࢚࢘ࡺࣆ

 0.003 3.508 3.413 2.455 (m) ࢎ࢚࢘ࡺ࣌

 െ0.036 െ2.189 െ2.241 െ2.152 (m) ࢁࣆ

 0.013 6.638 6.579 4.936 (m) ࢁ࣌

From these results, along with the ones presented for the single baseline trial, it is proved that from 

the presented techniques only the Ambiguity Filter allow solutions with good precision to estimate the 

platform’s attitude correctly  

 Attitude Determination 

Using the baseline vectors obtained with the Ambiguity Filter as measurements, after the algorithm’s 

stabilization, the attitude angles were obtained by employing both the rotation matrix technique and 

the quaternion based EKF. In Figure 6.20 both solutions are presented. The blue line illustrates the 

evolution of the Euler angles estimated by the rotation matrix LS. The red line depicts the evolution of 

the Euler angles obtained by the quaternion based EKF. Since this is a recursive algorithm, it takes a 

few seconds to stabilize in the correct values, which corresponds to the transitory in the EKF’s 

solution. 



63 

 

In Figure 6.21 is presented a zoom of the attitude angles’ evolution, where it is possible to see that 

both solutions are similar. However, the solution obtained through time by the EKF is smoother than 

the one obtained directly from the rotation matrix, which is emphasized by the numerical performance 

results depicted in Table 6.5. These results are expected, due to the recursive nature of the EKF. 

 

 

Figure 6.20 – Comparison between the attitude angles obtained with the rotation matrix technique and 
with the quaternion based EKF 

 

 

Figure 6.21 – Zoom of the comparison between the attitude angles obtained with the rotation matrix 
technique and with the quaternion based EKF 
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Table 6.5 – Performance of the attitude angles estimation, using the rotation matrix technique and the 
quaternion based EKF 

 Rotation Matrix Quaternion Based EKF 

Pitch Angle 
(°) ࣆ െ0.666 െ1.007 

(°) ࣌ 1.001 0.708 

Roll Angle 
(°) ࣆ 0.277 0.147 

(°) ࣌ 0.709 0.751 

Heading Angle ࣆ (°) െ115.193 െ117.008 

(°) ࣌ 0.261 0.212 

As aforementioned, only the baseline vectors are used as measurements. Thus, the angular velocities 

are estimated in the EKF, and its evolution is depicted in Figure 6.22. As expected, the presented 

results for the angular velocities converge to zero, since the platform has no motion. This fact 

demonstrates that the dynamic system is correctly design, since the angular velocities are correctly 

estimated by using only the baseline vectors’ measurements. 

 

Figure 6.22 – Angular velocities estimated with the quaternion base EKF during the static trial 

Since there is not information about the real value of the attitude angles, the innovation process may 

be used to evaluate the EKF performance. The evolution of the innovation for each baseline is 

depicted in Figures 6.23, 6.24 and 6.25, and the respective performance is resumed in Table 6.6. The 

results present that the mean value of the innovation process is close to zero and that its precision is 

close to the millimeter-level. 
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Figure 6.23 – Innovation process between the measured baseline 1-2 and the one obtained with the 
estimated quaternion 

 

Figure 6.24 – Innovation process between the measured baseline 1-3 and the one obtained with the 
estimated quaternion 
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Figure 6.25 – Innovation process between the measured baseline 1-4 and the one obtained with the 
estimated quaternion 

 
Table 6.6 – Performance of the innovation process for each baseline, during the static trial 

 Baseline 1-2 Baseline 1-3 Baseline 1-4 

 0.004 0.011 0.020 () ࢎ࢚࢘ࡺ		.࢜ࡵࣆ

 0.008 0.006 0.003 () ࢎ࢚࢘ࡺ		.࢜ࡵ࣌

 0.032 0.003 0.033 () ࢚࢙ࢇࡱ		.࢜ࡵࣆ

 0.005 0.004 0.004 () ࢚࢙ࢇࡱ		.࢜ࡵ࣌

 െ0.009 െ0.009 െ0.017 () ࢝ࡰ		.࢜ࡵࣆ

 0.008 0.010 0.008 () ࢝ࡰ		.࢜ࡵ࣌

 6.3 Dynamic Trial Results 

At this point it is clear that only the baseline solution obtained with the best integer ambiguities, 

provided by the Ambiguity Filter, allow high levels of confidence in attitude determination. As 

aforementioned, the same platform used for the multiple baseline static trial was in motion with the 

trajectory previously depicted by Figure 5.9. The corresponding Euler angles are depicted in Figure 

6.26. The attitude algorithms’ solution is only available after the correct integer ambiguity is known, 

that is, when the stabilization of the Ambiguity Filter is achieved. Around the epoch ݐ ൌ  the ݏ	150

platform starts moving, which is characterized by the heading variation and the increase in the 

disturbances present in both pitch and roll angles. As for the static case, in the first epochs the EKF’s 

solution is characterized by a transitory preceding the convergence of the state variables around the 

correct solution. 



