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Resumo 
 

É desenvolvida uma estratégia de control de atitude para um grupo de três veículos espaciais.  

O equipamento a bordo é apresentado. Cada veículo dispõe de medições de Earth vector, de Sun vector, 

de attitude quaternion e de leituras de velocidade angular. Rodas de inércia e propulsores de atitude 

constituem os actuadores.  

É implementado o algoritmo de determinação de atitude por Wahbas e, apresentado um Filtro de 

Kalman Extendido para estimação de atitude e estimação de desvio do giroscópio. 

A estratégia de controlo para um veículo isolado utiliza uma variante de LQR de forma a extender o seu 

uso para manobras de grande amplitude angular.   

Uma estratégia de grupo consiste numa abordagem de seguimento de líder onde cada veículo dispõe de 

estimativas da sua atitude inercial. Num cenário em que dois veículos não têm acesso às suas atitudes 

inerciais, um algoritmo de determinacao de atitude relativa é utilizado.  Uma terceira estratégia consiste em 

comandar os veículos para uma atitude central ao grupo. 

São apresentados e analisados resultados de estimação, controlo de um veículo isolado e de grupo. 

  



 
 

 

 



iv 
 

 

 

Abstract 
 

Attitude control for a group of three space vehicles is developed.  

The on-board attitude apparatus is presented. Each vehicle measures the Sun vector, the Earth vector, 

the attitude quaternion and angular velocity. Attitude control is provided by reaction wheels or attitude 

thrusters.  

The Wahba’s attitude determination algorithm is implemented and an Extended Kalman Filter is derived 

for attitude estimation and for gyroscope bias estimation.  

A control strategy for stand-alone vehicle attitude reorientation is implemented using a modified LQR 

design to cope with large reorientation manoeuvres.  

One group strategy consists in a leader following approach where inertial attitude estimates are 

available to the entire group. A relative attitude determination algorithm is used in a scenario where two 

vehicles do not possess the inertial attitude instrumentation. A third strategy forces the vehicles to target a 

common mid-attitude point. 

Results for estimation, single vehicle control and group control are presented and analysed.  
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List of Symbols 
 

The following lists the most relevant symbols that appear in the context of each chapter. 

 

The Space Vehicle and the Space Environment  

 :  General Angle   

 : Elevation angle  

 : Azimuth angle 

 : General vector 

 : Space vehicle inertia matrix 

  :  Wheels inertia 

    : Identity matrix n n 

 : Angular velocity vector 

     : Euler angles (yaw, pitch, roll) 

 : External Momentum  

  : Wheels Applied Momentum 

 : Thrusters Torque  

 : Lever-arm 

 :  Space vehicle position vector 

 : Space vehicle velocity vector 

 :  Vehicle speed (norm of velocity vector) 

 : Space vehicle determined position 

  : Mean distance from Earth to the Sun 

    Distance from space vehicle to centre of the Earth 

  : Angular radius of the Earth 

    Orbit period 

 : Mass of large body 

 : Standard deviation  

 : Normal Distribution 

 : Two angle measurement set 

 ̅: Attitude quaternion 

 : Quaternion vector component 

 : Quaternion scalar component 

 : Angular velocity vector 

  : Wheels axes matrix  

  : Time increment 



xi 
 

 : Gyro-drift vector 

 : Three-component attitude error  

 

Attitude Estimation 

 : Measurement vector 

 : Noise vector 

  ̅: Error quaternion 

 : Wahba’s loss Function 

 : Matrix gain 

 : Covariance matrix 

 : Measurement sensitivity matrix 

 : Measurement noise covariance matrix 

 : Model error covariance matrix 

 : State vector 

  : Auxiliary state vector 

 

Attitude Control of Single Vehicle 

 : Solution matrix of the Riccati equation 

 : State weighting matrix 

 : Cost function  

 ̅   : Rotation quaternion 

 : Axis of rotaion 

  : Gain for wheels resetting operation 

  : Quaternion additive error 

  : Angular velocity error 

 

Group Attitude 

 : Measurement image vector 

 : RMS error  

    
 : LOS vector from frame   to frame   written in frame   

 ̅  : Relative attitude quaternion of   relatively to   

 ̅     
: Converse attitude quaternion of   
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1. Introduction 
 

Guidance Navigation and Control 

Guidance Navigations and Control (abbreviated GNC) is a research area of engineering that addresses 

the problem of controlling the movement of vehicles in a given space (linear and rotational movement). An 

increasing number of applications must deal with high complex dynamics or too fast dynamics which make 

them impractical for human control. Further, fine control for high precision or energy optimization are 

generally increased with automatic control systems.  

Guidance refers to the problem of determining the path (trajectory) from the current state to the target 

which might include the specification of velocities, accelerations and rotations to attain it. Navigation is the 

component responsible for determining the position, velocity, attitude and other variables that make up the 

system’s state. Control refers to the strategies and algorithms that calculate the actuation upon the system in 

order to track guidance commands. 

GNC systems or some of its elements are found in all-autonomous or semi-autonomous systems as for 

example: airplane and boat autopilots, driverless cars such as the Stanford’s Stanley vehicle, Unmanned Air 

vehicles (UAV’s) and space vehicle attitude control systems as addressed in this thesis.    

 

Space Vehicle Systems Overview  

The space Vehicle (SV) system can be divided into several subsystems. Depending on the mission profile 

these comprise: life support, command and data handling, power management, thermal monitoring and 

control, structures, propulsion, payload, launch vehicle, communication system, and of our main concern 

here, the GNC system. The attitude determination and control system (ADCS) is regarded as a subsystem of 

the GNC system. 

The GNC system, and more concretely the ADCS is one of the most influential subsystems. Its decisions 

are based on a wide number of parameters and variables provided by other subsystems. For instance the 

thermal control subsystem might trigger a temperature overload warning in a given component due to Sun 

excessive light exposure; in such case the GNC must reorient the SV in order to place this component at the 

shadow region to cool down. Another example is the dependence on the power management subsystem if the 

latter relies on solar panels to feed batteries; proper orientation of the panels towards the Sun is crucial to 

extract maximum power. Similarly, the communication subsystem requires antenna specific orientations that 

might vary over the course of operation. Orbit control in general is also dependent on attitude, because orbit 

thrusters propulsive force is imposed by SV inertial orientation.  

It is now clear that the attitude of the SV is extremely impactful on the operational conditions, and 

reciprocally the latter impose restrictions on the attitude, therefore most of the subsystems are directly or 

indirectly linked to the ADCS. 
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Attitude Determination and Control System (ADCS) 

Attitude is represented as the rotation a given reference frame must undergo in order to align its axes 

with the fixed body axes of the object concerned. Attitude determination is the process of acquiring an 

estimate of the true attitude normally resorting to algorithms which relate observations with attitude 

representations. Attitude control refers to the computation of the necessary actuation to point the spacecraft 

to a desired orientation, whether it is a constant orientation (pointing) or a variable one (tracking). 

Attitude Determination and Control is a problem touching several subfields including: control systems 

design, dynamics and modelling of systems, software design, user interface design and spacecraft operations. 

The scope of this text only covers the first three. The algorithms developed are implemented in the 

Simulink/Matlab simulation environment. 

 

ADCS terms 

Pointing accuracy: also referred to as the attitude control accuracy, generally refers to how close to a 

desired commanded attitude the space vehicle can be controlled.   

Estimation accuracy: it is a measure of how well the orientation of the SV is known.   

Sensor accuracy is the sum of the ultimate accuracy of the measurement provided by the sensors and 

includes mounting errors and other bias effects.  

Jitter: refers to the error in controlled attitude of a frequency too high to be controlled by the ADCS.  

 

Spacecraft Formation Flying and Consensus 

 

Although formation of vehicles in many areas has been on the spotlight for several years, formation 

flying of spacecraft is a relatively recent concept. A growing number of space applications have lately been 

identified that will utilize distributed systems of satellites. There is a great level of interest in both the 

scientific and defence communities to develop mature systems and software for autonomous rendezvous and 

formation flying.  

A cooperative control system consists generally of a group of autonomous agents with sensing, actuation 

and communication. The goal of the group is to achieve prescribed agent and group behaviours using relative 

sensing and flow of information between agents. The most relevant subset of cooperative control in the 

context of this dissertation is the consensus problem where the group objective is convergence to a common 

attitude. 

Formation Flying refers to maintenance of relative positions between vehicles and position 

reconfiguration which is not in the scope of the present work. Although relative position between vehicles do 

affect attitude related issues.  

Examples of applications that greatly benefit from multi spacecraft techniques include: better tracking 

of moving targets, reconfigurable instantaneous synthetic aperture radar, satellite relay systems, stereo-

imaging, theatre-wide surveillance, all-weather operation and performance, in general component 
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substitution is cheaper (replacement of one small satellite versus a single large and costly one), inspection 

and maintenance services, etc. The advantages of space formation and consensus however come with the 

added cost of group control.  

 

In this text  

The order of presentation of the various issues discussed follows the natural order in which they were 

developed over the course of this dissertation.  

First the space environment is briefly described along with orbital dynamics of Earth satellites. The 

space vehicle configuration is established by selecting adequate sensors and actuators. Actuators models 

capture only major real actuator behaviours and sensors noise figures are prescribed.  

The second chapter addresses state estimation algorithms employed for one vehicle standalone. Several 

estimation processes are discussed and compared. The Wahbas’ problem solution is used as a deterministic 

attitude method. An Extended Kalman Filter (EKF) for angular velocity estimation is developed. Attitude 

estimation is performed by a modified version of the EKF algorithm (the Multiplicative Extended Kalman 

Filter) which might also include gyro drift bias estimation.  

A feedback control law based on LQR design with additional supervising logic is developed. A resetting 

operation for the reaction wheels set is conceived such that fine pointing accuracy can be maintained 

throughout the event. Simulation results of the controlled SV applying the two actuator types and for different 

initial conditions are presented and compared. Steady-state pointing accuracies are investigated.   

A deterministic relative attitude method that uses line of sight measurements between three vehicles is 

presented. Relative attitude information is used in a scenario where two vehicles do not possess inertial 

measurement unit (IMU) package and so group consensus is attainable by nulling relative attitude.  

In another scenario all vehicles possess IMU and can reorient independently. A group coordinator (GC) 

is introduce for monitoring and triggering operations in the group. Additionally the GC enables the group to 

converge to a mid-attitude point. Group transient responses are investigated. 
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2. The Space Vehicle and the Space Environment 
 

We elaborate on a particular three-axis stabilized SV with a gyrostat configuration. We establish its 

hardware features in regard of attitude control, such as sensors and actuators. Afterwards the space 

environment is addressed, which include orbit, planetary position and influence of viewing and lighting 

conditions. Lastly in this chapter, the attitude dynamics are derived. The majority of the information 

presented here is based on [1]. 

This section discusses the basic hardware systems that must be on board the SV in order to perform its 

proposed functions. A controlled satellite must be equipped with proper actuators, sensors, process unit, and 

as customary a communication system. The attitude hardware embodies the physical components of the 

ADCS. The more critical components of the ADCS are briefly explained and reason about in order to make an 

adequate and realistic choice.  

2.1. Attitude Hardware 

A. Sun Sensor 
 

Sun sensors are widely used in a vast majority of space applications regarding attitude determination 

and have flown on nearly every satellite. Unlike the Earth, the angular radius of the Sun is nearly orbit 

independent and sufficiently small (       at 1 UA) and so for most applications a point source 

approximation is valid. The Sun is sufficiently bright to allow the use of simple, reliable equipment without 

need to discriminate among sources and has minimal power requirements.    

Knowledge of the relative position of the Sun allows protection of sensitive equipment such as Star 

Trackers, provides a reference for on-board attitude control and for position solar power arrays.  

The measurement of the Sun sensor is the set of azimuth   and elevation   angles of the Sun line 

direction in the sensor frame coordinates. These angles relate to the Sun vector according to: 

                        (2.1)  
 

             (  √  
    

 ⁄ ) (2.2)  

 

where    ([        ]
 
) is the true Sun unit vector written in sensor coordinates. We define also the angle 

observation set   [  ] . 

There are essentially three basic types of Sun sensors: analogue sensors, which have an output signal 

that is a continuous function of the Sun angles and is usually monotonic; Sun presence sensors, providing 

constant output whenever the Sun is present in the field of view (FOV); and digital sensors, which provide an 

encoded, discrete output.  
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The digital Sun sensor operation 

The digital Sun sensor generates an output which is a digital representation of the angle between the 

Sun vector and the normal of the sensor face when the Sun is in the FOV. The Sun image passes the entrance 

slit while is refracted by a material of index of refraction n (might be unity) and illuminates a pattern of slits. 

Each slit has a corresponding row of photocell beneath it. There are 4 types of rows: (1) automatic threshold 

adjust (ATA), (2) a sign bit, (3) encoded bits and, (4) fine bits. 

The sign bit indicates which side of the sensor the Sun is on. The encoded bits provide a discrete 

measure of the displacement of the Sun image, allowing the Sun angle to be obtained by decoding the given 

bits in a logic unit. The ATA slit is half the width of the other slits. Its photocell output power is half of the 

others and independent of the Sun angle, therefore working as a threshold for the corresponding turn on or 

off of the sensor where it is mounted. Figure 2.1 illustrates the digital sun sensor. 

 

 
Figure 2.1 – Digital Sun Sensor  

 

In particular it is interesting to use a two axis Sun sensor, utilizing two measurement components at 90  

angles, yielding a 64 -by-64  or 128 -by-128  FOV. Full       coverage is accomplished by use of five or more 

128 -by-128  sensors, disposed appropriately along the satellite’s surface panels. This was the configuration 

admitted for the SV. Together they are able to provide two axis Sun measurement angles in all possible 

orientations as long as there is direct Sun light illuminating it.  
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Sun sensor measurement model 

In order to reflect Sun sensor measurement inaccuracies zero mean additive Gaussian noise is added to 

the true angles. Hence the Sun sensor measurement model is: 

 ̂        

where  ̂  [ ̂  ̂]  is the measured quantity and            
      .  

The digital sensor provides angular readings with standard deviation       typically ranging from      to 

     . An intermediate value of          is adopted. 

As it will be clear later, the necessary quantity for attitude computation is the Sun vector itself. Thus, the 

measured Sun vector is obtained as a function of the measured angles in the sensor frame: 

  ̂  [    ̂      ̂       ̂      ̂       ̂]  (2.3)  
 

Shadow problems  

Because Sun sensors need direct Sun light, one must take into consideration situations when direct Sun 

light is blocked. In this context, there are three potential sources of shadow: the Earth, another artificial 

satellite in the vicinity, and the moon. The first one is rather frequent and as so it is included in the simulation 

model as discussed later. The second and third are infrequent and so they are ignored in the model. 

B. Horizon Sensor 
 

Scanner 

Horizon sensors are the principal means for directly determining the orientation of the spacecraft with 

respect to the Earth. Contrary to the Sun sensor, the horizon sensor has a small FOV to scan across the 

celestial sphere in a conical pattern and detect the presence of the large and dim Earth disc in order to 

measure it. In some cases the aperture of the conical angle can be controlled as well as the centreline of the 

cone (Figure 2.2). 

