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Resumo

Neste dissertação é apresentada uma nova técnica de fusão sensorial para seguimento
de alvos subaquáticos, com aplicação ao estudo de animais marinhos, através de multiplos
arrays Ultra Short Baseline (USBL). A estratégia proposta baseia-se na utilização de alvos
previamente marcados e utiliza informação de Direcção de Chegada de sinais acústicos
provenientes do alvo obtida através dos arrays, a partir da diversidade espacial dos seus
elementos. Dois métodos de obtenção da posição do alvo são desenvolvidos partindo da
informação espacial disponível. Técnicas de estimação de Mínimos Quadrados e filtragem
de Kalman são aplicadas ao problema e são desenhados algoritmos de Mínimos Quadrados
Recursivos, Filtro de Kalman e EKF para aumentar a precisão das estimativas de posição
e adicionar estimação de velocidade e aceleração do alvo. O desempenho das soluções
desenvolvidas é avaliado e comparado com base em simulações numéricas.

Palavras-chave: seguimento de animais marinhos, USBL, estimação não-linear
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Abstract

This thesis presents a new sensor fusion technique for tracking of underwater tar-
gets, with application to marine animal study, from multiple Ultra Short Baseline (USBL)
receiver arrays. The proposed strategy is based on a marked target and relies on acoustic
signal Direction of Arrival (DoA) information provided by the arrays and array relative
positioning information. Two methods of obtaining the target position are devised based
on the available spatial information. Least Squares (LS) and Kalman estimation tech-
niques are applied in filtering approaches designed according to Recursive Least Squares
(RLS), Kalman, and Extended Kalman Filter (EKF) methods, which yield increase po-
sition estimate accuracy and add velocity and acceleration estimation. The performance
of the obtained solutions is evaluated and compared using simulation.

Keywords: marine animal tracking, USBL, nonlinear estimation
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Chapter 1

Introduction

1.1 Motivation

The importance of water in the existence of life has been one of the main driving
forces of evolutionary processes, and its predominance across the Earth’s surface has
shaped human progress since the beginning of history. Some of the most important
human settlements have been located in the vicinity of large bodies of water, be it rivers,
lakes or oceans. Beyond the essential function of sustaining life, these bodies of water
have found themselves deeply rooted in mankind’s growth, progress, survival and culture
for their great potential as sources of food and mineral wealth, their functions as ways of
communication and transportation, their importance in energy generation and even for
their leisure value.

Most recently, some of the gravest concerns regarding this seemingly immense en-
vironment are the depletion of marine food reserves due to overfishing and the effect of
human activities in coastal waters in the health of marine flora and fauna. In order to
study and understand the precise mechanisms that are at work in such situations, mul-
tidisciplinary teams of researchers involving marine biologists, scientists and engineers
have been constituted into groups around the world. Additionally, this sort of study
adds undeniable value in scientific knowledge from which expected and unexpected ad-
vances may arise as a result of observing the effects of pollution, fishing, transportation,
oil drilling and many other activities on the health, behavior and migratory patterns of
various marine species of interest.

Although a long running field of study, the tools used in this area of research have
not developed much in recent years due to a number of issues including development and
upgrade costs, backward compatibility considerations, maintenance concerns and others.
The present work aims to explore advanced tracking techniques to be used in low cost
tools with the intent of helping researchers by obtaining more accurate movement data
on targeted individuals of marine animal populations.
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1.2 State of the Art

Most current marine animal tracking systems in use worldwide work with electronic
tags which can be broadly categorized as archival tags, transmission tags, or acoustic tags
[11].

Archival tags work by collecting data such as time, water pressure, animal and water
temperatures, and even satellite position. These are attached internally or externally to
an animal and must be recovered in order to access the collected information. This may
be accomplished through the recapture of the tagged animal or by pop-up mechanisms,
which consists of the tag detaching itself from the tracked individual and floating to the
surface.

Transmission tags gather similar information to archival tags. These, however, do
not require recovery of the implanted hardware to recover the information gathered. By
limiting the hardware to externally implanted tags, the data gathered can be remotely
downloaded by researchers when the animals surface via satellite up-link or, if the tracked
individual regularly visit coastal waters, via mobile communication networks.

The first two categories of tags incur in high deployment costs, the former due to
the cost of having two missions, one for deployment and one for recovery, and the latter
due to the higher complexity of the hardware and, especially in the case of the satellite
up-link tags, the cost of the download bandwidth.

A less costly option are the acoustic category of tags. These can also be implanted
internal or externally and transmit at semi-regular intervals acoustic pulses which may
contain encoded identification, temperature and pressure data. The emitted pulses are
then detected and decoded by a receiver if in range. The majority of acoustic tracking
material is by, or compatible with, Canadian company VEMCO c© receivers and transmit-
ters.

Concerning the acoustic tags, these consist of pinger-type implantable devices of
varying size that upon activation emit omni-directional semi-periodic acoustic pulses in
which can be encoded information including identification, water pressure, and tempera-
ture data. Due to the level of complexity and specialization of these emitters, since there
is already a wide market base using the systems, and that both emitter detection and its
associated identification information decryption is available, these will be viewed as the
standard and the work will be developed considering their limitations. An example of one
such tag is represented in Fig. 1.1a.

As for the case of detectors, commercially available solutions are restricted to fixed
or mobile presence detectors and manually operated directional detectors. The latter
make use of directional hydrophones for which cost increases with precision. An example
of the fixed receiver can be seen in Fig. 1.1b and an example of a mobile, manually
operated receiver is in Fig. 1.1c respectively.
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(a) V6 implantable tag [15] (b) VR2 static receiver [16] (c) VR100 portable receiver [16]

Figure 1.1: VEMCO c© example products

A typical scenario of tracking animals with these systems requires implantation of
the acoustic pinger in the intended target and the deployment of presence detectors in
specified locations. These detectors use a single omni-directional hydrophone and can
only mark the presence of the intended target in its effective range, logging it with any
information carried by the signals. Mostly deployed in buoys, the information provided
by such detectors is limited and implies several deployments with overlapping ranges in
order to extract minimal and error prone trajectory information. This information has
the added drawback of not being available in real-time, depending on data collection and
cross-referencing.