67 

 

 

Figure 6.26 – Comparison between the attitude angles obtained with the rotation matrix technique and 
with the quaternion based EKF, for the dynamic trial 

By analyzing Figure 6.26 along with the zoom of pitch and roll angles in Figure 6.27, one may verify 

that at the beginning, around epoch ݐ ൌ  of the trajectory the roll angle estimated by the EKF is ,ݏ	150

highly disturbed when compared with the solution obtained by the rotation matrix. This fact is 

emphasized by the ݔ term of the angular velocity after the platform start moving in Figure 6.30, which 

is not exact since the maneuvers made during the trial were with small accelerations. This may be 

explained by the decrease of precision in the Up coordinate after the platform started moving, which is 

represented in Figure 6.28. This could be improved by using an accelerometer output as 

measurement of the EKF and hence to better estimate the angular velocities. 

 

Figure 6.27 – Zoom of pitch and roll angles obtained with the rotation matrix technique and with the 
quaternion based EKF, for the dynamic trial 
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Figure 6.28 – Up coordinate evolution of the three baselines after stabilization 

During this trial a positive roll angle was imposed to the car used as platform by climbing the side walk 

only with the left side wheels, between epochs ݐ ∈ ሾ235; 245ሿ	ݏ and when the vehicle’s heading was 

ൎ െ30°. This test’s result is depicted in Figure 6.29, where it is possible to see that the roll angle 

evolution is approximately 5° for both techniques at epoch ݐ ൌ  which corresponds to the positive ,ݏ	240

rotation about the ݔ-axis applied to the vehicle. 

 

Figure 6.29 – Zoom of heading and roll angles, during a positive rotation about the ࢞ axis (positive roll 
angle), obtained with the rotation matrix technique and with the quaternion based EKF, for the dynamic 

trial 
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Figure 6.30 – Evolution of the angular velocities estimated by the EKF during the dynamic trial 

 

As for the static case, the innovation process is used to evaluate the performance of the EKF. But in 

the dynamic trial case, the movement increased the disturbances present in the measurements as 

already illustrated in Figure 6.28 for the baselines’ Up coordinates. This fact is illustrated too in the 

evolution of the innovation process, where the initial instant ݐ ൌ  corresponds to the epoch when the ݏ	1

Ambiguity Filter achieved the optimal solution, that is ݐ ൌ  So the vehicle starts moving when the .ݏ	57

innovation process is close to ݐ ൌ  .in Figures 6.31, 6.32 and 6.33, for the respective baselines ݏ	100

As expected the innovation of each baseline coordinate is zero mean but in contrast with the static 

case higher residual levels are indentified, which are recursively compensated by the Kalman gain. 

Despite the good results presented by the EKF in this dynamic trial, this solution could not be 

applicable with highly disturbed measurements that lead to residual levels outside the boundaries of 

the stability region. The performance of the EKF is resumed in Table 6.7, where it is possible to 

confirm that the average innovation for each baseline is around zero and that the standard deviation 

varies from several millimeters to several centimeters, representing a slight degradation as expected 

when comparing with the results for the static trial in Table 6.6. 
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Figure 6.31 – Evolution of the innovation process between the measured baseline1-2 and the one 
obtained by the estimated quaternion, during the dynamic trial 

 

 

 

 

Figure 6.32 – Evolution of the innovation process between the measured baseline1-3 and the one 
obtained by the estimated quaternion, during the dynamic trial 
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Figure 6.33 – Evolution of the innovation process between the measured baseline1-4 and the one 
obtained by the estimated quaternion, during the dynamic trial 

 

Table 6.7 – Performance of the innovation process for each baseline, during the dynamic trial 

 Baseline 1-2 Baseline 1-3 Baseline 1-4 

 െ0.015 െ0.007 െ0.021 () ࢎ࢚࢘ࡺ		.࢜ࡵࣆ

 0.107 0.070 0.066 () ࢎ࢚࢘ࡺ		.࢜ࡵ࣌

 െ0.006 0.002 0.007 () ࢚࢙ࢇࡱ		.࢜ࡵࣆ

 0.125 0.069 0.076 () ࢚࢙ࢇࡱ		.࢜ࡵ࣌

 െ0.011 െ0.011 0.015 () ࢝ࡰ		.࢜ࡵࣆ

 0.033 0.024 0.027 () ࢝ࡰ		.࢜ࡵ࣌

Despite the degradation of the disturbances in a dynamic trial, the EKF performance is good and the 

results validate this technique. The direct use of the rotation matrix allow similar results, however lacks 

in the stability that is allowed by a recursive algorithm (i.e. inside the stability region of the EKF) and in 

the presence of singularities. Better results could be achieved by GNSS/INS coupling techniques. 
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7 CONCLUSIONS 