 
Figure 2.2 – Horizon scanning principle 

 

The horizon sensor has four basic components: a scanning mechanism, an optical system, a radiance 

detector, and signal processing electronics.  
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The scanning system has several variations. For a spinning satellite the simplest way is to rigidly mount 

the sensor on its surface. Wheel-mounted sensors use the same principle but are attached to the momentum 

wheel which provides the scanning motion. A slightly different approach is the scanning-wheel when other 

spacecraft rotating parts are not available or heavy wheels are too costly to maintain in rotation. Other 

methods exist which employ a rotating turret or a mirror to deflect the Sun light to the optical system. The 

optical system consists of a filter to limit the observed spectral band and a lens to focus the target image on 

the radiance detector. The radiance detector is a temperature sensitive element such as a photodiode or a 

pyro-electric generating a current or a voltage respectively dependent on the captured radiation. A bolometer 

used to detect an infrared radiation can sense temperature changes in the order of 0.001 K due to radiation 

despite normal ambient temperature variations up to orders of magnitude four times higher. The great 

sensitivity to infrared radiation allows the sensor to operate even in umbra conditions, when the visible light 

from the Earth is minimum. It is important to notice that due to this device sensitivity to radiation protection 

measures against direct Sunlight must be taken during operation. A common solution is to use Sun detectors 

to sense the intrusion of the Sun in the FOV while baffling the radiance detector.  

The raw output of the sensor is the time interval between a reference pulse triggered by the electronics 

system and the instant when the radiance detector reaches or falls below a certain threshold. If the detector 

output is increasing across the threshold, the pulse corresponds to a dark-to-light transition or acquisition of 

signal (AOS). If the detector output is decreasing across the threshold, the pulse corresponds to a light-to-

dark transition or loss of signal (LOS).  

The AOS and LOS pulses are also referred to as in-crossings and out-crossings, or in-triggering and out-

triggering, respectively. The Earth-width time                gives a measure of the Earth disk scanned by 

the sensor in one rotation. This along with the mid-scan time                           and knowledge 

of the scan rate, or duty cycle – percentage of scan period the radiance is above threshold – permits 

conversion from time to angle of the Earth relatively to the sensor frame. The angle this way determined 

corresponds to the elevation angle  . The azimute   is directly retrieved from the centreline of the conical 

section relatively to some reference axis of the sensor. 

Like the Sun sensor, the horizon sensor system outputs the angles of elevation  ̂ and azimuth   ̂ to the 

centre of the Earth in sensor coordinates  ̂  [ ̂  ̂] .  

In simulation the true angles are obtained in the same manner as for the sun Sensor: 

                 and         (  √  
    

 ⁄ ) , with     [        ]
 

 being the true Earth unit vector 

(or nadir) pointing to the Earth centre in sensor coordinates. 

In order to obtain    we utilize the right hand side expression of Eq. (2.3). 

During attitude manoeuvres, the centreline of the conical scanning becomes variable especially if the 

angular velocity has normal components to the scanning axis.  

Other technologies such as the static horizon sensor are more suitable for low or non-spinning 

spacecraft like geosynchronous and observatory satellites, and so their interest in this context is limited.  

The Earth sensor technology installed on board the SV is summarized: 
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 Horizon scanners with a mirror or prism scanner mechanism, providing full    sr angle coverage  

 infrared sensitive radiance detectors to reduce the optical error due to light dispersion around the 

Earth’s limb 

 The standard deviation     in nominal conditions varies with altitude, being lower for high altitudes 

than for low altitudes. Here we considered it to be within the      interval during all operations. 

 Continuous operation altitude: from 200 Km to 140000 km  

The DATA provided by this sensor shall be carefully used because during high angular speed 

manoeuvres and significant nutation angles the measurements might be affected by modulation comprised by 

the vehicle’s rotational motion. The scanner ultimate accuracy should coincide with a three axis stabilized 

state. Therefore a noise component dependent on the SV’s velocity is added in order to account appropriately 

for this modulation phenomenon.  

Accordingly to what has been mentioned the measurement yields: 

 ̂        

with the total noise       added modelled as follows: 

                

with     [     ]
 

 ,             
     with           , and                

    , where         ‖ ‖ 

The value of   is such that at an angular velocity of      the horizon sensor experiences an additional 

RMS error of       , i.e.        . The units of   are coherent with the hypothesis that this parameter 

behaves as an integration time of a modulation error given by ‖ ‖.  

C. Star Tracker 
 

Star sensors measure star coordinates in the spacecraft frame and provide attitude information when 

these observed coordinates are compared with known star directions obtained from a star catalogue. Star 

Trackers are the most accurate of attitude sensors. The main disadvantages are their cost, weight, complexity 

of electronics and software for processing data, and they are typically inoperable within 30  of the Sun due to 

stray light.  

The SV is equipped with a gimballed Star Tracker providing full determination of attitude quaternion, 

with the very relaxed total RMS error of 174 arc-sec compared to current technology (see Table 1). An 

important issue with gimballed cameras is aging of mechanical parts which degrade precision and build up 

biased errors with time. 

The Star Tracker error is modelled by the multiplicative quaternion error according to:  

             (2.4)  

With    being the measured quaternion,       the true quaternion and    the error quaternion. For small 

errors this can be approximately related to the three incremental Euler error angles: yaw (  ), pitch (  ) and 

roll (  ) as:  
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   [

  

 
 
  

 

  

 
  ]

 

 [
  

 
 ]

 

 (2.5)  

After normalization           ‖ ‖, it becomes an error with the formal properties of a quaternion 

and can be inserted directly in Eq. (2.4) to obtain a realistic measurement   . Table 2.1 resumes typical 

values of current Star tracker technology. 

 

Table 2.1 – Typical performance characteristics of current Star Tracker technology 

Relative Accuracy [arc-sec] 
  /    < 2 – 5 (1 σ) 
   < 15 – 40 (1 σ) 

Bias [arc-sec] 
   /    < 3 – 10 (1 σ) 
    < 1 – 10 (1 σ) 

Update Rate [Hz] 1 to 20 

Field of View  8°×8° to 30°×30° 

D. Frame Transformation 

 

It is convenient to transform vectors in sensor frame coordinates to vectors in SV body coordinates. 

Knowledge of the mounting orientation of the particular sensor on the SV body,   
  allows the computation of 

the respective vector in body coordinates: 

       
      (2.6)  

The star-tracker measured quaternion is converted to the corresponding SV body quaternion by 

applying the following quaternion product 

  ̅   ̅    ̅  (2.7)  

For simulation purposes rotations (2.6) and (2.7) are only worth being implemented if one is to model 

constant sensor mounting errors, otherwise they do not have much impact on results. In fact for simplicity we 

assume  ̅   [       ]  and   
       , which means sensor frame coincides with the body frame. 

E. Gyroscope  
 

There are two main types of gyroscope in terms of their output measurement: rate gyros (RGs) and rate-

integrating gyros (RIGs). Rate gyros (RGs) measure spacecraft angular rates in the body coordinates: 

     [        ]
 

 

This can be integrated on-board to provide an estimate of spacecraft attitude displacement from some 

initial reference. Rate integrating gyros (RIGs) measure spacecraft angular displacements directly. 

Incremental displacements performed during small time intervals can be integrated resulting in the full 

rotation after a wider time span and also allow the computation of the instantaneous rate in each of the 

incremental steps. RIGs not only provide more information than the RGs as they are also more accurate. For 

these reasons a RIG is preferred to a RG as the angular rate sensor.  
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The latest gyro technology comes in the form of MEMs (Micro Electro-Mechanical Systems). These are 

much smaller, lighter, lower cost gyroscopes but in general outperformed by larger physical platforms.  

As far as we are concerned, the technology itself is not important but rather its performance. It 

comprises the accuracy, measurement range, bandwidth, temperature dependence, nonlinear effects, 

amongst others. The first four are the most relevant for simulation purposes.  

The main source of error in a RIG is drift rate instability. The systematic errors of drift, input axis 

misalignment, and scale error factor can be modelled and corrected. Most of the residual drift instability 

results from random null shifts in the torque rebalanced control loop which can also be modelled and 

predicted. A third type of error comes from fluctuations due to changes in the magnetic environment which 

are almost impossible to predict.  

The typical noise affecting the RIG in the rate mode is described here by two additive terms: 

 Electromechanical noise, formulated as white Gaussian noise (  ) on the gyro rate readings with  

 Float torque derivative noise  corresponding to derivative White Gaussian noise      

The RIG output is considered to be the true angular velocity of the spacecraft plus the additive types of 

noise originated by the two last sources of noise mentioned:  

 

 
              ∫        

 

  

 (2.8)  

 

Both       and       are considered Gaussian noise with zero mean, more rigorously: 

         
  ,            

  , with 

  
        

  and   
        

  
Gyro measurements are a discrete event occurring at      , where   is the corresponding index in 

discrete time. Hence Eq. (2.8) can be translated into the following discrete noise version: 

                ∑        

 

   

 

Most gyroscope manufacturers instead of specifying the noise variance (in   values) they much often 

provide ARW (Angle Random Walk) and RRW (Rate Random Walk) values, which relate to their 

corresponding   values as follows: 

   
   

√  

 

      √
 

  

 

These values are dependent on the gyro technology. For instance for the ARW, it can range from a 

thousand of       ⁄  (high precision) to almost       ⁄  (coarse). Typical values for high accuracy gyro 

according to [2] are: 

                  ⁄⁄             ⁄   

                        ⁄             ⁄  
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Their corresponding standard noise deviation values with          are: 

                   

                         

Due to the RRW term, rate drift will build up in the gyroscope. After some time (hours, days) this will be 

the main cause of error in the angular rate measurement. However certain gyroscope technologies applying 

feedback mechanisms guarantee a limit in drift influence. In such cases RRW can be neglected after some 

time. 

Additionally unknown bounded bias always exist which can be regarded as a constant drift. The bias 

effect should be known prior to launch or estimated in orbit, as its influence on added error to the 

measurement might often be larger than the noise itself. In Chapter 3 an estimation process for bias (or 

constant drift) is included alongside with attitude estimation, enabling correction of the gyro zero reference. 

F. Actuators 
 

Various classes of actuators for reorientation or stabilization of a spacecraft are available: control 

moment gyros, momentum or reaction wheels, gas thrusters, ion thrusters or extension booms.   

Reaction wheels were selected for fine control during most of the operations. Gas thrusters provide 

redundancy and for situations where it is necessary to damp high angular velocities, or to provide 

compensating actuation during reaction wheels resetting operation. 

G. Reaction Wheels  
 

The storage momentum capacity of a wheel ranges from 0.4 to 40 kg.m2/s typically and can be achieved 

either with a small fast spinning wheel or with a large low spinning one. For reasons of weight minimization 

designers tend to favour the former type, though this has the disadvantage of greater wear on the bearings. 

Table 2.2 shows manufacturers reaction wheel parameters. 

 

Table 2.2 – Examples of reaction wheel characteristics  

Manufacturer Spacecraft 
Mass 
(  ) 

Moment of 
Inertia      ) 

Speed Range 
(RPM) 

Angular Momentum 
(       ) 

APL Geos-3, 5AS-1 3,18 0,0115 2000 2,41 @ 2000 RPM 

Bendix 

AYE 

NIMBUS 

OAO SERIES 

8,84 

7,78 

5,13 

0,0880 

0,0034 

0,0297 

1450 

1400 

900 

11,52 @ 1250 RPM 

0,04451 @ 1250 RPM 

2,8 @ 900 RPM 

RCA 
AE SERIES, ITOS 

SERIES 
16,66 

3,4804 
14,43 

95-382 
120-160 

128,03 @ 353,32 RPM 
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Because reaction wheels are operated with nominally zero momentum, they are used primarily for fine 

pointing in a closed loop control fashion, absorbing cyclic torques, to temporarily store momentum from the 

body during slew or reorientation manoeuvres. 

As the satellite faces nonzero mean disturbance torques the reaction wheels have to maintain constant 

actuation to compensate for. This will eventually saturate the momentum storage capacity; hence provision is 

made for periodic momentum damping through external torques produced by gas jets or magnetic coils. 

These are both considered external torques because contrary to internal ones they do change the vehicle total 

angular momentum.  

Although three orthogonal wheels are sufficient to provide full attitude control, normally a fourth wheel 

is employed giving one degree of redundancy allowing for momentum management and provision against 

failure of one of the other three. 

The reaction wheel model comprise modelling of the electromagnetic torque and friction characteristics 

A reaction wheel uses an electric motor to transform voltage into torque. Each type of motor has its own 

relation between generated torque, command voltage and rotor speed which is equal to the wheel speed. 

A two-phase induction motor is assumed for the SV, which is driven by square pulses. More precisely the 

torque level is controlled by varying the duty cycle within the interval [-1, 1] which in turn is set by the 

control voltage. A linear relation between duty cycle and control voltage is typically desirable. However in 

reality this is not the case as the electronics face a ‘dead zone’ near the origin, like the one depicted in Figure 

2.3 for the positive side – the dead zone width is exaggerated for purposes of illustration. When large enough 

the dead zone will impact significantly on the pointing accuracy. We consider a dead zone of          . 

 
Figure 2.3 - Duty cycle as a function of control voltage 

 

The net torque on the wheel is given by: 

                    (2.9)  
Where     is the electromagnetic torque when the duty cycle is unity,           is the bearing friction 

torque dependent on the wheel speed ( ). The electric motor technology – DC or AC, synchronous or 

asynchronous – defines the dependence of     with the wheel speed. The model chosen follows the 

approximation given in [1]. 
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                    (2.10)  
Where            for      ,            for      .      is the synch speed,   is the value of 

  for which     has the maximum magnitude,     Admitting this simplified but approximate model, a 

maximum wheel speed is established in 1500 rpm, and the speed for maximum torque is fixed in 500 rpm. 

The resulting torque curve as a function of wheel speed is depicted in Figure 2.4. We see that the 

electromagnetic torque has values superior to       for speeds ranging from -1500 rpm up to more than 

1000 rpm, meaning that for most of the operational situation there will be torque available in the wheels 

system. 

The friction torque is simply modelled  as the sum of Coulomb and viscous terms: 

                          (2.11)  
 

The constants    and   are different for each reaction wheel in use, but they are normally dependent on 

their size, weight and area of contact of its beam. The torque friction always opposes the rotation motion, 

therefore dissipating energy in form of heat. This can become a problem especially for high operational 

speeds because the dissipative rate is proportional to the square of the speed (factor      , depleting the 

batteries much faster. Moreover if these cannot be recharged for any reason during long periods, it is of 

utmost importance to keep the wheels working near the zero speed point. 

 
Figure 2.4 - Torque-speed curve of the reaction wheel 

 

More accurate and realistic models do exist though in practice the simple Coulomb term is normally 

sufficient to emulate the nonlinearity near zero speed. The wheel parameters chosen are listed in Table 2.3. 

 

Table 2.3 – Reaction Wheels nominal parameters 

   [     ]    [   ]    [   ]   [         ]       [   ]    [   ] 

                                      1500  500  

 

We consider the reaction wheels to have the shape of a perfect disc which means that the inertia about 

its rotation axis is given by    
 

 
    

  and that a value of          is realistic we retrieve that the mass 
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of the disc is          . Therefore a four wheels set has a total mass of       . This is important in order to 

set an appropriate and realistic SV inertia matrix, which is done in the end of this chapter. 

H. Gas Thrusters 
 

Thrusters or jets produced thrust by expelling propellant in the opposite direction. Torque is generated 

as the thrust is decentred and applied at a certain distance from the spacecraft centre of mass as given by the 

following equation: 

       (2.12)  
where   is the applied torque vector due to one thruster,   is the thrust force vector and   is the lever arm 

vector from the SV centre of mass to the gas jet exit.  

Thrust torques aim for five principal functions: attitude control, spin rate control, nutation control, 

resetting of wheels or control gyros. Orbits readjustments in general are carried out by the main propulsion 

system which is made typically independent of the attitude thrusters. 

There are two main types of gas jets employed in satellite orientation, namely cold gas and hot gas. The 

former is superior in performance whereas the latter is more consistent and reliable. Technology already 

available permits combination of the high thrust level of the hot jets with the trustworthiness of the cold ones. 

Hot jets rely on a chemical reaction typically generating thrust levels over 5 N. Thrust impulses can be made 

very small for precise control by firing in a spaced pulse mode. 

Two thruster modes will be considered: the continuous thruster and the pulse thruster. The former 

functions as a linear actuator providing the requested torque from the controller, whereas the latter triggers 

in a pulse mode providing increments of angular impulse. 