In order to gather real-time precision information on animals directions relative to
the receiver, directional hydrophones are used. However, due to the high costs, fragility,
and the need for mechanical scanning in order to track a target, these are handled man-
ually by researchers.

Parallelly, position tracking systems have been studied for underwater applications
and most used systems use arrays of omni-directional hydrophones or transducers in order
to extract signal Direction of Arrival (DoA) from differences in Time of Arrival (ToA)
between pairs of hydrophones using their spacial diversity. These arrays are usually di-
vided into three major categories: Long Baseline (LBL), Short Baseline (SBL) and Ultra
Short Baseline (USBL). The LBL arrays are fixed arrays that entail distances between
transducers of hundreds of meters making these very expensive with a very complex cali-
bration process and a high deployment time. The SBL arrays, are typically hull mounted
arrays with distances in the tens of meters and that require constant monitoring of these
distances due to the natural deforming of the structures that house the transducers. The
USBL arrays are an evolution of the SBL systems with distances in the order of tens of
centimeters that can be factory calibrated due to their smaller size and lesser deformation
susceptibility. Furthermore, the latter, due to their reduced size, are flexible in mounting
and deployment.

Although USBL systems are commercially available, for example the GAPS porta-
bel, pre-calibrated USBL in Fig. 1.2a, this work will be based on the assumption that an

3



in-house solution being developed in parallel, the MAST-AM tool seen in Fig. 1.2b, will
be used. This allows for full control over the reception hardware and detection algorithms.

(a) GAPS portable, pre-calibrated USBL [5] (b) MAST-AM tool

Figure 1.2: USBL array examples

1.3 Problem Statement

The object of this work consists in determining the position of a moving target in
an underwater environment through the use of acoustic signals. The target is equipped
with an acoustic pinger type marker which produces a signal in which an identification
number may be encoded. In order to determine the position of this target, two receivers
are available. A manned underwater tool used for aiding a diver in the identification,
tracking and observation of the target, and a surface transponder, used for precise target
positioning and diver localization in an inertial frame. Both the tool and the transponder
are equipped with hydrophone arrays in an inverted-USBL configuration, which are used
to obtain a DoA from a received signal. The assumed mission scenario is depicted in Fig.
1.3.

Figure 1.3: Graphical representation of the mission scenario [12]

Based on the work in [8], it is possible for a vehicle equipped with an USBL array
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to obtain its relative position to a similarly equipped transponder which is assumed as
stationary in the inertial frame. This is accomplished through the transmission of an
acoustic signal by the first which is detected by the USBL array present on the latter, and
the emission of a response by the transponder and corresponding reception by the vehicle-
mounted array. Such an operation allows each receptor to determine its counterpart’s
direction in their respective body-frames, resorting to the plane-wave approximations to
the received signal and from the differences in ToA between pairs of elements in the
hydrophone arrays, obtain the DoA of said signal and relative direction of its source.

Furthermore, the distance between both objects can be determined by the emission
of an interrogating signal from one and an adequate response from the other. By measur-
ing the time between the interrogation and the reception of the response it is possible to
obtain the round-trip time (trt) , assuming that the response involves a fixed and known
delay between the reception of the interrogations and the emission of the response. With
the already available DoA of the response signal available, this measurement of time al-
lows for the full precise positioning of the transponder in the vehicle’s body-frame, and
vice versa, assuming a constant known speed of sound in the medium.

At this point, the focus of this work is the third element, the moving target. Since
the target is tagged with a pinger type marker, the range cannot be measured in the same
way as the vehicle-transponder range. Thus an indirect form of range measurement must
be used and its development is the subject of Chapter 2.

1.4 Document Structure

In this document a number of advanced tracking techniques are developed for un-
derwater acoustic tracking of marine animals. In Chapter 2 it is shown how, with the
available information, the initial part of the problem, the target position, may be de-
termined using two similar algebraic geometrical approaches, and also their limitations.
The performance of the devised solutions is then evaluated in the presence of noisy mea-
surements by defining a set of simulation parameters, to be used in the evaluation of all
future solutions, and using them to observe the error of the proposed methods. In Chap-
ter 3, Least Squares (LS) parameter estimation techniques are applied to the problem, a
loosely coupled Recursive Least Squares (RLS) estimator is designed using position data
calculated externally using the previously designed algebraic solutions, and afterwards is
simulated in the previously specified conditions and the results evaluated. In Chapter
4, the Kalman Filtering technique is used to improve on the RLS estimator, in loosely
and tightly coupled implementations, the latter removing the need for external compu-
tations. Firstly, the loosely coupled solution is implemented in a linear Kalman filter, in
a structure similar to the previously designed linear RLS estimator, and afterwards the
non-linear tightly coupled solution is implemented in an Extended Kalman Filter (EKF).

5



6



Chapter 2

Geometric Solution

2.1 Law of Sines Approach

In Fig. 2.1, the mission scenario is depicted with the available positioning elements
and measurements. In this problem all quantities are indicated as represented in the body-
frame of the vehicle and as such, the vehicle’s position is always the origin of the frame.
From this we define the target position vector pt and the transponder position vector pb
as the vectors that give the respective positions in the frame of reference. Additionally,
we define ptb as the vector that, in the vehicle’s body-frame, represents the position of
the target relative to the position of the transponder. For these vectors, their direction
cosines are defined as dpt , dpb

, and dptb
respectively for pt, pb, and ptb.

It is possible from the figure to identify a simple triangular geometry for the problem.
Firstly, this triangle is in a three dimensional space and any three non collinear points
form a plane in such a frame. Thus, assuming the situation of non collinearity of the
three elements of the problem holds, then their three positions in the body frame of the
vehicle can be used as the plane defining points. With this in mind, we can observe that
any measurements taken between any two elements of the problem are from two points
in a same plane and thus these measurements are projected in that plane. Therefore, the
three dimensional problem in the three dimensional space may be represented, without
loss of information, as a problem in a plane within the three dimensional space and may
be solved accordingly.