The implementation of an attitude determination algorithm, using multiple L1 GPS receivers and RTK 

techniques, was the main objective of this thesis. Based on the results presented in the previous 

chapter, it is possible to conclude that this objective was successfully achieved. 

The static trial results showed that resorting to both the algorithm using the rotation matrix and the 

quaternion based EKF, it was possible to estimate the Euler angles with precisions smaller than 1° 

 However, the quaternion based EKF showed slight improvements regarding the estimation of .(ߪ1)

both pitch and heading angles with an increased precision in the order of approximated 0.3° and 0.05°, 

respectively, which is understandable since it is a recursive estimation algorithm. The good 

performance of the EKF is visible in the innovation results, which have millimeter level errors (1ߪ) 

Despite the disturbances augmentation, the dynamic results are representative of the successfully 

implementation of the attitude determination algorithms, capable of detecting attitude variations along 

the path made by the test platform. This fact was visible in the detection of a positive roll angle (of 

approximately 6°), imposed by climbing a sidewalk with the test vehicle. The increase in the level of 

disturbances is visible in the attitude angles that are function of the Up coordinate (which is more 

sensible to noise), that is, pitch and roll angles. For the EKF the roll angle is more affected by this 

phenomenon, since the highly disturbed Up coordinate led to a highly disturbed angular velocity about 

the ݔ axis. However these disturbances do not affect the correct determination of the Euler angles, 

which is proved by the performance of the EKF innovation. Despite the disturbances’ augmentation, 

the innovation has errors in the order of the centimeter (1ߪ). 

The static trials showed that the use of the LAMBDA method along with the Ambiguity Filter allows 

higher confidence in the determination of the correct integer ambiguity, and hence a millimeter level 

precision in the determination of the baseline vector. In contrast, the baseline solution of the remaining 

methods (stand alone LAMBDA method, Float Solution and Smoothed Float Solution) was obtained 

with a meter level precision. 

The static results, for single and multiple baselines showed that the proposed improvements within the 

Ambiguity Filter offer an increase of this algorithm’s accuracy. The metric 2, using the baseline length 

and the Up coordinate in an initial state, offered more confidence in determining the correct integer 

ambiguity than the metric 1, using the baseline length along with the carrier phase residuals. The 

introduction of a technique able to keep the correct integer ambiguity solution despite the variation in 

the satellites’ constellation is another improvement within the Ambiguity Filter. This technique avoids 

resetting the algorithm and hence the restart of the search process for the integer ambiguity 

determination, which permits the loss of precision in the baseline solution. The results showed that, 

despite some oscillations due to variations in the satellites’ constellation, it is possible to obtain a 
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millimeter level precision, and hence a precision smaller than 1° (1ߪ) in the determination of the Euler 

angles. In the low multipath scenario of the single baseline static trial, the precision of both heading 

and pitch angles was approximately 0.01° and 0.03°, respectively. 

Despite the good results, there are topics that could be improved. Thus some topics regarding future 

work are presented: 

 The research for better metrics and stabilization procedures for the Ambiguity Filter. Despite of 

the great precision, the technique responsible for avoiding the loss of solution could be 

improved and tested for longer periods for a more robust validation; 

 The research and test of different estimation techniques and different dynamic systems for 

comparison with the ones implemented in this thesis, in order to improve the presented 

results; 

 The use of techniques like the Constrained Kalman Filter, that allow a coupled estimation of all 

baselines, making use of the dynamic information given by the GPS receivers’ Doppler effect 

and the satellites’ velocity; 

 In order to avoid the verified disturbances in the Up coordinate, that were translated in a 

precision degradation on the estimated angular velocity about the ݔ axis, and consequently in 

roll angle, the integration of the developed technique with INS sensors (accelerometers in 

order to improve the estimation of the angular velocities) could lead to great improvements; 

 Real time implementation and test in more aggressive environments of the proposed 

algorithms; 

 Even though is not present in this thesis, research regarding the development of an attitude 

test platform has already been started. A test platform that allows the imposition of different 

attitude angles could be a great advantage in algorithms validation. 
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