In simulations there is freedom to change thruster’s parameters in order to put to the test the 

robustness of the control strategy. The SV inertia and the required manoeuvrability will ultimately dictate the 

amount of available control needed, implying that the thrust and lever arm must be dimensioned accordingly 

and realistically. The parameters selected for the SV thrusters are presented in 2.4.   

 

Table 2.4 – Thruster parameters 

            Period Quantization step 

                                 

 

In order to emulate the impulse characteristic of the thrusters, a coarse quantization is performed to the 

requested control momentum. Therefore the constant magnitude pulse with varying width is replaced by an 

equivalent constant width pulse with varying magnitude. The main objective is to convey the impact of a non-

ideal coarse actuator on accuracy and transient response near the target attitude where small incremental 

impulses are required. The quantization considered divides the thruster’s control input in       values, 

from    to   in      steps. For instance a value of           is clipped to         , whereas a value of 

          is rounded up to         . 
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Attitude thrusters are actually paired in order to minimize increments of linear momentum that cause 

undesired orbit changes. Therefore the actual maximum momentum about each axis is      . 

The limited propellant supply is a major limitation on the use of such systems. Dimensioning the fuel 

budget is an important part of the mission planning but it will not be done in this work. 

I. Determining Position 

 

The need to determine the Sun and Earth vector in Earth Centred Inertial (ECI) coordinates poses the 

problem of updating the satellite’s position regularly. There are mainly two solutions to it: 

 Use of tracking stations on Earth to monitor the satellite’s orbit. The information is then sent via 

uplink to the satellite 

 Use of GPS receiver on board 

The first one is obviously more expensive as it requires the service of a network of dedicated or shared 

grounding stations which provide a tracking and uplink service, and it might be mandatory to install 

dedicated antennas to receive the signal. 

On the other hand [7] proves usefulness of GPS signals for determining position of the satellite in its 

orbit from  Low Earth Orbit (LEO) to geosynchronous altitudes. A GPS receiver for LEO is sufficient to ensure 

signal strength and reliability, but still there is room to explore High Earth Orbit (HEO) adapted receivers. In 

recent years most satellites operated with conventional LEO receivers and its reliability has been both 

experimentally and operationally consistent. Therefore the SV is considered to rely on the GPS system to 

obtain its position in ECI with an error modelled as additive Gaussian noise: 

  ̂               (2.13)  
where              

   having           

In reality this value is a little conservative given current GPS technology, which guarantees that the 

simulation results are not masked by an over-performance of this sensor. 

2.2. Orbit Conditions 

A. Keplerian Orbits 

 

Newton’s laws are used to model the dynamics of translational motion of the satellite about the Earth 

centre. Regarding artificial satellites orbiting the Earth the contribution of the mass of the satellite ( ) to the 

gravitational force can be neglected because of its much smaller order of magnitude compared to the Earth 

mass. The orbital dynamics is accordingly given by: 

 

  ̈   
 

  
  (2.14)  
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with      being the constant gravitation of the Earth,   being the SV position relatively to the Earth centre 

in ECI coordinates, and   its norm or equivalently the distance to the Earth centre. 

It is assumed that the satellite is a point mass and the Earth is a perfectly spherical object. Typical 

perturbations to this idealistic model, such as the Earth’s oblateness, third body interactions, drag due to 

solar wind and aerodynamic forces due to atmosphere interference are not introduced in the framework as 

the main concern is attitude control. 

Solutions to Newton’s law for the two body problem constitute the orbit which is well-known to be a 

conic section. The solutions depends only on launching conditions, namely initial position and velocity 

vectors. Once these two quantities are established one can determine the ideal Keplerian orbit for all time 

instants using the classical orbital parameter description as in [4]. 

 

For simulation purposes it is important to note that finite numerical precision on the integration of Eq. 

(2.14) constitutes a source of error which tends to increase with simulation time.  

B. Viewing and Lighting Conditions 

 

An important factor regarding attitude acquisition sensors such as the Sun sensor and Horizon sensor is 

viewing conditions to the Sun and Earth respectively. 

 There is the possibility that the Earth get in front of the Sun, blocking the Sunlight necessary to measure 

the Sun angle. Two particular situations can occur: transit and occultation. Transit is the passage of the 

satellite in front of the disk of a planet as seen by the observer. Occultation is the passage of the satellite 

behind the disk. The geometry that leads to the aforesaid configurations is illustrated on Figure 2.6.  

 

 

Figure 2.6 - Planar geometry for viewing and lighting conditions for the Sun, planet, satellite and 

observer 
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The umbra is the region behind the planet where the satellite is completely shadowed from the Sun. In 

the vicinity of the umbra lies the penumbra, the region where the satellite partially sees the Sun disk, causing 

its illumination to be reduced.  

In practice because the Sun angular width is small compared to the Earth width for Earth orbiting 

spacecraft,  for simulation purposes considering the Sun as a point largely simplifies the lighting conditions 

evaluation and still keeps the necessary realism. Therefore the conditions for transit and occultation, which 

are now derived constitute a fairly good description. Let   be a vector from the Sun to the SV,   be a vector 

from the Sun to the centre of the Earth, and    be the radius of the Earth. 

The satellite is in transit relatively to the Sun whenever: 

          (
   

‖ ‖ ‖ ‖
)      and       

On the other hand 0ccultation occurs when: 

         (
   

‖ ‖ ‖ ‖
)      and      

For simulation purposes the quantity 
   

‖ ‖ ‖ ‖
 is badly conditioned so in alternative we use the infinite 

light source distance approximation which renders evaluation of a different quantity. Let    be the position of 

the Sun (observer) relatively to the Earth and   the normal component of the SV position relatively to the 

Earth:  

    (
  

‖  ‖
 

 

‖ ‖
)  

This way condition          (
   

‖ ‖ ‖ ‖
) is replaced by    ‖ ‖. Whenever this inequality is true the 

Sun sensor is disabled and so no Sun vector measurement is available. 

C. Model of the Sun Position in ECI 

 

The Earth revolves around the Sun in an ellipse of eccentricity           . Because of this relatively 

low value a circular orbit is sufficient to capture the essence of its trajectory. Also there is no point in adding a 

more accurate Earth orbit description once its role in the following development is unimportant. The orbit 

radius is considered equal to the mean distance from the Earth to the Sun: 

                       

Therefore the Earth trajectory in the ecliptic frame is modelled by 

 
  
     [

    
    
 

] (2.15)  

where   
  

 
 , with   the orbital period (          days) and   the time elapsed since vernal equinox. With 

this choice the transformation from the ecliptic frame to the ECI frame is a rotation       followed by a 

rotation       , where          is the inclination of the ecliptic relatively to the Earth equator. 

   
                   

   (2.16)  
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     [

    
         
         

]   
   

(2.17)  

 

2.3. Attitude Kinematic and Dynamics 
 

In this work, the quaternion parameterization is used to represent the attitude of the single SV. This has 

been extensively used in the literature because it yields no singularities as opposed to other 

parameterizations such as Euler angles or rotation matrixes (see [10] for details). The quaternion properties 

and kinematics are presented in Appendix A.  

Let the quaternion  ̅ represent the orientation of the rigid body with respect to a reference frame. The 

kinematics of the quaternion is governed by the following differential equation:  

 
 ̇̅  

 

 
     ̅ (2.18)  

dependent on the instantaneous angular velocity through      defined as: 

      [
 [  ]  

    
] (2.19)  

Once established the kinematic equations of motion the focus turns now to the dynamics which relates 

the motion to the moments applied to the satellite. The satellite is assumed to behave approximately like a 

rigid body in free space housing three or four reaction wheels allowed to rotate in a fixed axis with respect to 

the satellite. Such system obeys the well-known rigid body mechanics with additional terms due to the 

reaction wheels inclusion. Hence the total angular momentum of the entire satellite is given by: 

             (2.20)  
with   being the total angular momentum,   the inertia matrix of the satellite including the wheels, and     

the additional momentum provided by the rotation of the reaction wheels: 

 
   ∑  

      
 

 

 

 [  
      

   ]  
       (2.21)  

where   
  is the moment of inertia of the     wheel with respect to its axis of rotation given by versor   ,  

  is 

a vector whose elements are the rotational speeds of each of the n wheels   
 , and     [  

      
   ] is 

the inertia matrix of the wheels set. The time derivative of   relatively to an inertial referential equals the 

external applied torque, resulting in the dynamic equations of motion, which can be written in the body frame 

coordinates as: 

   (
  

  
)
 

 (
  

  
)
 

     (2.22)  

 

The term (
  

  
)
 

 is the derivative relatively to the body frame. The term     comprises the gyroscopic 

effect which accounts for the fact that the satellite is in rotation relatively to the inertial frame. Vectors in Eq. 



19 
 

(2.22) are conveniently written in the body frame as it will be seen ahead. Substitution of the expression of   

in the above equation yields: 

 
(
  

  
)
 

 (
 

  
       )

 

            (2.23)  

Resolving terms:  

  
(
  

  
)
 

   ̇       (
 

  
  )

 

      (2.24)  

 
The first two terms in Eq. 190 correspond to the contribution of the entire body of the satellite as a rigid 

body including reaction wheels (at zero rotational speed), whereas the third and fourth terms account for the 

effect of the rotation of the wheels. The term (
 

  
  )

 

 can be rewritten as the following: 

 
(
 

  
  )

 

 
 

  
          ̇    

 

  
   (2.25)  

The moments of Inertia   
  and their respective wheels’ axes are constant relatively to the satellite’s body as 

this was the frame of reference chosen, hence  
 

  
    . Thus the last term in Eq. (2.25) is eliminated  

 
(
 

  
  )

 

    ̇  (2.26)  

Eq. (2.22) can be rewritten by replacing (
  

  
)
 

  , using Eq. (2.26) and isolating the term  ̇: 

  ̇                ̇          (2.27)  
Eq. (2.27) is a nonlinear differential equation that can be directly implemented in simulation. The reaction 

wheels respond to the control system via  ̇ . Wheels acceleration is provided by the wheels net applied 

torque,    [  
   

   
   

 ] , which ultimately constitutes the control input variable: 

   
  ̇ 

    
  (2.28)  

Making the common assumption that all wheels are identical then:   

 

    ̇     (2.29)  
Thus the input term can be rewritten as    ̇  as 

    ̇       (2.30)  

where    is defined as the wheels axes matrix:    
  

  
 

The inertia matrix value for the SV is dimensioned as if the SV inertia corresponded to the one of an 

equivalent cylinder with radius   , height    and mass   . Considering the z-axis coincident with the 

symmetry-rotation axis it renders the following expression for the SV inertia matrix: 

  

[
 
 
 
 
 
 

  
  (   

    
 )   

 
 

  
  (   

    
 )  

  
 

 
    

 
]
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The selection of these values shall be realistic and according to the previously dimensioned wheels and 

thruster lever arm. Thus we establish          ,          and       , resulting in the following SV 

inertia matrix about its centre of mass and including reaction wheels:  

 

  [
      
      
    

]        

 
We conclude this section by reflecting on the nature of the external moment  . This includes all external 

moments applied to the satellite which include the control moment by the aforesaid gas thrusters and 

disturbance torques due to uncontrolled causes. Among these the most common are: gravity gradient torque, 

asymmetric solar radiation pressure on the satellite’s surfaces, aerodynamic torques at low altitudes, and 

magnetic torques due to the Earth magnetic field.  
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3. Attitude Estimation 
 

3.1. Initial Considerations 
 

Like any other navigation problem, satellite navigation poses the need of acquiring position and 

orientation relatively to a certain frame of reference. For the case of a single SV it is also generally necessary 

to obtain its angular velocity.  

A state space representation is a mathematical model that describes the behaviour of a given system by 

differential equations. State space refers to the algebraic space whose coordinated axes are the state 

variables. State estimation is the process of retrieving an estimate of the true state.  

Regarding attitude one is particularly interested in estimating the quaternion attitude ( ̅) and the 

angular velocity ( ) provided the Sun vector, the nadir or the Star Tracker quaternion. The angular velocity 

readings from the gyro as well as the Star Tracker quaternion constitute themselves direct estimates. 

However knowledge of the dynamics can provide estimates in periods where new sensor readings are not yet 

available and most important it allows for reduction of sensor errors. Furthermore, and contrary to 

deterministic methods, state estimation does not require full information to output an estimate. This 

capability allows for integration of multiple readings at different rates and from independent sensors; no 

synchrony is required between them. Thus data fusion becomes rather simple and in the event of sensor 

failure, though accuracy might be reduced, the estimation flow is not compromised.  

Deterministic methods are an alternative solution to estimation. They are simple to interpret physically 

and geometrically. However they are algebraically cumbersome and difficult to model for biases and time-

varying parameters. Large sets of data are difficult to combine with the proper statistical balance.  

In contrast state estimation can provide statistically optimal solutions. It is relatively easy to expand the 

state vector to represent a wide range of related attitude parameters, such as biases, model perturbations, 

orbit parameters and time-varying coefficients. The major disadvantage of state estimation processes are the 

possibility of divergence and occasionally they require initial guesses that are more accurate than for 

deterministic methods.  

In practice both solution methods are frequently used in a complementary fashion. The deterministic 

method is often used to obtain a priori estimate which is used as the initial guess in the estimator. Moreover, 

supervision of the filter can be performed by comparison of values with deterministic results.  

One of the most successful estimation techniques in a wide range of fields is the Kalman Filter (KF). It 

is a relatively simple algorithm to implement yet devoted to linear systems. The Extended Kalman Filter 

(EKF) constitutes an adaptation to nonlinear systems estimation. It is particularly well suited algorithm for 

attitude estimation of the nonlinear SV system once its dynamics present soft nonlinearities as the angular 



22 
 

velocities found in practice are generally low. The quaternion representation however reserves a few 

subtleties as we shall see in the sequel.  

In this work two strategies for obtaining attitude data are utilized: the first is a deterministic method 

consisting in the q-method solution of the Wahba’s problem. The second is a Multiplicative Extended 

Kalman Filter (MEKF) for quaternion and gyro drift estimation 

3.2. An Attitude Deterministic Method – The Wahba’s 

problem  
 

Regarding attitude the Wahba’s problem is a well-known classical solution [11]. It computes an optimal 

estimate given at least two measurement pairs of vectors. Specifically two line of sight (LOS) vectors available 

to the SV are the Sun vector and the nadir. – 

Generally speaking, suppose that we have access to two unit vector    and    measured in the 

spacecraft body frame. Each of these unit vectors contains two independent scalar pieces of information. It is 

also necessary to know the components of the two measured vectors     and    in some reference frame. The 

reference frame is obviously chosen to be ECI frame, though this is not mandatory. One can use a rotating 

frame such as the orbit normal referenced frame or the local vertical. The attitude parameterization of this 

method is the attitude matrix     defined as the matrix that rotates vectors from the reference frame to the 

spacecraft body frame. According to [11], we seek an attitude matrix such that:  

        (3.2.1)  
        (3.2.2)  

Combining both expressions yields 

                     (3.2.3)  

This equality is true for error free measurements; however in the presence of errors this is not generally 

true. The equivalent happens for (3.2.1) and (3.2.2), where matrix   might not be equal in both relations if 

errors exist. 

The earliest algorithm for determining SV attitude from two vector measurements was the TRIAD 

algorithm; a very simple method but that does not treat the information in the two observations optimally. 

Wahba introduced a loss function such that its minimization renders the proper and orthonormal matrix  .  

 

 
     

 

 
∑  |      |

 

 

 (3.2.4)  

 
Where      is the set of unit vectors measurements in the SV body frame and      is the corresponding 

unit vectors in the reference frame,      are non-negative weights which should be selected beforehand. An 

adequate choice is to assign the inverse of the standard deviation of the corresponding sensor, i.e.        .  
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Notice that the number of vector measurements is not limited to two measurements as mentioned 

before. Indeed it might comprise any larger set, so additional observations can be inserted and contribute 

with information for attitude determination. 