Based on the considerations above, the problem can be viewed as solving a triangle of
which some elements are directly measurable by the vehicle, namely the direction cosines
dpt , dpb

, and the vehicle-transponder distance ‖pb‖. Additionally, the director cosine
dptb

is directly measurable by the transponder and may be made available to the vehicle.
At this point, there are enough elements to allow for the complete and unambiguous
determination of the target distance and, consequently, its position in the vehicle’s body-
frame.
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Figure 2.1: Graphical presentation of the problem situation

According to the figure, let

cosα = dpt · dpb
(2.1)

and
cos β = dptb

· (−dpb
) , (2.2)

And, according to the internal angles of a triangle, let also

γ = π − α− β . (2.3)

There are now enough available elements of the triangle geometry to allow the determi-
nation of its remaining elements using the Law of Sines

‖pt‖
sin β = ‖pb‖sin γ , (2.4)

Which can be rearranged in order to isolate the target range as

‖pt‖ = sin β
sin γ ‖pb‖ . (2.5)

The determination of the complete target position is completed by multiplying the
computed target range, ‖pt‖, by the measured target position direction cosine, dpt .

2.2 Law of Cosines Approach

An alternative to the Law of Sines approach may be devised, using relations between
the distances ‖pt‖ and ‖ptb‖, based on the physical characteristics of the acoustic signal
used to track the target.

Due to the nature of the problem, the emitted signal from the target is transmitted
simultaneously to both the transponder and the vehicle from the target. Thus, each length
traveled by the signal to each of the receivers can be expressed as a product of the signal
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velocity, vs, by a time, τ , which it takes to reach that receiver. Assuming a known and
constant vs throughout the length of travel and due to the fact that the signal is emitted
at the same point in time for both pt and ptb paths, their difference in length can be
expressed through a difference of travel time, ∆τ . This reinterpretation of the problem,
presented in Fig. 2.2, has the reference travel time τ coupled to the ‖ptb‖ interval, as
before, the pb vector is available though direct measurements and τ0 is the travel time
between the vehicle and the transponder. At this point, the problem distances can be
rewritten accordingly.

Figure 2.2: Graphical reinterpretation of the problem

Let the target range be given as

‖pt‖ = vs τ , (2.6)

the transponder range as
‖pb‖ = vs τ0 , (2.7)

and the distance between the transponder and the target as

‖ptb‖ = vs (τ −∆τ) , (2.8)

in which τ is the travel time from the target to the vehicle, τ0 is the travel time between
the vehicle and the transponder and ∆τ is the difference in signal travel time between the
emitter-vehicle and the emitter-transponder paths.

By applying the distributive property to (2.8) and substituting (2.6) into it gives,
after rearranging,

∆τ = ‖pt‖ − ‖ptb‖
vs

. (2.9)

Using this redefinition of the problem variables it is possible to use a Law of Cosines
approach to relate the new quantities. Applying the Law of Cosines to the triangle in
Fig. 2.2 gives

‖ptb‖2 = ‖pt‖2 + ‖pb‖2 − 2‖pt‖‖pb‖ cosα (2.10)
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and replacing (2.6), (2.7), and (2.8) in (2.10) finds

[vs (τ −∆τ)]2 = (vs τ)2 + (vs τ0)2 − 2(vs τ)(vs τ0) cosα . (2.11)

Both sides of equation (2.11) can be divided by v2
s resulting in

(τ −∆τ)2 = τ 2 + τ 2
0 − 2 τ τ0 cosα , (2.12)

which rewritten for τ gives

τ = τ 2
0 −∆τ 2

2(τ0 cosα−∆τ) . (2.13)

By transmission of a target detected signal from the transponder to the vehicle, the
time difference ∆τ can be directly obtained if a constant and known delay is added by
the transponder, by subtracting from the time difference between the reception of the
target signal and the transponder target detection signal, the transponder-vehicle travel
time and the known transponder delay. With this information, the target distance signal
travel time, τ , can be computed.

With this determination of τ , inserting it in (2.6), gives the calculated target range.
In order to determine a position from this value it is a matter of multiplying this scalar
value with the direction cosine dpt , already available through direct measurement.

2.3 Validity Analysis

After devising two methods of finding the target position, it is of interest to study in
which situations these methods degrade their computations and become unusable. Firstly
let us remember the Law of Sines approach (2.5)

‖pt‖ = sin β
sin γ ‖pb‖ .

This equation can not be applied when the denominator approaches zero, resulting
in

sin γ = 0⇔ γ = kπ, k ∈ Z (2.14)

which, for the considered situation geometrical constraints, may take only two physically
acceptable values

γ = 0 ∨ γ = π (2.15)

Translating these values into the problem geometry, it means that the proposed
method breaks down precisely as it approaches the limits of the assumption validity,
namely the non-collinearity hypothesis. These considerations are represented in Fig. 2.3.
Additionally, there is one further situation in which the method fails, which is for a triangle
in which the ‖pt‖ dimension is much larger than ‖pb‖ and forces γ to approach zero.

10



(a) (b) (c)

Figure 2.3: Invalid Arrangements for the Law of Sines solution

Let us now observe the expression for the delay obtained with (2.13) of the Law of
Cosines approach

τ = τ 2
0 −∆τ 2

2(∆τ + τ0 cosα) .

This solution is invalid if at any time the denominator of the equation becomes zero

2(τ0 cosα−∆τ) = 0
τ0 cosα = ∆τ .

(2.16)

Multiplying both sides of (2.16) by vs and substituting (2.7) and (2.9) results in

‖pb‖ cosα = ‖pt‖ − ‖ptb‖ . (2.17)

By rearranging (2.10) into

cosα = ‖ptb‖
2 − ‖pt‖2 − ‖pb‖2

−2‖pt‖‖pb‖
(2.18)

and substituting into (2.17) gives

‖pb‖
‖ptb‖2 − ‖pt‖2 − ‖pb‖2

−2‖pt‖‖pb‖
= ‖pt‖ − ‖ptb‖

‖pb‖2 = ‖pt‖2 − 2‖pt‖‖ptb‖+ ‖ptb‖2

‖pb‖ = ‖pt‖ − ‖ptb‖ .

(2.19)

The final result of (2.19) represents, for a triangle, the situation represented in Fig.
2.3c.

2.4 Simulation Setup

In order to validate the developed solutions, numerical simulations were carried out
covering a range of model behaviors assumed to be valid for the targets. In all situations,
the measurements are assumed to be corrupted with zero-mean Additive White Gaussian
Noise (AWGN) with standard deviations given in Table 2.1.
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Measurement AWGN Standard deviation
α angle 0,5 [deg]
β angle 0,5 [deg]
‖dpb
‖ 1 [m]

∆τ 100 [µs]

Table 2.1: Measurements standard deviation

Three trajectories are considered for this purpose. The first is a constant velocity
situation, as presented in Fig. 2.4a, the second is a constant acceleration case, represented
in Fig. 2.4b, and finally a sinusoidal velocity situation, shown in Fig. 2.4c. All of the
situations are modeled for a mission time of 150 seconds with a time step of 1 second.
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(c) Sinusoidal velocity trajectory

Figure 2.4: Nominal trajectories for the considered simulations

In all cases, the transponder is fixed at pb =
[

15 10 2
]
m and the target starts at

pt =
[

30 0 −1
]
m. For the first situation the velocity is fixed at v1 =

[
−1 1 −0.002

]
ms−1,

for the second case the velocity begins at v2 =
[

0 1 −0.002
]
ms−1 and the acceler-
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ation is fixed at a =
[
−0.005 −0.005 0

]
ms−2, and for the third case the velocity

starts as v3 = v1 and its v3y component varies with v3y = cos 2πft ms−1 with a fre-
quency f = 0.015 Hz. The speed of sound (vs) in the medium is also assumed known
and constant, vs = 1560 ms−1.

2.5 Simulation Results

In order to validate the solutions obtained and expressed respectively by (2.5) and
(2.13), these were implemented in simulations described in section 2.4. Predictably, the
use of the equations in the absence of noise resulted in a perfect reproduction of the
real values of range and position. The addition of noise produced expected errors in
the calculated target positions. Furthermore a difference in performance was noticeable
between both methods. Firstly the position estimate errors are shown in Fig. 2.5 and 2.6
and their results are described in Table 2.2 and 2.3.

px (m) py (m) pz (m)
µ σ µ σ µ σ

Constant Velocity 0.1141 1.0850 -0.0834 1.7404 -0.0203 0.2740
Constant Acceleration -0.1764 1.3686 0.0020 1.0907 -0.0170 0.2702
Sinusoidal Velocity 0.7361 5.2655 -0.0548 0.5255 0.0033 0.6267

Table 2.2: Estimate error mean and standard deviations for the Law of Sines solution

px (m) py (m) pz (m)
µ σ µ σ µ σ

Constant Velocity -0.0623 0.9926 0.1324 1.8459 -0.0246 0.2831
Constant Acceleration -0.2393 1.3401 -0.0677 1.0121 -0.0161 0.2766
Sinusoidal Velocity 1.5788 8.5595 -0.0637 0.5408 -0.0142 0.6440

Table 2.3: Estimate error mean and standard deviations for the Law of Cosines solution

The results shown in Fig. 2.5 and 2.6, and characterized in Tables 2.2 and 2.3 allow
for some conclusions on the performance of geometric solutions. However, they do not
necessarily impart the full influence on the total position estimate. For this, the norm of
the vector difference between the estimate and the real target position was computed at
each step representing the total prediction error. The results are shown in Fig. 2.7, 2.8,
and 2.9.

Starting with Fig. 2.7, it is possible to observe that, overall, both methods have
similar behavior in the considered trajectory, differing in error levels at different stages
in the trajectory, while maintaining a target position error mostly below 12% of the true
range.
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From Fig. 2.8, an area of significant divergence between both methods estimates
is noticeable, with a sharp rise in the estimated position error of the Law of Cosines
approach, around the time instant 50 s of the simulation.

Finally, from Fig. 2.9 the estimate errors of both solutions initially presents a similar
behavior, in accordance to the observations of the previous simulation results. However,
at approximately the 75 second instant in the simulation, the errors grow rapidly. This
may be attributed to the increase in the true range of the target. As has been seen in
section 2.3, the position estimate given by the Law of Sines approach deteriorates with
the increase in range and since the true range of the considered simulation continuously
increases with time, this behavior is expected.

In order to evaluate the best solution to use in further developments, the Root
Mean Square (RMS) of the estimate error norm is computed for the final 50 seconds of
simulation and is presented in Table 2.4, from which can be determined that the most
accurate approach is the Law of Sines solution and it will thus be the chosen method for
all future developments.

Simulation Law of Sines Law of Cosines
Constant Velocity 3.0873 (m) 3.8765 (m)

Constant Acceleration 1.6665 (m) 1.0405 (m)
Sinusoidal Velocity 7.8186 (m) 13.7981 (m)

Table 2.4: Estimate RMS error comparisons for the geometric solutions
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Figure 2.5: Position estimate errors of the Law of Sines solution
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Figure 2.6: Position estimate errors of the Law of Cosines solution
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Figure 2.7: Position estimate errors of the Geometric solutions for the contant velocity case
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Figure 2.8: Position estimate errors of the Geometric solutions for the constant acceleration case
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Figure 2.9: Position estimate errors of the Geometric solutions for the sinusoidal velocity case
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Chapter 3

Least Squares Estimation

3.1 Model Presentation

From the previous section, the position of a target has been found to be obtainable in
the receiver’s body-frame, with an error that is proportional to the real distance between
the receivers and the target. This provides inaccurate results, thus the need for a solution
that minimizes the error between the position estimates and the real positions of the
target.

The first technique used for increasing the accuracy of the estimates is performed
in a Least Squares (LS) estimator, chosen due to its computational and theoretical sim-
plicity. This type of estimator requires a model based on unknown constant parameters,
to which the measurements are fitted. In this work we will begin by assuming a Newto-
nian kinematic model of constant acceleration which has the characteristic position and
velocity equations

pt(t) = pt0 + vt0t+ 1
2at0t2 (3.1)

and
vt(t) = vt0 + at0t , (3.2)

where pt(t) and vt(t) are the target position, and velocity at time t, respectively, and pt0 ,
vt0 and at0 are constants representing the initial target position, velocity and acceleration,
respectively.