 The loss function in (3.2.4) can be rewritten as: 

      ∑  

 

         (3.2.5)  

where  

   ∑  

 

    
  (3.2.6)  

Therefore minimization of (3.2.5) comes down to maximization of        . The original solutions solve 

for the attitude matrix   directly, but most practical applications have been solving for the attitude 

quaternion through Davenport’s q-method [12] which is of greater interest.  We present it here. 

Making the quaternion attitude appear in expression        , through       ̅     
  | |       

        [  ] and evolving it renders: 

          ̅   ̿ (3.2.7)  
where   is the symmetric traceless matrix: 

 

  [

           ∑        
 

∑          
 

 
     

] (3.2.8)  

Clearly minimization of      is equivalent to maximization of the modified function     ̅  

     ̅   ̅   ̅ (3.2.9)  
 

The extrema of    subject to the normalization constrain  ̅  ̅    is found by the method of Lagrange 

multipliers. We define the corresponding Lagrange auxiliary function 

    ̅   ̅   ̅       ̅  ̅  (3.2.10)  
 

where   is the Lagrange multiplier. Now    ̅  is maximized without constrain, and   is satisfied to 

normalization constrain. Differentiating Eq. (3.2.10) and equalling to zero, one obtains the eigenvector 

equation 

   ̅    ̅ (3.2.11)  
The solution is a quaternion that is an eigenvector of  . Substituting (3.2.11) into (3.2.9) results     ̅  

 ̅   ̅   . T  Thus the q-method finds the optimal quaternion estimate as the normalized eigenvector with the 

largest eigenvalue: 

   ̅         ̅    (3.2.12)  
 

There is no solution when the two eigenvalues of   are equal. This is not a failure of the q-method, 

rather it means the data are not sufficiently rich to determine the attitude uniquely. It can be shown that 

when at least two of the vectors    are not collinear, the eigenvalues of   are distinct and therefore this 

procedure yields an unambiguous quaternion. 
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The application of this algorithm carries a subsequent operation because the optimal attitude has two 

possible quaternion representations. Therefore if one leaves the q-method to compute  ̅    without any 

supervision it is most certain that discontinuities will occur via change of sign. Such changes in the point of 

view of an external observer appear as sudden jumps which might generate discontinuities downstream the 

overall control system.  

In order to counteract this undesired behaviour every time new observations are available the q-

method based estimator must compare the new estimate value with the previous one. It is expected that this 

estimates do not differ largely from one another if the sampling period is small enough. Thus if the difference 

is larger than a fixed amount the optimal quaternion is changed to its dual representation: 

   ‖ ̅      ̅      
‖                 ̅       ̅     

 
A different solution is to use one-half of the quaternion set, say for instance the quaternions which have 

a positive scalar component, i.e. 

 

 ̅       ̅       

 
Nevertheless with this quaternion subset there is still ambiguity for quaternions with scalar part     , 

reason being the first solution was adopted. 

To finish this determination algorithm the measurement weights must be dimensioned. One typical 

approach is to use the inverse of the standard deviation of the corresponding measurement: 

 

     
    ⁄  (3.2.13)  

 

Despite the attitude covariance estimates were not derived, one can argue that they are dependent on 

the particular orientation between the two sensors. Similarly to what happens with the TRIAD algorithm, the 

Wahba problem solution gives better estimates when the quantities ‖     ‖  and ‖     ‖ are maximized 

(i.e. close to  ) then when they drop to lower values. So in a hypothetical but realistic situation where the SV 

finds the nadir near alignment with the Sun line, small errors in the LOS vector quantities translate into large 

errors in the attitude quaternion. Hence the system must be aware of the degree of uncertainty present in the 

estimate by assessing the current line of sight configuration. 

3.3. Kalman Filtering 
 

  The Kalman Filter equations are presented in Appendix B. They are only repeated for the attitude 

estimator because it constitutes a particular variant of the EKF common frame operations as we will see. For 

angular velocity estimation, the necessary quantities to use in the Extended Kalman filter are computed, 

namely the propagation matrix and the observations sensitivity matrix. 
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A. Extended Kalman Filter for Angular Velocity Estimation 

 

Dynamics Model 

Eq. (2.27) governs the dynamics of  . The discrete version of this equation is relatively straightforward 

to obtain considering the following approximation: 

 
 ̇  

            

  
 (3.3.1)  

Resorting to the following notation:          and              and after little algebra, we get 

the discrete version of the dynamics       (      (
 

  
  )

 

) as: 

 
                               (  (

 

  
  )

 

)      (3.3.2)  

The propagation matrix    
  

   
 needs to be computed for the propagation of the covariance matrix. 

         (
 

  
         

 

  
       )  

 

  
   

The first term in brackets decomposes into two terms: 

 

  
       

 

  
       

 

  
                       

Where the cross product between vectors and matrices is generalized by performing the cross product with 

each row of the corresponding matrix and placing the result in the corresponding columns: 

        [[
 
 
 
]    [

 
 
 
]    [

 
 
 
]    ] 

          [   [
 
 
 
]    [

 
 
 
]    [

 
 
 
]] 

Similarly the second term in brackets leads to 

 

  
                [[

 
 
 
]    [

 
 
 
]    [

 
 
 
]    ] 

where we used the cross product generalization again. The last term of    is simply 
 

  
       , rendering 

the propagation matrix in the following compact form: 

 

                                            (3.3.3)  
  

The model covariance    translates the model errors as Additive White Gaussian Noise (AWGN). It is 

defined in the parameter tuning section along with the initial covariance    that must be defined prior to 

estimation.  
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Observation Model 

The observation is simply given by gyro readings which are assumed to be affected only by AWGN 

                      (3.3.4)  

This is a linear model, with a constant sensitivity matrix given by 

         (3.3.5)  

The gyro covariance was given earlier in section 2.1 when the gyroscope technology was described. The 

derivative noise torque is not taken in account to establish the observations covariance, therefore we set 

      {      
       }    

      

B. The Multiplicative Extended Kalman Filter for Attitude Estimation 

 

The formulation here derived follows references [8] and [9]. We derive the equations for two filters: a 

pure attitude estimator, and an augmented state estimator. The second estimator adds the gyro drift to the 

state representation so that gyro biases can be compensated for. 

Hence the former outputs an estimate   [ ̅] whereas the latter outputs an augmented state   [
 ̅
 
].  

 

Dynamics Model 

For the gyro drift defined as the difference from the true angular velocity and the reference angular 

velocity,         , the discrete model is assumed to be simply: 

              (3.3.6)  
where      is an additive white noise vector with noise power (  

 ).  

Quaternion dynamics are quite more complicated. Generally there are two Kalman filter strategies for 

quaternion estimation: the Additive EKF (AEKF) and the Multiplicative EKF (MEKF). The first one regards the 

four quaternion components as independent parameters, therefore having an inherent redundant nature, 

whereas the second one makes use of a three-component representation of the deviations from the reference 

quaternion. The latter strategy was adopted as it uses a non-singular representation for the attitude through 

a reference quaternion  ̅   , and simultaneously a non-redundant parameterization of the deviations.  

The MEKF represents the attitude as the quaternion product (see [8] or [9]): 

  ̅    ̅     ̅    (3.3.7)  
where  ̅ is the true quaternion,  ̅    is the aforesaid reference quaternion and   ̅    is the rotation of  ̅    

relatively to  ̅ parameterized by vector  . Several parameterizations of   ̅    exist. We adopt a unit 

parameterization here: 

 
  ̅    

 

√  | | 
[
 
 
] (3.3.8)  

For a null rotation notice that   ̅    [       ]     . For small rotations the following approximation is 

valid, 
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  ̅    [

  

 
  ]

 

 (3.3.9)  

The basic idea of the MEKF is to compute an unconstrained estimate of the three-component   yet using 

the correct normalized  ̅    to provide a globally nonsingular attitude representation. 

The MEKF computes an estimate  ̂       of  . We remove the redundancy of the attitude 

representation by choosing the reference quaternion  ̅    such that  ̂ is identically zero, meaning that   ̅    

is the identity quaternion. Identifying  ̅    as the attitude estimate means that   is a three-component 

representation of the attitude error. This provides a consistent treatment of the attitude error statistics, with 

the covariance of the attitude error in the body frame represented by the covariance of  .  

The true quaternion kinematics equation is:  

 
 ̇̅  

 

 
 ̅  ̅ (3.3.10)  

Since  ̅    is also a unit quaternion, it must obey: 

 
 ̇̅    

 

 
 ̅     ̅    (3.3.11)  

Computing the time derivative of (3.3.10) and using (3.3.7) and (3.3.11) yields: 

  

 
 ̅  ̅    ̇̅  ̅    

 

 
  ̅  ̅     ̅    (3.3.12)  

Substituting  ̅ using (3.3.7) on the left side term of (3.3.12), then right multiplying this entire equation by  ̅   
   

and rearranging renders the propagation equation for the quaternion error 

 
  ̇̅  

 

 
( ̅   ̅    ̅  ̅   ) (3.3.13)  

Evolving this equation 

 
  ̇̅  [

 ̇
 ̇ 

]  
 

 
{[

         
     

]  [
               

        
]} (3.3.14)  

And simplifying: 

 
  ̇̅  

 

 
[
   (      )             

           
] (3.3.15)  

Recalling the fact that under the small incremental rotation condition          , the dynamics of the 

three-component vector are redrawn by computing the time derivative of  : 

 
 ̇   (

  ̇       ̇    

   
 ) (3.3.16)  

Substituting the time derivatives terms of (3.3.16) by the respective expression components of (3.3.15) 

yields:  

 

 ̇̅   
(
 
    (      )  

 
            )     

 
    (      )  

   
  (3.3.17)  

Evolving and simplifying Eq. (3.3.17) renders the kinematics dynamics for  : 

 
 ̇̅      (      )  

 

 
  (      )  

 

 
(      )    (3.3.18)  

The second term can be rewritten in the more useful form: 
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  (      )  

 

 
         (      ) 

where         stands for the matrix whose diagonal elements equal the diagonal of   and all off-diagonal 

elements being zero. We make   appear in (18) in both terms through the substitutions           and  

              :  

 
 ̇̅  (     

 

 
         )  

 

 
(       )    (3.3.19)  

Eq. (3.3.19) is a nonlinear and coupled differential equation in   and  , so we define an auxiliary state 

   [     ]  for the purpose of obtaining the dynamics written in terms of   . This auxiliary state allows the 

computation of the rotation quaternion   ̅    which is applied to the propagated quaternion. Because    is 

assumed to represent small deviations from reference values, then | |    and | |   . By definition   is 

seen as an error through the   ̅    rotation in the end of the update step that results in the new quaternion 

estimate  ̅   |   , with   being set to zero for the next filter cycle. Therefore its dynamics are solely needed to 

propagate its covariance matrix. Linearization of (3.3.19) renders:  

  ̇̅               (3.3.20)  
Discretization of (3.3.20) yields the discrete propagation equation: 

     |  (     [       ])  |      |       (3.3.21)  
This is the general prediction model for   taking into account the presence of gyro biases. It is readily 

adequate to be used in the augmented state estimator previously mentioned. The first and simpler filtering 

strategy does not consider   and so the corresponding model equals (3.3.21) with the     |  term 

disappearing. 

     |  (     [       ])  |       (3.3.22)  
Putting together Eqs. (3.3.6) and (3.3.21) holds the linearized model dynamics in discrete time for the 

auxiliary state estimator in matrix form: 

 
    | 

  [
        
     

]   | 
  [

     
     

]   (3.3.23)  

with         [       ] and    [
    

    
]. 

For estimation of   exclusively this becomes simply: 

     |      |         (3.3.24)  
The model covariance           

   represents the magnitudes of the errors in the model and in the 

absence of more information it is assumed to be a diagonal matrix whose dimensions must be consistent with 

each version of the filter respectively. 

The covariance error of the state     | 
  is propagated according to the general Kalman filter rule in 

[Appendix B] which is repeated here: 

     |      |   
      

  (3.3.25)  

where       and         for the first version, or    [
        
     

]  and   [
     
     

] with inclusion 

of gyro drift estimation 
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To finish the predict step the quaternion discrete propagation needs to be derived through 

discretization of (3.3.10) which is a time varying parametric differential equation due to the varying nature of 

  during the iteration time lapse. Assuming though that   varies little in one time step which is reasonable 

for satellite operation, and that    is sufficiently small, for instance            , then it becomes a linear 

differential equation whose solution is well known and renders the discrete quaternion propagation directly: 

 
 ̅   |   

 
 
        ̅ |  (3.3.26)  

with    taken from gyro readings and shifted  , which yields the propagation for   as: 

              |    (3.3.27)  
Again particularizing for attitude estimation exclusively,   is neglected and so  

         (3.3.28)  
 

Observation Model 

In this derivation only the augmented state estimator is considered here. The reason being that the 

simpler filter is a particular situation of the latter by eliminating all terms and variables related to  . 

Furthermore, as we are about to see,   does not affect the observation models here presented.    

The observation determines the amount of feedback that should be applied to the state update. Though 

its final objective is to update the state  , the observation model performs under the auxiliary state 

description. Therefore the relation between measurement   and    must be obtained.  

 

 Sun and Earth vectors 

 

Both Sun and Earth sensors provide a body vector measurement in the body coordinates given by: 

                  ̅       (3.3.29)  
where    is the same vector written in ECI coordinates.  The measurement covariance          

   is 

related to the measurement angles  ̂  [ ̂  ̂] in the next section. After applying some algebra and the same 

approximations for   ̅    as previously yields: 

        ̂  [ ̂  ]  (3.3.30)  

with  ̂  being the measurement predicted by the reference quaternion or put differently, as if there was no 

rotation error, i.e.   ̅    or equivalently  ̅   ̅     ̅   | : 

    ̂     ̅       (3.3.31)  
The derivative of      ) with respect to    gives the measurement sensitivity matrix: 

   
   

      

   
 [[ ̂  ]     ] (3.3.32)  

 Star Tracker quaternion 

 

The Star Tracker outputs a quaternion measurement, resulting in the simple observation model: 

        ̅   ̅        ̅     ̅       (3.3.33)  
The noise covariance matrix for the Star Tracker is assumed to be isotropic 

          
     

      (3.3.34)  
Putting the term   ̅     ̅    into matrix form results in 
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  ̅     ̅    [
              [   ]    

               
] 

Applying approximation (3.3.9) to the above expression yields: 

  ̅     ̅    [
         

 

 
 

 

 
[  ]    

     
 

 
       

]  [
(     

 

 
[  ])          

 

 

     
 

 
       

] 

Hence the predicted measure model used in the filter is assumed to correspond to the approximation 

just presented: 

     

  (   ̅   )  [
      

 

 
[  ]        ̅     

 

 

 ̅      
 

 
      

] (3.3.35)  

Recall that the predicted measurement however is done assuming    . Therefore this expression is 

only meant to compute the corresponding sensitivity matrix of the Star Tracker: 

   
   

      

   
 [

 

 
   ̅        ] (3.3.36)  

with    ̅  defined in Appendix (A). The propagated quaternion  ̅   |  is used as the reference quaternion 

  ̅     ̅   |  .   

 

Notice that as mentioned earlier both observation types are independent of  , hence the      and      

present in the sensitivity matrices of    and    respectively. 