With the chosen model, the position of the target at any time, is obtainable with
knowledge of the three initial conditions of the motion (pt0 , vt0 and at0) and the present
time by means of (3.1). Since it has been established that it is possible to obtain mea-
surements of the target position in some instants of known t, this problem may be solved
through the fitting of (3.1) to the data points measured in order to determine the problem
constants.

For a least squares solution to be possible, any kth element of a measurement vector
y, yk, must be a linear combination of the elements of a constant parameter vector x to
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be estimated with the addition of some measurement noise v. It may be expressed as

yk =
n∑
i=1

Hkixi + vk (3.3)

or, in matrix form,
yk = Hkx + vk . (3.4)

Since the measurement vector is, by definition,

y =
[

y1 · · · yk
]T

, (3.5)

the entire measurement vector can be related to x through

y = Hx + v , (3.6)

with

H =


H11 · · · H1n
... . . . ...

Hk1 · · · Hkn

 (3.7)

and
x =

[
x1 · · · xn

]T
. (3.8)

As the objective of this method is to approximate a model, through the parameter
vector, to a number of measurements, it may be viewed as minimizing an error between the
model and the measurements and thus an element εk can defined, called the measurement
residual, as the difference between a measurement ykand the model’s prediction for such
measurement as

εk = yk −Hkx̂ , (3.9)

where x̂ is the estimate of the parameter vector. Since the best estimate of x is given
by the vector x̂ that minimizes the sum of the squares of the measurement residuals, the
objective is to find the estimate that minimizes a cost function of the form

J =
∑
k

ε2
k = εTε , (3.10)

in which ε is the measurement residual vector given as

ε =
[

ε1 · · · εk
]T

= y−Hx̂ . (3.11)

By substituting (3.11) into (3.10), we can express the cost function as

J = εTε = (y−Hx̂)T (y−Hx̂)
= yTy− x̂THTy− yTHx̂ + x̂THTHx̂ ,

(3.12)

and to find its minimum, the partial derivative with respect to the estimate is computed
and is set equal to zero

∂J

∂x̂
= −yTH− yTH + 2x̂THTH = 0 , (3.13)
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HTy = HTHx̂ , (3.14)

and finally the best estimate of x is then given by

x̂ = (HTH)−1HTy . (3.15)

However, using this approach requires that a record be maintained of every mea-
surement taken in the y vector as well as requiring an ever expanding H matrix. This
is computationally expensive and due to the unpredictable number of measurements is
inadvisable. In order to circumvent this issue a recursive estimation method is of interest
and thus the Recursive Least Squares (RLS) method is used. This approach provides
the least squares estimate recursively with each new available measurement based on the
previous estimate and an estimation-error covariance estimate. A different cost function
is also chosen to be minimized. This new function, defined in (3.17) as the sum of the
estimate-error variances at each time step, leads to the addition of a dependence on the
variance of the noisy measurements though a measurement-error covariance matrix to be
later defined.

Taking (3.4), a linear recursive estimator can be written in the form

x̂k = x̂k−1 + Kk(yk −Hkx̂k−1) , (3.16)

where x̂k−1 is the estimate after measurement yk−1 and x̂k is the estimate after measure-
ment yk. The Kk matrix is the estimator gain and is obtained by minimizing the new
cost function

Jk =
n∑
i

E [θikθik] (3.17)

∂Jk
∂Kk

= ∂

∂Kk

(
E

[
n∑
i

θikθik

])
= 0 (3.18)

in which θnk is the estimation error for the nth parameter at the kth step

θnk = xnk − x̂nk, (3.19)

with
θk =

[
θ1k · · · θnk

]T
. (3.20)

By defining an estimation-error covariance matrix Pk as an n × n diagonal matrix
with

Pk = E
(
θkθ

T
k

)
(3.21a)

Tr (Pk) = E
(
θTk θk

)
, (3.21b)

using (3.21) in (3.18), the latter can be simplified to

∂Jk
∂Kk

= 2 (I−KkHk) Pk−1
(
−HT

k

)
+ 2KkRk = 0, (3.22)
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where Pk−1 is the estimation-error covariance matrix of the previous step and Rk is the
measurement-error covariance matrix. The latter presents similar expressions to (3.21),
substituting the estimation error θ with the measurement error ξ

Rk = E
(
ξkξ

T
k

)
(3.23a)

ξk = yk − ŷk. (3.23b)

Solving (3.22) for the gain matrix gives

Kk = Pk−1HT
k (HkPk−1HT

k + Rk)−1 (3.24)

and the estimation-error covariance matrix for the present step is found from (3.21a)

Pk = (I−KkHk)Pk−1(I−KkHk)T + KkRkKT
k . (3.25)

Finally, before initializing the algorithm, it is necessary to provide an initial estimate
of x and of the P matrix, as well as defining the values for the measurement covariance
matrix Rk. In this case, the latter matrix will be viewed as constant since it is assumed
that the covariance of the measurements does not change in time. This is a somewhat
coarse approximation since it has been established by the algebraic solution simulations
of Chapter 2.5 that the measurement errors grow with distance.

The following step is to define how the available measurements will be related to
the problem constants and create an observation model to be implemented in (3.15)

3.2 Loosely Coupled Implementation

A first approach to the problem of defining a measurement model is to use the re-
sults from the algebraic solution as measurements, which are the measured positions of
the target and are directly related to the problem constants by (3.1). With this obser-
vation model, there is a further degree of freedom in the choice of assumed value of the
constant acceleration, a0, which can be assumed to be zero, for a constant velocity motion
approximation, or any value as the most general case. Both cases will be evaluated and
thus for the time of the kth measurement, at time tk, the zero acceleration case transforms
(3.1) into

pt(tk) = pt0 + vt0tk , (3.26)

and the problem reduces to the determination of only two constants. Making the mea-
surement

yk = pm(t)(tk) =
[
pmx(tk) pmy(tk) pmz(tk)

]T
(3.27)

and the parameter vector

x =
[

pt0 vt0
]T

=
[
pt0x pt0y pt0z vt0x vt0y vt0z

]T
, (3.28)
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the matrix Hk that satisfies (3.4) is

Hk =
[

I3 tkI3
]
. (3.29)

This solution will be referred to as the Constant Velocity Recursive Least Squares (RLS-
V).

For the constant, non-zero acceleration case (3.1) maintains the presented form and
the measurements remain given by (3.27). As for the parameter vector, it is given by

x =
[

pt0 vt0 at0
]T

=
[
pt0x pt0y pt0z vt0x vt0y vt0z at0x at0y at0z

]T (3.30)

and the matrix Hk to satisfy (3.4) now becomes

Hk =
[

I3 tkI3
1
2t

2
kI3

]
. (3.31)

This solution will be referred to as the Constant Acceleration Recursive Least Squares
(RLS-A).

3.3 Simulation Results

Before applying the developed estimators to the simulation scenarios defined in
chapter 2.4, the initial estimates for the parameter vector x and the estimation-error
covariance matrix P must be chosen and subsequently refined, while the measurement-
error covariance matrix must be defined. Since P can be viewed as a measurement of the
confidence in the result of the estimation, this value must be larger initially, the lower the
confidence in the initial estimate. For all the simulated trajectories, the initial estimate
for the parameter vector is chosen as

x̂RLS−V0 = 06×1 (3.32a)
x̂RLS−A0 = 09×1 . (3.32b)

The values in (3.32a) and (3.32b) represent an initial complete lack of information regard-
ing the true values of any of the parameters.

For the loosely coupled solutions, as a starting point, the values for the R0 and P0

matrices were defined as the identity matrix of appropriate size for each algorithm. After
extensive simulations, the values for these matrices which lower the total estimate error
were found to be

RRLS−V
0 = I6×6 (3.33a)

PRLS−V
0 = 1000I6×6 (3.33b)

RRLS−A
0 = I9×9 (3.34a)

PRLS−A
0 = 1000I9×9 . (3.34b)
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Analyzing the values in (3.33) and (3.34), it is possible to match these with their
theoretical expected values. The estimate-error covariance matrices are high as expected,
representing the uncertainty of the initial estimates, and the measurement-error covariance
matrices are the order of magnitude of the measurement errors, as seen in chapter 2.5.

With these values, the resulting estimates produced position errors shown in Fig.
3.1 and 3.2 and characterized in Tables 3.1 and 3.2.
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Figure 3.1: Position estimate errors of the RLS-V solution

Finally, the total position errors that can be computed using the norm of the vector
difference between the estimate and the true position. These values can be seen in Fig.
3.3, 3.4, and 3.5. In order to compare the solutions, the Root Mean Square (RMS)
estimate error is computed for the final 50 seconds of simulation and presented in Table
3.3.
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px (m) py (m) pz (m)
µ σ µ σ µ σ

Constant Velocity 0.4379 0.6915 -0.4537 0.3619 -0.0120 0.0874
Constant Acceleration 1.1265 0.9811 0.7005 0.8963 -0.0093 0.0878
Sinusoidal Velocity 0.1313 1.6545 -0.2431 1.8068 0.0101 0.1689

Table 3.1: Estimate error mean and standard deviations for RLS-V solution

px (m) py (m) pz (m)
µ σ µ σ µ σ

Constant Velocity 0.4752 0.6682 -0.4715 0.5114 -0.0205 0.1156
Constant Acceleration 0.1919 0.9192 -0.1365 0.5966 -0.0108 0.1209
Sinusoidal Velocity 0.3969 2.0877 -0.2914 1.3272 -0.0077 0.2378

Table 3.2: Estimate error mean and standard deviations for RLS-A solution

From an analysis of the results, a conclusion may be reached that for the cases where
the assumptions for the development of the estimators are fulfilled, the estimation errors
of these cases are the smallest. Furthermore, it is apparent that when the estimated
conditions respect both estimators conditions, the constant velocity (and consequently
constant acceleration) their performance is fairly equal. However, for the case in which
the conditions only respect the assumptions of the RLS-A, this option maintains the
level of performance of the former solutions while the RLS-V loses accuracy the more it
progresses in time. Finally, for the sinusoidal velocity case, which does not fully respect
the assumptions of either estimator, the performance of both solutions is inferior to the
previous situations where the simulated behaviors respected the models predictions.

These simulations validate the proposed estimators and through the analysis of the
estimation RMS errors in Table 3.3 there is a basis for comparison with future solutions,
as well as an idea of the performance level and adequacy of such a solution in the event
of a practical application, or implementation in a deployed system.
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Simulation RLS-V RLS-A Law of Sines
Constant Velocity 0.6022 (m) 0.8459 (m) 3.0873 (m)

Constant Acceleration 2.6982 (m) 0.8314 (m) 1.6665 (m)
Sinusoidal Velocity 3.1984 (m) 3.3307 (m) 7.8186 (m)

Table 3.3: Estimate RMS error comparisons for the RLS solutions
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Figure 3.2: Position estimate errors of the RLS-A solution
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Figure 3.3: Position estimate errors of the RLS estimators for the constant velocity case
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Figure 3.4: Position estimate errors of the RLS estimators for the constant acceleration case
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Figure 3.5: Position estimate errors of the RLS estimators for the sinusoidal velocity case
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Chapter 4

Kalman Filtering

Following the success in the design and simulation of the RLS algorithm, it is desir-
able to produce an alternative solution that better copes with the situations in which the
previous models have difficulties, namely the situation of variable acceleration, and thus
a Kalman filter based approach was developed.

4.1 Model Dynamics

Given a problem presented in the state-space form, a Kalman filter allows the es-
timation of the system states based on direct or indirect measurements of such states,
fitted to some assumed model for the system dynamics.

Let (4.1) represent any generic dynamic system in continuous time

ẋ(t) = A(t)x(t) + B(t)u(t) + w(t) (4.1)

where x(t) is the system state, u(t) is the system input and w(t) is a continuous-time
white noise process. Assuming it is possible to direct or indirectly observe the system
state, these observations are related to the state by (4.2)

y(t) = C(t)x(t) + v(t) , (4.2)

where y(t) is the observation vector, v(t) is a continuous-time noise process and C(t) is
the matrix that obtains the observations from the states.