The Kalman gain is given by: 

          |    (      |   
   )

  
 (3.3.37)  

The covariance state update yields: 

       |         |      |   
 (      |   

   )
  

      |  (3.3.38)  

The Kalman gain can be evidenced in the last expression to yield the more compact form: 

       |                 |  (3.3.39)  
The state update as mentioned before is performed under the auxiliary state    current estimate 

according to:  

       |   
      | 

    (     (    | 
 )) (3.3.40)  

Recall that because   represents the attitude error its value before update is null, i.e.     | 
  [

    | 

    | 
]  

[
 

    | 
]. The sensitivity matrix is given according to the type of observation: 

   {
                                                     
                                                     

 

and likewise for the observation function: 

   {
  (   ̅   | )                                                   

      ̅   |                                                  
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The error     |    parameterization propagates to the predicted quaternion resulting in the updated 

quaternion estimate and ending the MEKF iteration:  

    ̅   |      ̅     |      ̅   |  (3.3.41)  

 

 A summary of the augmented state MEKF operations is presented next: 

 

Predict Step 

1.    |  [ ̅ | 
  | 

]  

2.             |   

3.   ̅   |   
 

 
        ̅ |   

4.      |    |   

5.          [     ]  

6.  
   [

       
     

]  

7.      |      |   
      

   

 

Update Step 

1.  
  (    | 

 )  {
                                             

                                      
  

2.  
   {

                                             

                                      
  

3.         |    (      |   
   )

  
  

4.      |                 |   

5.  
    | 

  [
 

    | 
]  

6.      |   
      | 

    (     (    | 
 ))  

7.    ̅    ̅     

8.   ̅   |      ̅  ̅   |   

9.  
    |    [

 ̅   |   

    |   
]  

 

C. Tuning of Estimator Parameters 

 

We now turn our attention to the no less important task of tuning the filter parameters.  
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When a relation between the covariance and the variables of the process, whether state, input, output or 

a combination of the three is not available, one can only resort to a trial and error procedure. This method 

was adopted for the angular velocity EKF: 

               

           .  

 
For the model covariance of the MEKF we distinguish between two covariance groups: the constant 

covariance and the variable covariance. In the case of the measurements covariance, we derive a function that 

relates it to the observations themselves. 

 

Model Covariance  

For the augmented state MEKF the covariance of the propagation process is defined as    

   
   [

     

    
]  (3.3.42)  

     is the covariance corresponding to the generalized vector component of the quaternion error which 

is indexed to   to indicate that it is time-varying. On the other hand    is considered to be constant. An 

alternative fixed model covariance for the vector component of the quaternion error is: 

        
      (3.3.43)  

with   
            .  

Recalling the approximations that led to (3.3.26), it becomes evident that higher angular velocities lead to 

larger errors in the predicted quaternion. Moreover the larger the sampling period the more coarsely Eq. 

(3.3.26) represents the continuous dynamics of the SV. Based on such facts a varying covariance for the three-

component of the quaternion error is assumed to be parameterized as follows: 

   
       ‖  ‖      (

  

 
)
 

     (3.3.44)  

Notice that      is always a diagonal matrix as one admits there is no cross correlation between error 

components. Dimensioning      comes down to setting values for parameters  ,  ,  ,   and  . Parameter   is 

a magnitude factor;   establishes a lower bound in ‖  ‖ units;   establishes the polynomial dependence with 

angular velocity norm;   is the sampling period normalization factor; and   the polynomial dependence with 

sampling time. One criteria used is that     should be equal to   
  at a sample period of      . Table 3.1 

presents the choice of parameters. 

 

Table 3.1 - Parameter selection of the three-component vector covariance 

      [     ]   [ ]   

2                    0,1 2 
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Measurements Covariance 

 

 Sun and Earth vectors measurements 

 
Once the inertial position error produced by GPS is relatively small, measurement errors are assumed to 

be solely a consequence of Sun and Horizon sensors noises. Therefore we evaluate their impact on LOS vector 

errors by finding the relation between their covariance matrices. 

We pose the problem in the general variables   and   such that       . Here   represents the 

computed   values, which are function of the vector of   measurements  . Using a first-order Taylor series 

renders the approximate error relation: 

       
    ∑

   

   

 

   
    (3.3.45)  

or put into matrix form 

              (3.3.46)  
where   is the      matrix of partial derivatives with the elements           ⁄ . The covariance of   is 

then given by: 

                                        (3.3.47)  
which in terms of LOS and angle measurements translates into: 

            
     

   (3.3.48)  

where    is the covariance of the computed vector,    the covariance of angle measurements and   
  

  

  
.  

To obtain   
  we recall the relation expressed in Eq. (2.3): 

  [                          ]  

Deriving   with respect to   [    ]  renders: 

         
  

  [
                  
                 

     
] (3.3.49)  

Eq. (3.3.49) uses true angles to compute   
 . However, because the noise is relatively low, a fairly 

reasonable approximation holds with the use of the measured set  ̂  [ ̂  ̂] .  

 

 Start Tracker Measurement 

 

In Section 2.1 the Star Tracker measurement is regarded as a small rotation error from the true 

quaternion given by (2.4). Substituting approximation (2.5) into (2.4) yields the following approximation:  

         

 ̅  [
    

 

 
   

 

 
  

   
 

 
  

] (3.3.50)  

 

where  ̅  [    ]
  here is the true quaternion for matters of abbreviation. The covariance of the Star Tracker 

measurement relates to the covariance of the three-component vector using (3.3.47), with   substituted by: 

  
 
 

  ̅

  
 

 

 
[
        [  ] 

   ] 
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and          substituted by  {        
 }    , resulting in the compact form for the Star Tracker 

covariance: 

      
 
  (  

 
)
 

 

The quaternion is unknown, however a very good approximation holds if one uses the measurement or 

the estimated quaternion for the purpose of computing   
 

.  

The Star Tracker RMS error was specified in Section 2.1 as 174 arcsec. Translation of this value in terms 

of vector   is necessary not only for the estimation algorithm but also for noise emulation purposes. 

As explicit in Eq. (2.5) the contributions of the small Euler angles            to the measurement error 

are approximately decoupled from each other when introduced via    [      ] . This means that 

they can be seen as orthogonal to each other, leading to the following approximation for the total RMS 

angular error     : 

         
   √   

    
    

  (3.3.51)  

Assuming an equal error distribution in the three angles: 

   
     

     
  

 

 
  

  

the Star Tracker covariance in terms of   becomes:  

                             
A simplified version of the Star Tracker quaternion covariance extends    to a 4-by-4 matrix to account 

for the scalar quaternion component as well: 

                    
Although this procedure is not very elegant, this fixed value for     leads to particularly good results as 

demonstrated in Chapter 6.   
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4. Attitude Control of Single Vehicle 

4.1. Dynamics Linearization  
 

The Linear Quadratic Regulator (LQR) is used in a wide number of applications in control. It was 

developed to address regulation problems in linear systems. The LQR implies a state space description of 

systems and finds the optimal control law in the sense that it minimizes a cost function dependent on the 

state deviation and control inputs. See [13] for more insight into LQR theory.   

Although the LQR applied to a nonlinear system does not guarantee stability, nor optimality, 

approximating the SV attitude dynamics to a linear system is relatively simple. Moreover assuming moderate 

angular velocities the linear approximation becomes a fairly reasonable assumption for satellite operation 

specially when maintaining a desire fixed attitude. During large attitude manoeuvres gyroscopic effects 

increase due to rotation of the satellite and reaction wheels speed. Hence the system departs from a linear 

dynamics, making the LQR more prone to failure. This can be partially counteracted through segmentation of 

the manoeuvre into smaller attitude changes and applying small angular velocities to the SV. The linearization 

of the SV dynamics follows in order to pave the way for the LQR design 

First of all we shall recall that the control objective is to force a given state of the single SV given as: 

 
     [

 ̅   

    
] (4.1)  

It turns out that such entity is incompatible with the LQR objective – bringing the state of a given system 

to 0 – because ‖ ̅   ‖     . The unit quaternion is incompatible with LQR implementation, and so a slight 

modification has to be made. 

The Kinematics of  ̅ can be written in terms of the reference state and additional deviation terms as 

 
 ̇̅   ̇̅      ̇  

 

 
   ̅                 (4.2)  

where    represents an additive error and    represents the angular speed error. This right hand side can 

be split into four terms: 

 
 ̇̅      ̇  

 

 
 ( ̅   )     

 

 
          

 

 
 ( ̅   )   

 

 
        (4.3)  

The first term of the right hand side equals  ̇̅    by definition: 

 ̇̅    
 

 
 ( ̅   )     

The incremental quaternion dynamics are retrieved by elimination of both these terms in Eq. (4.3) 

resulting in:  

 
  ̇  

 

 
          

 

 
 ( ̅   )   

 

 
        (4.4)  

Notice that    is not a quaternion, instead it is a 4x1 vector which represents the additive deviation 

from the reference quaternion. It does not represent a rotation and its norm is not constricted to unity. 
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Assuming small deviations from the reference state such that higher order deviation terms can be neglected, 

namely 
 

 
       , then the dynamics of    becomes (approximated): 

  ̇  
 

 
          

 

 
 ( ̅   )   

Rewriting the first term renders: 

We now linearize the dynamics of   around a given reference     . Recalling Eq. (2.27), we rewrite it in 

terms of      plus an incremental    such that          : 

  ̇      ̇     (  (       )   (       )       (       )      ) (4.6)  
Expanding terms:  

  ̇      ̇     (                                          

                  ) 
(4.7)  

Assuming small incremental    values, the quadratic term        can be neglected which renders 

the linear approximation for the rotation dynamics: 

  ̇      ̇     (                                     

                               )  
(4.8)  

At this stage some thought on an appropriate selection for      should be made. One choice is to invoke 

the three axes stabilized characteristic of the SV stated in chapter 2, so to assume in practice low angular 

velocities whether the satellite is in stationary pointing operation or even during manoeuvres; in such case 

       and  ̇     , hence  the dynamics significantly simplifies to: 

   ̇                          (4.9)  
Eq. (4.9) describes the dynamics of an integrator with entrances in   or   . Recall that   is the vector 

of external moments (disturbances apart,   equals the moment generated by the thrusters), and    the 

reaction wheels applied torque. Naturally that control with the two actuator types is regarded separately.  

The second option implies a non-null choice for the reference     . This leads to a tracking control 

problem to be addressed by resorting to a modified LQR that is overseen by a manoeuvre supervisor, as 

detailed next. If        the system representation is still linear but the terms that were nulled and lead to 

Eq. (4.9) now appear in the dynamics. Among these we distinguish two types of terms, those dependent on 

the small incremental velocity    and those independent. In addition, we define trim values for the control 

inputs:       and            such that  

                                       

The quantities of       and          have the purpose of forcing  ̇    to a certain value – normally 

fixed to be 0 – counteracting gyroscopic effects. The remaining terms describe the dynamics around the 

reference point, resulting in an equation on the incremental variables   ,    and    . Concretizing what 

has just been explained, the trimming equation has the following form: 

   ̇       (                                     ) (4.10)  

The incremental dynamics is ruled by: 

 
  ̇̅  

 

 
 (    )   

 

 
 ( ̅   )   (4.5)  
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    ̇     (                                  ) (4.11)  

Terms in    can be grouped by inverting the sign and order of the cross product            yielding: 

   ̇     (   ( [     ]  [      ]  [     ])        ) (4.12)  

Eq. (4.12) is free of trimming control variables. Therefore we have reached a stage where there exist two 

simultaneous processes in parallel contemplating the control of one single system. Both processes add up in 

the overall physical process of attitude control. In subsequent developments a manoeuvre planner is 

responsible for outputting the reference value      in a discontinuous step-like fashion and to assume 

 ̇     . This way the trimming controls       or         , depending on the actuation used, are such that 

the reference angular acceleration is nulled ( ̇     ): 

                                         (4.13)  

so trimming with the thrusters leads to  

                            (4.14)  

whereas trimming with reaction wheels leads to: 

                                  (4.15)  

4.2. LQR Controller 
 

Two descriptions of the linearized equations of the dynamics around some reference condition were 

derived; the first one being more simplistic, not accounting for gyroscopic and therefore suited to situations 

where low angular speeds are encountered; the second and more general description linearizes the SV 

system around any working point. The former constitutes in fact a particular situation of the latter, thus we 

only focus on the generalized description here. 

The LQR is devoted do linear systems whose state dynamics are described by the following general 

linear differential equation in the state   and control input vector  : 

  ̇        (4.16)  

As mentioned the objective of the LQR is to force   to zero, i.e.       . In the nonlinear description of 

the system however the reference might correspond to a nonzero value. The linearization in our previous 

analysis gave rise to a deviation vector state which is the stack of the deviation vectors from the references:  

   [
  
  

] (4.17)  

Which means that the LQR controller computes the needed actuation to null the deviations from the 

reference state vector      [
 ̅   

     
]. 

The LQR minimizes a cost quadratic function on both the state and control input over a given time 

interval. Here we adopt an infinite time span: 

 
  ∫(                     )  

 

 

 (4.18)  
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The state and control variables are evidenced as time dependent in the above definition. Matrix   is 

semi-positive definite      , matrix   is positive definite       , and they constitute weighting matrices 

in the sense that they weight the cost of having    and   different from zero. 

Minimization of   leads to the following linear relation for the feedback: 

             (4.19)  
where   is the feedback gain given by:  

          (4.20)  

with   being the solution of the Riccati algebraic equation: 

                     (4.21)  

If  ,  ,   and   are constant matrices during the time span of the control process, than   is also a constant 

matrix which implies a constant feedback gain  . Otherwise one has to deal with a detuned gain for possibly 

large periods of time. One solution to cope with variations is to repeat the gain computation with the 

appropriate matrices when significant changes are verified in their parameters. More concretely   and   rule 

the linearized dynamics of the corresponding nonlinear system around reference values. Nonlinear 

behaviours therefore are reflected in the linearized system through variations in   and  .      

Instead of regularizing the full state   we can specifically aim to control only the output       . So 

alternatively define the LQRy cost function as 

   ∫ (                      )   

 

 

 (4.22)  

In order to describe the system in the desired matrix form of Eq. (4.16) we first write Eq. (4.12) as: 

   ̇           (4.23)  
where       ( [     ]  [      ]  [     ]), and    and   are defined as: 

       {
                        

                                 
 

Stacking Eqs. (4.5) and (4.23) renders the description in the desired form of (4.16) with: 

  [

 

 
 (    )

 

 
 ( ̅   )

      
]                             [

    

  
] 

However as mentioned before  ̅ is a constrained quantity. This is reflected on the dynamics of    

making the LQR unsolvable. The solution is to trim    to the corresponding deviation vector component of  ̅, 

i.e.    is replaced with    [                   ] . Then the state considered for the LQR becomes 

  [
  
  

] and the fourths lines and columns of   and   are eliminated holding: 

  [
 

 

 
[     ]

 

 
(            [     ])

       ( [     ]  [      ]  [     ])
]                  [

    

  
]    (4.24)  

As mentioned earlier the matrix of the dynamics is in fact dependent on the reference value      as well 

as in the value of the wheels reference speed   . In the event of large differences between these values and 
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the corresponding real ones, the linearized description departs from the actual dynamics and as a 

consequence the computed feedback gain   will no longer be tuned.  

The strategy here used includes a process that monitors the current values and compares them with the 

current references. In order to perform this function, an additional block named manoeuvre supervisor is 

included upstream the controller. The controller itself is named the Modified LQR (MLQR) because it allows 

for recalculation of the feedback gains whenever the supervisor detects a significant difference between the 

reference values and the real (estimated) values. 

4.3. Manoeuvre Supervisor  
 

The function of the manoeuvre supervisor is to establish the reference values ( ̅   ,     ,        ) used 

in the linearization that renders the MLQR. In order to do this the supervisor collects the relevant data that 

influence the dynamics, namely  ̅   ,     ,        . The target attitude  ̅       is also input to the supervisor 

instead of being input to the controller directly. The supervisor monitors the estimation values and compares 

them with the current reference. When the differences become larger than a given threshold it triggers a flag 

indicating the MLQR block that it must update its gains by linearizing around new points of reference. The 

new reference points output by the supervisor are either their corresponding current estimated values 

coming from sensor readings directly or from the attitude estimator, or they are imposed by the supervisor as 

a required condition for the manoeuvre.  