In the present problem, tracking a moving target involves the estimation of its
position and velocity. Additionally, the estimation of its acceleration may be advantageous
to reduce errors in the velocity estimate. Firstly, only the position and velocity of the
target are estimated, this gives the problem state

x(t)K−V =
[

pt(t)T vt(t)T
]T

. (4.3)

Let
ṗt(t) = vt(t) (4.4)
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and
v̇t(t) = at(t) . (4.5)

Then,
ẋ(t)K−V =

[
ṗt(t)T v̇t(t)T

]T
=
[

vt(t)T at(t)T
]T

,
(4.6)

and the matrix that satisfies (4.1) is

A(t)K−V =
 03×3 I3

03×3 03×3

 . (4.7)

Since, by definition of the problem, the input, u(t), in the dynamic equation of the target
is unknown, it is assumed non-existent, B(t)u(t) disappears, and the dynamic equation is
fully defined. The row of zeros in the A(t) matrix appears because at(t) is not a part of
the states considered above and thus the dynamic equation evaluates v̇t(t) as zero which
corresponds to the modeled assumption of an unvarying velocity. This solution will be
referred to as the Velocity Estimating Kalman Filter (Kalman-V).

However, the constant velocity assumption may not be a good enough approximation
to the reality. Thus, in order to remove this modeled constraint from the dynamic equa-
tion, the addition of the target acceleration in the problem states is considered, resulting
in

x(t)K−A =
[

pt(t)T vt(t)T at(t)T
]T

. (4.8)

Take once again (4.4) and (4.5), and now let

ẋ(t)K−A =
[

ṗt(t)T v̇t(t)T ȧt(t)T
]T

=
[

vt(t)T at(t)T ȧt(t)T
]T

,
(4.9)

the matrix that satisfies (4.1) is now

A(t)K−A =


03×3 I3 03×3

03×3 03×3 I3

03×3 03×3 03×3

 . (4.10)

There is still a row of zeros in the A(t) matrix, now representing a lack of model
for the variation of acceleration based on the estimated states. This solution evaluates
ȧt(t) as zero which is somewhat analogous to modeling a constant acceleration and will
be henceforth referred to as the Accelleration Estimating Kalman Filter (Kalman-A).

Finally, the available measurements must be related to the problem states in order to
complete the Ct(t) matrix of (4.2). Two different methods of defining this measurement
matrix, their advantages and shortcomings will be the subject of sections 4.3 and 4.4.
However, prior to the investigation of these solutions, some alterations to the way the
state-space system is treated will be considered.

30



4.2 Kalman Filtering Theory

At this point in the work, the models and dynamics are considered in continuous
time. Although this is the most realistic representation of the system, the computations
of all the subsequent algorithms are usually implemented in digital computers, using
discrete time. A very detailed description of the continuous time Kalman filter derivation
and algorithm is present in [14]. For the remainder of this work, the discrete time Kalman
filter will be used.

In order to use the discrete time Kalman filter, the problem must now be presented
in a discrete state space form. Let k represent any discrete time moment, and let xk be
the problem state at that moment. Any discrete-time system may be represented as

xk = fk−1(xk−1,uk−1,wk−1) (4.11a)
yk = hk−1(xk,vk) , (4.11b)

which in the case of a linear system simplifies as

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1 (4.12a)
yk = Hkxk + vk , (4.12b)

where Fk−1 is the state transition matrix for the previous state, Hk is the observation
model matrix, yk is the measurement vector, uk−1 is the input in the previous moment,
Gk−1 is the matrix that describes the effect of the previous moment inputs on the state,
and wk−1 and vk are Additive White Gaussian Noise (AWGN) processes with covariance
matrices defined respectively as Qk and Rk. The same reasoning applies to the Gk−1

matrix and uk−1 vector as for the continuous time B(t) and u(t) elements, respectively,
and accordingly will be assumed zero and omitted.

In order to present the current system in discrete-time form, the A and C matrices
of the continuous model must be discretized into the Fk−1 and Hk matrices respectively.
Resorting to the Step Invariant method, for the A matrix this is done through the matrix
exponential, shown in (4.13), where ∆t is the time difference between steps k − 1 and k.
Applying (4.13) to (4.7) and (4.10), results in (4.14) and (4.15), which are the discrete-
time state transition matrices for the Kalman-V and Kalman-A approaches respectively.
In the case of the C matrix, no discretization is required since the measurement model
does not represent a dynamic relation but rather a relation between the state and the
measurements, and thus is the same in discrete or continuous-time, simply changing
denomination to Hk.

Fk−1 = eA∆t (4.13)

FK−V
k−1 =

 I3 ∆tI3

03×3 I3

 (4.14)

31



FK−A
k−1 =


I3 ∆tI3

1
2∆t2I3

03×3 I3 ∆tI3

03×3 03×3 I3

 (4.15)

Even though a measurement model has yet to be defined, the Kalman filter algorithm
may be derived and shown.

The Kalman filter [6] estimates the state at any given moment based on the previous
state and any available measurements. The way through which this is accomplished is by
first estimating the current state based on the state propagation from the best estimate for
the previous state and subsequently correcting that estimate with the aid of the available
measurements. Let us define x̂−k as the result of the estimation based on the propagation
of the previous state and x̂+

k as the state estimate after the measurement correction.
These shall be referred to as the a priori and a posteriori estimates.

Assuming that, after each step, the best estimate of the state is the a posteriori
estimate, the a priori estimate at step k is computed similarly to (4.12a). For the present
conditions we then have

x̂−k = Fk−1x̂+
k−1. (4.16)

Since all estimates are implicitly corrupted with the process noise wk−1 and the
measurement noise vk, an estimate of the error level of the current estimate must be
computed. This is taken into account by maintaining an estimate of an estimate-error
covariance matrix, Pk. Because the state estimate is corrupted by noise in two different
operations, the Pk matrix estimate must be updated according to each of the operations.
For the a priori state estimation operation, an a priori covariance matrix estimate is
defined as the covariance of the a priori estimate error

P−k = E
[
(xk − x̂−k )T (xkx̂−k )

]
, (4.17)

and substituting (4.12a) into (4.17), assuming uncorrelated noise and expanding gives

P−k = Fk−1P+
k−1FT

k−1 + Qk−1 . (4.18)