The supervisor forces                 whenever ‖        –        ‖ becomes larger than a 

threshold. 

The reference attitude  ̅    is computed from the great circle angle from  ̅    to  ̅      . The supervisor 

provides a reference attitude to the controller that varies in a step discrete fashion. The reference attitude is 

updated when the estimated attitude has approached the previous reference attitude within a given 

threshold, otherwise it remains equal to the previous reference meaning that the SV is still manoeuvring to 

that point. The supervisor only assigns  ̅     ̅       when the distance between  ̅       and  ̅    becomes 

lower than another threshold value.   

It is a well-known problem that rotations from one orientation to another suffer from ambiguity. This is 

directly impacted on the quaternion entity which allows two representations for the same rotation:  ̅    and  

  ̅    for the same great circle. In general, one prefers the rotation corresponding to the smaller angular 

displacement with amplitude  , whereas the other corresponds to a rotation in the opposite direction with 

amplitude        . A solution exclusively based on dynamical systems does not exist. Although introduction 

of logic enables the supervisor to choose which rotation to attain: if         then instead of  ̅    the 

supervisor picks   ̅    as the required rotation and computes  ̅    accordingly.  

For the choice of      in fact two reference angular velocities are used simultaneously. The first        is 

the angular velocity around which the dynamics are linearized. The second        is the reference value to be 

attained by the controller.        is set by monitoring the norm ‖      –     ‖; when it becomes larger than a 
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given threshold the supervisor updates            . On the other hand        should be assigned a value 

that allows the necessary rotation from   ̅    to   ̅   , by other words, it is dependent on  ̅   . The axis of 

rotation from  ̅    to   ̅       is       
    

    (
    

 
)
. The adopted solution is              , where   

 

  
    . 

With this choice the angular velocity required to the controller is proportional to the total angle of rotation to 

complete the manoeuvre. As the estimated attitude approaches the target attitude the angular velocity 

diminishes. The following pseudo-code resumes the main operations performed by the supervisor. 

 

          ̅        ̅                ̅   
 

     
 

   
 

 - previous reference values 

 ̅     ̅           
     

          ( ̅     )   

                     {  

 ̅     ̅      ;   ̅   
 

  ̅       }  

      {  

 ̅      ̅    ( ̅   
 

 )
  

    

                    ̅        }  

                     ̅      ̅̅ ̅
     ̅   ; 

  ̅̅ ̅
    is a 10  rotation in the direction of 

 ̅       

    :  ̅     ̅   
 

  

          ‖      –     ‖                            

                 
 

    

   ‖  –  
 
‖                            

                  
 

   

                               

             
    

    (
   
 

)

   

  
    

 ̅   
 

  ̅   ;     
 

        ;   
 

         Update internal references 

return [    ,               and        ] Output  

 

To sum up, the supervisor comprises two main functions:  

1. manoeuvre planning by setting the target state to the controller as the vector reference [ ̅         ]    

2. monitoring values        and        . 

The MLQR is responsible to update the gain whenever any of the reference variables  ̅   ,        or 

        used in the linearization is updated by the supervisor. 

Also the trimming control  input is computed in the MLQR. For the thrusters it renders: 

              (                 ) (4.25)  
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For control with reaction wheels:  

   
         

(       (                 )) (4.26)  

where     is defined as the pseudo inverse of   . 

 

Adaptation for relative attitude tracking 

In Chapter 5 a group control strategy is presented where some SVs only have access to relative attitude 

information. Their control quest is to null relative attitude. Hence the supervisor must be adapted to cope 

with an input of the form  ̅   (attitude of frame 2 relatively to frame 1) for instance, instead of the pair target 

and estimate quaternions. The simple setting of  ̅     ̅   renders the solution. In fact this is equivalent to 

shifting  ̅       [    ]  , i.e. a null rotation, and seeing the estimate as   ̅     ̅  . Reference criteria 

selection by the supervisor remains unchanged as well as the dynamics of the MLQR.  

4.4. Wheels Reset Operation 
 

Wheel desaturation is performed normally in a steady state, when the SV has a low angular velocity. The 

control strategy remains the same, yet information about the applied wheel torques during resetting is 

necessary for counteraction by the thrusters trimming control component: 

           (          )       

The    quantity does not suffer any modification and so it is computed through the LQR feedback gain 

as given before. 

 Each wheel speed is reset to zero through the commanded torque computed in the following manner: 

         

Recalling that the dynamics of the wheel is a simple integrator:  ̇       , it renders the following 

dynamics for the commanded wheel: 

 ̇   
  

  
   

Such a controlled mechanism is known to belong to classic linear control. It is a first order system with 

pole at     
  

  
. The value of    defines the pole which is chosen to be     

 

  
      , so that the time 

constant has a high corresponding value of     .   

4.5. Control Schemas 
 

The block diagram for one SV simulation at this stage is the result of putting together the system 

dynamics (orbital dynamics and attitude dynamics), the attitude estimator and the controller closing the loop. 



42 
 

Figure 4.1 shows the control scheme for one SV using a simple LQR, i.e. without the manoeuvre supervisor 

included. 

  

Figure 4.1 - Block diagram with simple LQR control 

 

As we observe the target attitude is directly input in the LQR controller. The reference quaternion of the 

controller therefore equals the target quaternion and so it remains throughout the entire manoeuver. If a 

large manoeuvre is requested to this control system, convergence is dependent on the particular pair of initial 

and target attitude. Two possible undesired situations can occur after an unsuccessful manoeuver: the SV will 

end up wobbling in an uncontrolled motion with reaction wheels or thrusters acting ineffectively; or the SV 

converges to an attitude different than the target attitude.  

In order to avoid both aforementioned situations the proposed MLQR and manoeuvre supervisor block 

are tied in the loop rendering the control mechanism depicted in the block diagram of Figure 4.2. As shown 

the target is input to the supervisor along with the attitude estimate. The controller is fed with reference 

values smoothen by the supervisor which informs the controller when it should update its gains through an 

output flag. The controller outputs the necessary control amount for trimming as well as the incremental 

regulation control. 

   

 

Figure 4.2 - Block Diagram for control with supervised MLQR 
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5. Group Attitude  
 

So far the subject of analysis has been the stand alone SV system. An estimation algorithm and a control 

strategy were developed using information provided by its own on-board sensors. We now turn our attention 

to the problem of a group of satellites.  

Section 5.1 is dedicated to a deterministic method in order to obtain relative attitude data between the 

group. Section 5.2 focuses on simple strategies to attain attitude alignment in the group.   

5.1. Relative Attitude Determination 
 

One technique for relative attitude determination between multiple vehicles employs the use of Line of 

Sight (LOS) vectors obtained through projection of beacon beams in the Focal Plane Detector (FPD). This way 

each SV possesses a source (beacon) and a FPD. The beacon targets the FPD of other vehicles while 

simultaneously its own FPD is illuminated by the other SV beams. The FPD translates relative position 

between two SV in the frame of the vehicle where it is installed. 

In this section a deterministic solution is employed. This requires a minimum of three SV, resulting in a 

three pair of LOS vectors present in the formation. If a formation is constituted by four or more SV, then all 

combinations of three SV can be used to provide relative attitude determination. In Figure 5.1 the three SV 

group is illustrated along with the aforementioned LOS vectors. One of the SVs is considered the group chief 

whereas the other are called deputies.  

      

Figure 5.1 - Three vehicle configuration and respective LOS 

 

Because different reference frames are used to represent the various LOS vectors, a structured notation 

is required here. A subscript will describe the vehicle for which the LOS is taken both from and to, while a 

superscript will denote in which reference frame the LOS is both represented and measured. For example, 

    
       

 . 

Chief Deputy 2 

Deputy 1 
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The frame work for relative attitude herein is not the quaternion as done in previous sections, but the 

attitude matrix with notation   
 

 instead, mapping coordinates expressed in the  -frame into coordinates in 

the  -frame.  

The beams between vehicles are assumed to be parallel, so that common vectors are given between SVs 

but in different coordinates. This means that a feedback mechanism must exist that monitors and corrects 

any misalignments. This is usually achieved electronically, assuring that the transmitted beam is formed on 

the focal point of the plane detector. The formulation presented next follows [15].    

A. The Sensor Model 

 

The direct measures for all LOS observations are the image space projections        Denoting the 

measurement image vector   [   ] . The measurement model follows  

  ̃       (5.1.1)  
A typical noise model used to describe the uncertainty in the focal plane coordinate observations is 

given as: 

 
       

  
 

          
[
              

              
] (5.1.2)   

Where   
  is the variance of the measurement errors associated with   and  , and   is a coefficient 

typically with an order of magnitude of 1. This model accounts for an increased measurement standard 

deviation as distance from the FPD boresight increases. 

The focal plane observations must be converted to unit space LOS observations. Assuming a focal length 

of unity the true LOS vector is given by  

 
  

 

√       
[
 
 
 
] (5.1.3)  

The unity measurement vector becomes 

  ̃       (5.1.4)  
where           assuming that a normally distributed image-space vector renders an approximately 

Gaussian distribution over the unit space LOS vector. Because the LOS measurement is a unit vector, it must 

lie on a sphere, leading to a rank deficient matrix in   . 

The formulation presented here follows a first-order Taylor series approximation about the focal-plane 

axes. The partial derivative operator is used to linearly expand the focal-plane covariance in Eq. (5.1.2), 

yielding 

 
  

  

  
 

 

√       
[
  
  
  

]  
 

√       
    (5.1.5)  

Applying this operator to the uncertainty in the image space LOS vector gives the WFOV covariance model: 

               (5.1.6)  
Notice that   depends directly on the measurement values      , meaning that two distinct body-frame 

vectors,  , in general result in different covariance matrices. 
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B. Determination Algorithm 
 

As mentioned this algorithm computes a set of relative attitudes matrix between at least three vehicles.  

The LOS equations for each vehicle pair are given by 

      
     

      
   (5.1.7)  

      
     

      
   (5.1.8)  

       
     

     
       

      
        

   (5.1.9)  

The model in Equations (5.1.7)-(5.1.9) is purely deterministic and the LOS vector considered are the 

true LOS vectors. These are substituted by their corresponding measured LOS vectors in realistic operation, 

which gives rise to errors in the computed attitude matrices. The effect of such errors is shown in the results 

section. Performing the inner product between both members of (5.1.7) and (5.1.8) yields:  

      
  

     
       

   
   

       
   (5.1.10)  

Eqs. (5.1.9) and (5.1.10) represent a direction and an arc-length respectively. The algorithm to 

determine    
   provided such information is given in [18] and is briefly reviewed here. Its objective is to 

compute the first relative attitude matrix of the group. As we shall see later this only needs to be done once.  

In more general terms, matrix   satisfies the following relations:  

        (5.1.11)  
         (5.1.12)  

With the arc-length   and all vectors in Eq. (5.1.11) and (5.1.13) being given. All vectors have unit 

length. The solution is given by 

      ̂       (5.1.13)  

where    is any rotation matrix satisfying        , and    ̂     is matrix representing rotation about the 

   axis through an angle            which must be also determined. By Euler’s formula a rotation 

       is given by 

    ̂                                 [  ] (5.1.14)  

The strategy is such that first we find a candidate matrix    which satisfies          and then determine 

the values of   for which (5.1.12) is also satisfied. Let us look for    of the form Or the case that        

choose    to be any direction perpendicular to    and     . In all other cases one might choose 

    
     

|     |
  (5.1.15)  

Thus, in every case,    satisfies  

               (5.1.16)  
When       , i.e.    and    are linearly independent, a unique solution exists for    

            |     |          (5.1.17)  

Yielding for the matrix    the equivalent formula 

 
          [        ]  

 

       

[        ]  (5.1.18)  

Now to compute   define 

         (5.1.19)  
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Then   must obey the following equation equivalent to Eq. (5.1.12) 

                 (5.1.20)  

Substituting Euler’s formula and rearranging terms leads to 

                            (5.1.21)  

with  

   |    ||     | (5.1.22)  

          (           (          )) (5.1.23)  

For a solution in  , Eq. (5.1.21) poses the following necessary condition  

 |                |  |    ||     |   (5.1.24)  

If this condition holds, then  

 
          [

                

|    ||     | 
]    (5.1.25)  

Because the        function is two valued over the interval [    [ two solutions for   are obtained. 

Some criteria must be used in order to separate the correct solution. The adopted criterion is an assessment 

of the solution which better fits the given LOS data. This means we shall choose   such:  

          
 

 |       |    (5.1.26)  

The condition imposed by inequality (5.1.24) implies that not always this determination method is 

solvable. If a set of vectors cannot satisfy the inequality then another set from the formation must be used, 

which will naturally determine a different relative attitude. Table 5. shows the combination of LOS vectors 

needed to compute three of the six possible relative attitude matrices of the triad formation.  

 
      Table 5.1 – Combinations of LOS measurements 

Attitude 

Matrix 
             

   
        

  
     

        
         

        
        

   

  
         

   
     

        
        

        
        

  

   
       

   
      

        
       

        
        

   

 

The relative attitude determination method just employed is named First Attitude Matrix Determination 

(FAMD) for the sake of abbreviation. 

The same procedure can be used to determine the remaining attitudes. However, once the first relative 

attitude is obtained the well-known TRIAD algorithm can be applied instead. This constitutes a 

computationally efficient approach. The solution of the TRIAD algorithm is given here. For a complete 

derivation and explanation see [18]. 

       
  (5.1.27)  

 
   [  

     
‖     ‖

          

‖          ‖
] (5.1.28)  
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   [  

     

‖     ‖

          

‖          ‖
] (5.1.29)  

For instance, after finding    
  , one gets   

   by substituting         
 ,         

 ,         
   and 

      
   

     
        

  . Once   
   is found, we get    

  and complete the overall determination procedure 

using 

 
   

     
    

   (5.1.30)  

The other combinations of vectors for the TRIAD algorithm are resumed in Table 5.2 

 

Table 5.2 – Combinations of vectors for the TRIAD algorithm 

Attitude 

Matrix 
            

   
         

        
         

        
     

       
  

  
        

         
        

        
     

       
   

   
       

       
       

        
      

       
   

 

The implementation of the overall algorithm must be robust. Failure in finding the first attitude matrix 

would imply failure of the whole determination. In order to circumvent this we introduce logic that enables to 

switch the attitude matrix that is first computed. Also note that the TRIAD algorithm is only subjected to flaw 

when       , which is a much less likely situation than the one set in the FAMD resolution. A portion of the 

pseudo code follows. 

 

 
[            ]                                               

 

  

     
                                             Setting vectors for FAD 

                          1st attitude matrix 

              {  

                                  
         Setting vectors for TRIAD 

                     { Check TRIAD  

                         Compute 2nd matrix 

          
           

            Compute 3rd matrix 

      { If TRIAD failed 

                             
               

Try to compute another 2nd 
matrix 

                      {  

                          

       
    

            } } } }  

     
                                              Try another 1st matrix 
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                (continue)  

It is expected that such implementation allows for determination of at least one first attitude matrix in 

every possible situation. Also, if the TRIAD algorithm fails in one case – which is extremely unlikely – the 

TRIAD is called again to find another second matrix.  

The main complexity of this relative attitude determination strategy lies on the attainment of the first 

attitude matrix, where one condition must be satisfied and one disambiguation must be performed. The small 

computational burden make it very adequate for a real-time system application. 

5.2. Group Control 
 

The relative determination attitude can be used to compute a redundant estimate for each SV. Also it 

becomes particular interesting for heterogeneous constellations where only one SV possesses the sensor 

package that allows determination of its absolute attitude whereas the remaining satellites of the group are 

only provided with relative attitude data. Communication of one absolute estimate between SV allows an 

estimate of the other SV absolute attitude; for instance for SV2 and SV3 we get:  

 ̅   ̅    ̅  

 ̅   ̅    ̅  
where  ̅  computed via the SV1 sensor package on board and  ̅  ,  ̅   given by the LOS relative attitude 

algorithm. In this circumstances SV1 is designated the chief of the group whilst SV2 and SV3 are the deputies. 

In terms of sensors the latter only need the FPD with laser emitter incorporated, and a communication 

package to connect to the chief where all computations and other sensor readings are performed.  

A prompt solution for group control is to have the deputy tracking the chief. The target attitude is 

calculated or passed to the chief via an uplink and it manoeuvres to the target while the deputies follow by 

nulling their relative attitudes. 

A different strategy is to let the chief reorient to the target while the deputies remain stationary. When 

the chief SV stabilizes around the target, the deputies are allowed to align their attitude with the chief leading 

the entire group to the desired final configuration. 

A celestial sphere coverage solution arises with relative attitude data. One can operate the deputies at an 

offset attitude from the chief. For instance three SV might be separated with 4/5 degrees from each other to 

hold a triangular pointing configuration.   

The chief-deputies group operation works in the following way: 

 The LOS vector readings in the deputies are passed to the chief where the relative determination 

algorithm runs 

 The relative attitude matrices obtained are converted to quaternions and sent to the respective 

deputies  

 The chief’s target attitude is given by an external source, whereas for the deputies the target can be 

either the chief’s inertial attitude or their relative attitude to the chief given. 
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A group of equally equipped SV can be manoeuvred without determining relative attitude. However  

appropriate combinations of relative attitude quaternions with absolute attitude quaternions render a 

redundant estimate for each satellite. For example for SV1  ̅   ̅    ̅  and also  ̅   ̅    ̅ . These 

additional estimates can serve several purposes: 

 Validation of the inertial estimates,  

 Improvement of estimate accuracy through data fusion  

 Estimation of sensor misalignments in the group. 

 

A Group Coordinator (GC) is implemented to address the problem of coordinating operations in the 

group. Physically the GC is installed on-board of one vehicle though its function is to monitor the group and to 

take the following measures:  

1. establishing the target attitude or different targets for each vehicle 

2. receiving information from the local SV manoeuvre supervisor  

3. coordinating the manoeuvre through feedback 

4. Scheduling operations such as nulling of reaction wheels speed 

5.  forcing a change of the estimation algorithm 

The SV constellation architecture with GC constitutes a modular approach that provides flexibility to the 

end user. Hence the complexity of group coordination is passed to the GP leaving the low level tracking 

operations to each vehicle individually.  

With the GC an additional category of consensus manoeuvre arises that does not drive the constellation 

to a specified target, but instead it only attains alignment. In this manoeuvre each SV tracks a varying target 

attitude, from now on called the converse attitude. For instance for SV1 its converse attitude is the middle 

attitude between SV2 attitude and SV3 attitude, i.e. 

 ̅    
    ̅   ̅   

where   performs the following operations:  

 ̅    ̅   ̅ 
    

       
               

                  

 ̅      
 [      (

   

 
)    (

   

 
)]  

 ̅    
  ̅      

  ̅   

 

Hence with this strategy the SVs approach each other towards a common point that can be seen 

conceptually as the centre of attitude of the constellation. An illustrative analogy is to imagine a triangular 

whose vertexes approach each other by moving towards the barycentre. The barycentre is not fixed because 

of the vertexes displacement though and so it is calculated in every control cycle. 
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When the group reaches a certain amount of consensus, i.e. the angular distances within the three 

attitude set are smaller than a threshold value, then an average common attitude is imposed to the group 

according to: 

   
 ̅   ̅   ̅ 

 
 

which is normalized to  ̅     ‖  ‖. The threshold is set to    between any combination of two vehicles. 
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6. Results 
 

The results were obtained through simulation in the Simulink/Matlab environment 

6.1. Attitude Estimation  
 

The estimation results are presented here to assess and validate the estimation algorithms performance. 

Sensors noise characteristics that were given previously in Chapter 2 are implemented in the simulation 

environment. Nevertheless we resume them here whenever necessary as well as other relevant parameters 

of the dynamics, estimation and control.   

The Star Tracker noise covariance is given through the three-vector covariance: 

                            

meaning that the equivalent RMS error of the Star Tracker observations is approximately: 

            

The Sun sensor RMS error introduced in each axis is: 

         

The Horizon sensor RMS errors introduced in each axis are: 

           

             

Gyro noise is set by the two RMS quantities introduced in Section 2.1: 

                   

                         

A. Deterministic Attitude Observer 

 

The estimation results using the deterministic observer can be seen in Figure 6.1. The true quaternion is 

 ̅  [                         ] , the SV is at rest       and the initial position of the satellite in 

ECI coordinates is       [         ] . Furthermore we assume to be on the 21st of March, this way 

the Sun initial position in ECI frame is          [   ] . This last assumption will remain for the 

following simulations.  
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Figure 6.1 – Deterministic Observer error 

 

The corresponding RMS error is             . This value is somewhat dependent on the configuration 

of the Sun and Earth line of sight vectors. If the SV is placed in the vernal equinox line, for instance 

      [           ]  the information provided by the Sun and Earth vector is not complementary – in fact 

for the initial position the true Sun and Earth vectors are exactly parallel. Figure 6.2 shows the results in such 

a poor Sun-Earth configuration lines. 

 
Figure 6.2 – Deterministic observer error for poor Sun-Earth configuration 

 

Indeed the accuracy degrades considerably especially during the initial seconds when the SV remains in 

the vernal equinox line. As the SV continues its orbit and departs from its initial position, the Sun-Earth 

configuration improves rapidly and we see that after only 100 seconds the determination error decreases to 

less than   . Thus we can state that these singular conditions rarely appear during orbit.  

In addition notice that the deterministic observer requires both vectors simultaneously. If umbra 

condition is verified at some point in the orbit, the Sun measurement will be absent and no attitude solution is 

provided by this algorithm. 

B. Kalman Filtering 

 

We recall here that the EKF for angular velocity is tested with the following parameters: 

 Angular velocity propagation model covariance:               

 Gyroscope observations covariance:        
      with                    
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A simulation with       [                     ]       (‖     ‖       ) is run. This is the 

order of magnitude of the angular velocities that are to be found during reorientation manoeuvres. A 

comparison between the filter estimate and the gyroscope output is shown in Figure 6.3. 

 
Figure 6.3 – Comparison of angular speed estimation 

 

We observe that the noise reduction is considerable. The picky response of the filter estimate in singular 

initial events is the main disadvantage when compared with the raw gyroscope data. However this unsteady 

behaviour vanishes when the estimation covariance stabilizes. 

 
For the MEKF that uses constant parameter tuning, the following values are used:  

 Three-vector model covariance:      
                     

 Drift model covariance:      
                

 Constant Sun vector covariance:               

 Constant Earth vector covariance:                 

 

When the MEKF uses varying parameter tuning (see Section 3.3), then: 

      is computed by the parameterization elaborated.  

      and        are computed using the corresponding angular measurement  ̂  [ ̂  ̂ ] and the 

appropriate covariance transformation  

     is also computed resorting to covariance transformation that uses the observed Star Tracker 

quaternion  

The results for the simple MEKF (i.e. without drift estimation) using solely Sun and Earth vector 

observations is shown in Figure 6.4. Convergence of the estimate is achieved after only    . The true 

quaternion is  ̅  [                         ]  and the initial guess is  ̅  [    ]  

constituting an initial angular error of     
           . No drift is added       and the angular velocity is 

   . The filter tuning parameters are constant.  
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Figure 6.4 – MEKF attitude estimation using Sun and Earth vectors 

 a) convergence b) steady-state  

 
The corresponding RMS error in this conditions is             . Compared with the deterministic 

observer, the accuracy of the filter is     higher. Nevertheless this value was obtained with a bad initial guess 

and high initial covariance. In reality if we choose a better initial guess, say with an error of            and a 

much lower initial covariance    
        the RMS error comes down to              which constitutes an 

accuracy       times better than the deterministic observer. 

Also recall that the MEKF is able to compute estimates even in umbra conditions, therefore it is 

interesting to evaluate how much the accuracy will degrade in such cases. The result using only Earth vector 

measurement is presented in Figure 6.5. The initial estimate considered is          and the initial state 

covariance   
       in order to emulate convergence of the MEKF before occurrence of Sun light blockage.  

 
Figure 6.5 – Estimation when Sun light is blocked. Earth vector update only 

 
The RMS error for 2000 seconds is              which is slightly higher than the error with both Sun 

and Earth vectors. Intuitively using more observations is always beneficial in terms of accuracy gain which is 

according to these results. Furthermore the absence of Sun vector constitutes a fault in observability of the SV 

system. Nevertheless we can state that for the due period of time          and with     a single vector 

observation is enough to keep the MEKF performing under umbra conditions without significant degradation 

of accuracy. 

 

The MEKF estimation results using Star Tracker data are depicted in Figure 6.6. The corresponding RMS 

error is                           . This means that the accuracy gain of the filter is approximately    

times the accuracy of the Star Tracker observations.      
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Figure 6.6 – Estimation with Star Tracker data 

 
When the angular velocity is non-null and the same filters using constant tuning parameters are used, 

considerably degradation in the accuracies result. For instance consider again the two-vector update MEKF 

and an initial angular velocity vector of   [                     ]       , ‖ ‖       . This 

value is quite high for a large SV and not commonly found in normal operations. A simulation in the 

conditions just expressed is shown in Figure 6.7. 

 
Figure 6.7 – MEKF estimation with Sun and Earth vectors update, nonzero angular velocity 

 

The estimation error is considerably increased compared to the error in stationary state. We observe 

that although the estimate jitter is approximately the same, the estimates are affected by an error bias of 

constant magnitude.  The consequence is an increase of the RMS error to              . 

If the variable three vector covariance is used instead        the bias lowers as shown in Figure 6.8.  

 
Figure 6.8 – MEKF estimation with Sun and Earth vectors, variable covariance model, nonzero 

angular velocity 
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The price to pay is an increase of the output jitter as the noisy measurements become less damped. The 

corresponding RMS error is              which constitutes a small improvement relatively to the constant 

  . However when higher angular velocities are applied the benefits are greater. For instance with a       

initial angular velocity the RMS error using the fixed tuning    is              whereas with the variable 

     this value drops to             . 

We now analyse the results of the MEKF including drift estimation. This filter uses constant tuning 

parameters. The results for attitude estimation are very similar to the ones just presented. The major 

difference is on the period of stabilization of the filter, which is much longer especially when ad hoc initial 

attitude guesses are chosen. One of the major particularities in drift estimation is that an initial accurate 

estimate for the drift value is inexistent, therefore we set  ̂      . In order to test the drift estimation a 

constant drift is introduced in the gyro sensor             [     ]      . The initial angular 

velocity is set to    . The initial attitude guess is once more at      from the true attitude. The drift 

estimate results are presented in Figure 6.9.  

 
Figure 6.9 – Illustration of drift estimation. 

 a) Gyroscope readings, b) Drift estimate 

 

Figure 6.9 a) shows the gyroscope measurements affected by noise and by the constant drift. In Figure 

6.9 b) we observe that the drift estimate is close to the real value and exhibits good stability.  

A second simulation with the exact same settings except for the initial angular velocity (  

[                     ] , ‖ ‖        ) is run. The results are depicted in Figure 6.10.  

 
Figure 6.10 – Drift estimation for nonzero angular velocity 

 
We observe that the estimate takes much more time to converge in this situation. In addition the graphic 

reveals a small oscillatory behaviour. This is due to the rotation of the SV which clearly affects the dynamics 
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of the filter. We now compare the difference between the MEKF attitude estimate with and without drift 

estimation in the presence of gyro drift. The initial angular velocity in this case is set to null      .  Figure 

6.11 shows clearly that the error penalty of not estimating the drift is significant.  

 
Figure 6.11 – Comparison of attitude estimate between the MEKF with and with no drift estimate 

 

Concluding this analysis on the attitude estimate results we can state that the MEKF strategy is 

definitely capable of providing reliable attitude data even in less favourable conditions such as temporary 

loss of sensor readings and high angular velocities. 

6.2. Single Vehicle Control  
 
In this section we assess the results of attitude control of the single SV system, including steady state 

operation (equivalent to pointing operation mode), small and large reorientation manoeuvres. Being the 

MLQR an augmented version of the simple LQR only results with the MLQR controller will be presented here. 

In fact for a small manoeuvre         the MLQR performs just like the simple LQR.  State information 

feeding the Supervisor and the MLQR comes from the Estimators block, namely        ̅    . The wheels speed 

   and wheels acceleration  ̇  are directly read from free-error sensors placed in the actuators. The 

Estimator used is the fixed parameter MEKF for attitude estimation only – which is equivalent to say that the 

drift has been estimated beforehand. All simulation settings are accordingly as those in the previous section. 

Additional parameters and constants used by the controllers must be defined: 

The weighting matrices used to compute the feedback gains are the following: 

 States weighting matrix        [            ]   

 Wheels control weighting matrix             

 Thrusters control weighting matrix         
 

   
     

The reaction wheels axes is set to    [
   
   
   

], which means the fourth wheel is unused. 

The first result presented is a small    angle manoeuvre. Initially the SV attitude is given by 

 ̅     [                           ]  and the angular speed is null          . Figure 
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6.12Figure  shows the error evolution during transition to the target. We observe that the thrusters perform a 

faster manoeuvre than the wheels.  

 
Figure 6.12 – Small manoeuvre comparison between wheels and thrusters 

 
A large      manoeuvre is tested in the same initial conditions as before. The results are depicted in 

Figure 6.13 and again we see that manoeuvring with thrusters is faster than with the wheels.  

 
Figure 6.13 – Large manoeuvre 

 

In order to clearly demonstrate the nonlinear nature of the SV system and its control mechanism 

another      manoeuvre is performed with a different  ̅       but again the same  ̅    . One can see that the 

control error has a completely different evolution towards zero as depicted in Figure 6.14Figure . 

 
Figure 6.14 - Large manoeuvre with same initial conditions but different target attitude 

 

So far the control mechanism has only been tested under null angular velocity. However in most realistic 

applications the SV might be deployed in orbit with a slight rotational movement. Hence it is required that the 

controller is able to stabilize the SV whilst converging to the target. Such situation is tested with: 

      [                  ]         ‖     ‖       ,  

 ̅     [                          ]  and an angle displacement of        for  ̅       

[                          ] . The results are shown in Figure 6.15. 



59 
 

 
Figure 6.15 – Control under nonzero initial angular velocity 

 

We see that with both types of actuation the SV system is able to stabilize around the target. The evident 

difference is time of manoeuvre: with thrusters the control error is quickly nulled, whereas with reaction 

wheels the SV wobbles more before getting close to the target. A nonzero initial angular velocity implies a 

nonzero total angular momentum of the SV that must be absorbed by the control actuators. While the 

thrusters perform this by altering the total angular momentum, the reaction wheels exchange momentum 

with the SV body leading to considerable increase in wheels speed and consequently to greater gyroscopic 

effects. 

Another factor that affects the dynamic behaviour of the SV is a nonzero internal momentum previously 

installed in the reaction wheels at the beginning of a manoeuvre. In fact if this internal momentum is large 

enough, even low SV angular velocities can produce large gyroscopic effects. Therefore a simulation with 

initial internal momentum of the wheels equal to      is set up where the initial and target attitude are the 

same as before. The initial angular speed of the wheels is    [                    ]     . Figure 

6.16 depicts the control results in the situation just described.  

 
Figure 6.16 – Manoeuvre under initial nonzero internal momentum 

 

The results presented until now concern a perfect actuated SV. The following simulations will address 

the effects of the non-ideal reaction wheels and thrusters. As mentioned before we consider the dynamics of 

the reaction wheels as per Section 2.1 and introduce the also previously considered dead zone of 

          . Concerning the thrusters we emulate their commanded pulse mechanism through the coarse 

discretization of the thrusters as also described in Section 2.1.  

The initial attitude for this manoeuvre is  ̅     [                         ] . The final 

attitude is  ̅       [                         ] . This setting corresponds to an initial angle 

displacement of    . Figure 6.17 shows the manoeuvre resulting with non-ideal actuators. 



60 
 

 
Figure 6.17 – Manoeuvre with non-ideal actuators 

 

Additionally a zoom on the steady state behaviour around the target attitude is presented in Figure 

6.18Figure 6.. 

 
Figure 6.18 – Steady State with non-ideal actuators 

 

One clearly identifies the type of impulsive-like control by the thrusters whereas reaction wheels render 

an evident finer control. 

The results discussed demonstrate that the control mechanism developed provide effective means to 

reorient the SV in diverse situations, with either thrusters actuation or reaction wheels actuation. We now 

present the pointing accuracies          with ideal wheels and thrusters using the two different sets of sensor 

observations used previously in the MEKF: two-vector observation of Sun and Earth vectors, or Star Tracker 

quaternion solely. Table 6.2 resumes the accuracy of the four combinations of actuation and sensor 

observations. 

 

  Table 6.1 – Pointing RMS errors for four combinations of sensing and actuation 

 Reaction Wheels Thrusters 

Sun and Earth vectors                 

Star Tracker quaternion                 
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We see that the RMS errors are practically independent on the actuation used but directly dependent on 

the quality of the estimation. Indeed Star Tracker observations render almost     times more pointing 

accuracy than two-vector observations. In fact notice that the pointing accuracy with Star Tracker 

observations equals the corresponding estimation accuracy previously mentioned of             . Pointing 

accuracy using two-vector observations is slightly better than the estimation accuracy itself, meaning that 

there is a small damping factor from the estimation output to the SV systems output when the feedback loop 

is closed (from              to                using wheels).    

A similar evaluation is done for non-ideal actuators. Table 6.2 shows the steady state pointing errors 

corresponding to one simulation run.  

 

Table 6.2 – Pointing RMS errors with non-ideal thrusters 

 Reaction Wheels Thrusters 

Sun and Earth vectors                 

Star Tracker quaternion                 

   

The results show that pointing accuracy with non-ideal wheels is actually larger than with ideal wheels 

when Sun and Earth vectors are used. Concerning the thrusters we see that for this particular simulation the 

error using the Start Tracker measurement is higher than with two-vector measurements at least. This 

suggests that pointing performance with such non-ideal thrusters is somewhat independent on the accuracy 

of the estimate. In this particular case it turned out to be better with two-vector measurements for the given 

initial and target attitudes pair. 

The simplicity of the non-ideal actuators model considered carries a significant drawback. The results 

given present large sensitivity to parameters selection of the non-ideal dynamics, mainly the dead zone width 

for the wheels and the quantization division for the thrusters. For instance, if instead of a       dead zone 

width, a value of       was chosen, the SV would not be able to reach the target in reasonable amount of time 

due to lack of actuation.  

  
To conclude the results of the single SV control, the reaction wheels resetting operation is tested. 

Typically in such a scenario the SV angular velocity is zero        .   

The initial true attitude is set close to the target:  ̅     [                         ]  and 

 ̅       [                          ] , a      angular separation, meaning that the SV is assumed 

to be in the vicinity of the target when the wheel resetting operation is triggered. The initial reaction wheels 

speed is    [            ]  rpm, corresponding to the highest internal angular momentum 

attainable.  

 



62 
 

 
Figure 6.19 – Reaction wheels resetting operation. 

 

Figure 6.19 shows the efficiency of the resetting manoeuvre.  We observe in 6.19 b) the smooth 

evolution of the wheel speed. Also because the thrusters balance the wheels torque, the SV is able to approach 

the target attitude.  

6.3. Group 

A. Relative Attitude Determination 

 

Relative attitude determination results using the FPD observations strategy as explained in chapter 5 

are now presented. Noise in the LOS vector measurements is introduced via focal plane additive white Noise 

with covariance given by Eq. (5.1.2). The corresponding variance of the measurement angles in the FPD is set 

to   
          . The three true quaternions are: 

 ̅  [                         ]  

 ̅  [                         ]  

 ̅  [                         ]  

 

and the angular velocities are all equal to zero:           . Also relative attitude estimation is 

dependent on relative position of the SV’s. In order to stand out this influence we place them along the same 

line, more concretely in the Earth vector line:  

    
     [         ]  

    
     [         ]  

    
     [         ]  

though different directions are set to their orbital velocities: 

    
     [         ]  

    
     [          ]  

    
     [          ]  
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This manner the SV’s will quickly form a triad configuration which is desired for proper relative attitude 

determination. The relative attitude errors for a 100 second run (equivalent to 1000 trials) is presented in 

Figure 6.20 

 

 

Figure 6.20 –Relative Attitude Error  

 It is evident in the three graphics that initially the errors are well above the nominal errors. The 

stationary RMS errors for the same simulation were            ,            ,            . These 

values are low compared to the estimation errors of the inertial attitudes of the single SV previously obtained.  

They prove the usefulness of this relative attitude estimation technique in providing accurate information for 

computing redundant inertial attitude.  

B. Group Control 

 

The first and most simple group strategy is to use three equally equipped SVs, where the target attitude 

is broadcast through the constellation. Each SV then manoeuvres independently, aiming to null its own 

attitude error to the target  ̅       [                          ] . Figure 6.21Figure  shows the 

evolution of the angles between vehicles while the three independent manoeuvres take place. 

 
Figure 6.21 – Independently manoeuvred group 
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We observe in this case that while SV1 and SV3 quickly reach an angle separation of less than 10  after 

only 40 seconds since manoeuvre start, whereas SV2 takes longer to join them. This is only a consequence of 

the initial group attitude set and the target attitude, as each SV chooses the shortest path to the target not 

taking into account the other SVs trajectories. 

In the leader following strategy SV1 is assigned as the chief of the group, while SV2 and SV3 are the 

deputy vehicles which do not possess the inertial sensory package. A solution with this approach broadcasts 

the inertial attitude of SV1. The results for the same group attitude given as before are depicted in Figure 

6.22. 

 
Figure 6.22 – Leader following strategy 

 

The differences are notorious as we that SV2 and SV3 take more time to stabilize around the SV1 

attitude. Because SV1 is manoeuvring its attitude changes over-time and consequently the target for SV2 and 

SV3 is unsteady.    

In the second leader following strategy only relative attitude information is available to the deputies. 

This way the supervisor employed in SV2 and SV3 suffers small modifications previously discussed. A 

simulation is run with the same initial group attitude configuration as well as the same target attitude used 

for the previous results. Actuation is again provided by the reaction wheels for comparison. Figure 6.23 

presents the results of evolution of relative angles between chief and deputy vehicles in such conditions. 
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Figure 6.23 – Leader following strategy provided only relative attitude information 

 

It is evident that for manoeuvring purposes there is virtual no advantage of using absolute attitude over 

relative attitude.  

The fourth coordination strategy uses the coordinator to monitor the manoeuvre while assigning the 

aforementioned converse target attitude for each SV. Figure 6.24 shows a considerably faster convergence of 

the group towards a common attitude, which proves the utility of the strategy.  

 

Figure 6.24 – Group control for inexistent target attitude 

 

This concludes the analysis of formation control results.  
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7. Conclusion and Future Work 
 

 

The state estimators used are based on Kalman Filtering techniques which do not guarantee 

convergence. Despite this, in all tested situations convergence was rapidly achieved. The estimation errors 

were considerably lower when compared with the precision of on-board sensors, as evidenced by the 

deterministic observer that only rely on the accuracy of the Sun and Horizon sensors. Similarly the accuracy 

gain of the estimate relatively to the Star Tracker observation is notable.  

The single vehicle control strategy developed was able to drive the SV to the desired attitude yet in a 

segmented manoeuvre. During each segment the control can be regarded as quasi-optimal according to the 

LQR objective. The manoeuvre supervisor commanding the MLQR is crucial to ensure a smooth transition 

between manoeuvre stages. Due to its reference setting function the supervisor needs to be cautiously 

designed in order to account for a wide range of situations during manoeuvre. Small changes in the 

supervisor often lead to radical changes in the overall behaviour of the system. The designed method is not 

easily prone to generalization and it is highly dependent on the experience and intuition of the designer. 

Therefore thorough testing in order to detect pitfalls should be conducted. Although more systematic 

methods are available for nonlinear control such as the family of Lyapunov based methods, this control 

strategy highlights that linear-based approaches manage to provide an adequate response for SV attitude 

control in certain circumstances. On regard of the single SV control future work should step into low 

frequency disturbance rejection with an augmented state system. Additional features may include moving 

target tracking or angular velocity tracking. 

 

The group formation control is an extrapolation of the single SV control. The results suggest that the 

group control strategy here developed is effective and drives the formation to the desired attitude in several 

scenarios. Also control provisions were made in order to cope with less favourable conditions such as 

nonzero initial angular velocities and large internal momentum stored in by the wheels. Nevertheless the 

formation dynamics are not regarded as an integrated system, instead each vehicle tries to track an assigned 

target attitude corresponding in some cases to an inertial attitude or in others to a relative attitude. Further 

work using the developed strategy would add additional features to the group coordinator for optimal group 

manoeuvre planning dependent on the initial configuration of the group.  

On the other hand a cooperative approach would describe the formation as a set of differential 

equations on vehicles states   ̅      ̅      ̅      combinations. The amount of control required for each SV 

would no longer depend solely on its own state but on the overall formation state or a subset of it. 

Another interesting feature to explore given a fully equipped group of vehicles is the fact that accurate 

relative attitude information provide redundant inertial attitude estimates which can be used to mitigate 

sensor misalignment errors. 
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8. Appendix 
 

A. Mathematical Notation and Symbols    

 

It is often convenient to express the cross product operator in matrix form: 

     [  ]   A.1  
where  

 
[  ]  [

      

      

      
] A.2  

 

Attitude parameterization, the quaternion 

Quaternions generalize complex numbers and can be used to represent rotations in much the same way 

as complex numbers on the unit circle can be used to represent planar rotations.  Unlike Euler angles, 

quaternions give a global parameterization of      , at the cost of using four numbers instead of three to 

represent a rotation.  

Formally a quaternion is a vector quantity               

  ̅                      A.3  
where    is the scalar component of  ̅ and              is the vector component. A convenient shorthand 

notation is  ̅        . The conjugate of a quaternion is given by  ̅          and the magnitude of a 

quaternion satisfies 

 ‖ ̅‖    
    

    
    

  A.4  
The inverse of a quaternion is  ̅    ̅  ‖ ̅‖   and  ̅        is the identity element quaternion 

multiplication. The product between two quaternions has a simple form in terms of the inner and cross 

products in   . I can be shown algebraically that the product of two quaternions satisfies: 

  ̅  ̅   ̅  ̅                          A.5  
We shall consider only unit quaternions. They are the subset of all  ̅ such that ‖ ̅‖    and have a direct 

relation with rotations. Given a rotation matrix       [ ̂  ]  , we define the associated unit quaternion as 

 ̅  ( ̂                  ), where  ̂      represents the unit axis of rotation and       represents the angle 

of rotation. A detailed calculation shows that if  ̅   represents a rotation from frame   to frame  , and  ̅   

represents a rotation  from frame   to frame   , then the rotation from   to   is given by the quaternion 

 ̅    ̅    ̅  . The quaternion multiplication convention defined earlier has the advantage that the order of 

quaternion multiplication is the same as the order of matrix multiplication. 

Thus, the group operation   on unit quaternion directly corresponds to the group operation for 

rotations. Given a unit quaternion  ̅ one extracts the corresponding rotation by setting  

  
                              ̂  {

 

         
         

                         
 A.6  

and       [ ̂  ]  .  
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The transformation of a vector  , corresponding to multiplication by matrix   is 

      

In quaternion algebra it is expressed by the operation  

     ̅   ̅ A.7  
The direction cosine matrix   can be expressed in terms of the quaternion  ̅ as 

         
                  [  ] A.8  

The quaternion quantity provides an efficient representation for rotations which do not suffer from 

singularities but it is a two-fold representation, i.e. given any rotation   represented by  ̅ than   ̅ also 

represents the same rotation  . This is intuitive taking into account the relation between  ̅ and   

    [ ̂  ]   given before; notice that rotating   radians through the axis   is the same as rotating      

radians in the opposite axis direction   ̂. It is easy to verifyd that 

  ̅   ̂       (  ̂   (
 

 
)            )    ̅  ̂   . 

 

Quaternion kinematics 

The quaternion kinematics can be proven to yield the following differential equation: 

    
 ̇̅  

 

 
     ̅ A.9  

with      [
 [  ]  

    
], or alternatively:  

     
 ̇̅  

 

 
   ̅   A.10  

with    ̅  [
       [  ] 

   ] 
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B. The Extended  Kalman Filter  

 

The EKF is an extension of the Kalman Filter (KF) in order to address estimation of systems with 

nonlinear dynamics and/or observations. For more detailed information the reader may consult reference 

[6]. 

The idea behind the EKF is to linearize the dynamics around points which are expected to lie within a 

close range to the true state. The discrete EKF problem may be formulated along the following lines: 

                  B.1  
               B.2  

where: 

 K parameterizes the time instant       , where   is the sampling period 

    represents the system state vector, 

     is the nonlinear function that defines the system dynamics 

    is the control vector 

    is the vector that conveys the error dynamics representation 

    is the observation vector 

     is the nonlinear function that defines the observation model 

    is the vector of measurement noise 

 

When functions     and     are both linear and the disturbances are characterized by zero mean white 

Gaussian noises, then the EKF degenerates to the KF problem. The filter objective is to get an optimal estimate 

of the system state    in the sense that it minimizes the covariance of the estimation. Assuming the error 

probability density functions (PDF) are given by Gaussians the KF operates over the space of Gaussian 

functions, with the estimate being a Gaussian as well. This is so because of the linearity of the system. When 

nonlinear functions arise in the description of the system the Gaussian function no longer characterizes the 

PDF of the state, instead it becomes deformed throughout the estimation. However if the linearization is good 

enough the EKF approach is keen to propagate a close Gaussian approximation of PDF characterizing the 

main features of the real PDF.  

Briefly the EKF estimation comprises two steps: the prediction step and the update or filtering step.  

In the prediction step the filter uses knowledge of the dynamics to propagate the state, so an 

intermediate estimate called the predicted estimate is computed. 

In the filtering step the measurement model is used in order to correct the predicted estimate based on 

observations. 

 

Predict Step 

Let    be the Jacobian matrix of   ,   |  be the covariance matrix of the state,    the covariance of the 

model error modelled by matrix    at time  . Then 
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       | ̂ |  B.3  

 ̂   |       ̂ |      B.4  

    |      |   
        

    B.5  

 

Update Step 

Let     be the Jacobian matrix of   ,    the Kalman gain, and    the covariance of the measurement at 

time  . Then 

       | ̂ |  B.6  

         |   
 [       |   

    ]
  

    B.7  

    |    [          ]    |    B.8  

 ̂   |      ̂   |      (          ̂   |  ) B.9  

 

Additional Considerations 

The two EKF steps follow each other consecutively. Often the error covariance matrices are assumed to 

be constant though some types of sensors have accuracies that depend on the state. 

One of the advantages of Kalman filtering estimation - where the EKF is included - is that more than one 

measurement source can be included in the estimation process. All one needs is to compute equations A.6-A.9 

corresponding to the new observation and using the last estimate obtained. The propagation step though only 

occurs once in the beginning of the cycle. Therefore integrating several measurements comes down to repeat 

these systematic steps and using the most updated values of the estimate and covariance.   
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