With the state propagation estimate obtained, the interest now lies in correcting this
estimate with the information provided by the measurement. Recovering the measurement
update equation for the Recursive Least Squares (RLS) estimator (3.16), considering now
that the estimate being computed is x̂+

k instead of x̂k and the previous estimate is given
by x̂−k instead of x̂k−1, it can be rewritten as

x̂+
k = x̂−k + Kk(yk −Hkx̂−k ) , (4.19)

with Kk, now denominated the Kalman Gain, given by (3.24) substituting the previ-
ous step estimation-error covariance matrix Pk−1 with the most recent estimate for the
covariance matrix, P−k , resulting in

Kk = P−k HT
k (HkP−k HT

k + Rk)−1. (4.20)
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Finally, the estimation-error covariance matrix must again be updated to reflect the
added information. The new estimate is denominated the a posteriori estimation-error
covariance matrix and is given by

P+
k = (I−KkHk)P−k (I−KkHk)T + KkRkKT

k , (4.21)

which is almost identical to (3.25) but with the previous estimation-error covariance ma-
trix given by P−k instead of Pk−1.

With all the matrices defined, the Kalman Filter algorithm may be applied starting
with the time update of the state estimate (4.16) and the estimation-error covariance
(4.18), followed by the computation of the Kalman gain (4.20), the measurement update
of the state estimate (4.19), and estimation-error covariance matrix (4.18).

Finally, the only remaining step required is to define the measurement model matrix
Hk, the initial state estimate x̂+

0 , initial estimation-error covariance matrix P0, and the
measurement noise covariance R and model noise covariance Q matrices. During the
simulation phase, the initial estimates and noise matrices were given initial plausible
values which were refined through repeated simulation runs.

4.3 Loosely Coupled Solution

As previously accomplished in the RLS estimator, a loosely coupled solution will
be developed using the position results from the algebraic solution. Accordingly, the
measurements for this approach will be the position results of the algebraic solution,
p̃t(t). Defining the measurement

y(t) = pmt(t) (4.22)

with
pmt(t) = pt(t) + v, (4.23)

then for the Kalman-V case results in the measurement model matrix

CK−V =
[

I3 03×3
]

(4.24)

or, for the Kalman-A case

CK−A =
[

I3 03×3 03×3
]
. (4.25)

With the measurement model completely defined in continuous-time, in discrete-
time the matrix changes denomination but maintains its contents. These discrete-time
measurement models are then

HK−V
k =

[
I3 03×3

]
(4.26)

for the Kalman-V method, and for the Kalman-A

HK−A
k =

[
I3 03×3 03×3

]
. (4.27)

33



The Kalman Filter algorithm has now all of its elements available to implement in
simulation.

4.4 Tightly Coupled Solution

After the development of the loosely coupled solution, it is desirable to pursue a
filter that would extract as much information from the measurements as possible while at
the same time removing the need for external computations. For these reasons, a tightly
coupled Kalman filter was designed in order to extract the state information directly from
the sensor measurements.

Firstly, the system states must be chosen and the system model described. For
the following designs, the model assumptions remain the same as those in the previous
Kalman filters namely the creation of two distinct filters, the velocity estimating filter, the
Velocity estimating EKF (EKF-V), and the acceleration estimating filter, the Acceleration
estimating EKF (EKF-A). As a starting point, the states and state propagation are
assumed the same as in the previous filters, and any available sensor measurements will
be expressed as functions of the state variables.

The available measurements are the elements dpt , dpb
, dptb

, and ‖pb‖ from Fig. 2.1.
Still from the figure, remembering that dpt is the direction cosine of the target position,
pt, let it be described as

dpt = pt
‖pt‖

. (4.28)

Analogously, for the transponder position, pb, and the target position in relation to
the transponder, ptb, let their direction cosines, dpb

and dptb
respectively, be expressed as

dpb
= pb
‖pb‖

(4.29)

and
dptb

= ptb
‖ptb‖

. (4.30)

Finally, the direction cosine dptb
may be expressed as a function of of pt and pb.

Attending to Fig. 2.1, and since the pt, pb and ptb vectors form a closed path, ptb can be
expressed as the vector difference (4.31)

ptb = pt − pb . (4.31)

Expressing the ptb vector as the product between its length and direction cosine in (4.31)
results in

‖ptb‖dptb
= pt − pb . (4.32)

Using (4.31) and (4.32), dptb
can be defined as

dptb
= pt − pb
‖pt − pb‖

, (4.33)
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With the four sensor measurements now expressed as function of the state, the measure-
ment vector yk is built from (4.28), (4.29) and (4.33) as

yk =
[

dpt dpb
dptb

‖pb‖
]T

=
[

pt

‖pt‖
T pb

‖pb‖
T pt−pb

‖pt−pb‖
T ‖pb‖

]T
(4.34)

This measurement vector is only related to the target position state with the ne-
cessity to have the calculation of the transponder position. In order to circumvent this,
and to add a degree of precision to the estimates, the state shall be augmented with
the transponder’s position and velocity for the EKF-V, and the transponder’s position,
velocity and acceleration for the EKF-A.

Furthermore, the measurement vector is time-varying and not a linear combination
of the states, thus the filter cannot be a linear Kalman filter. A simple way of overcoming
this problem is to transform the filter into an extended Kalman filter. The principle of
the Extended Kalman Filter (EKF) is to linearize the non-linear system around the a
posteriori estimate at the previous time step before applying the state-update step and
around the a priori estimate at the present time step before the measurement-update step
of the regular Kalman filter. Here is presented the series of steps required to produce the
filter.

Firstly, the system must be presented as the common system and measurement
equations as follows. For the present case, the known inputs are considered non-existent
as previously justified and thus, shall be omitted. Taking (4.12a) and (4.12b), linearizing
xk around the a posteriori estimate xk−1 = x̂+

k−1 gives

xk = Fk−1xk−1 + Lk−1wk−1 , (4.35)

with

Fk−1 = ∂fk−1

∂x

∣∣∣∣
x̂+

k−1

(4.36a)

Lk−1 = ∂fk−1

∂w

∣∣∣∣
x̂+

k−1

, (4.36b)

and expanding yk around the a priori estimate xk = x̂−k gives

yk = Hkxk + Mkvk , (4.37)

with

Hk = ∂hk
∂x

∣∣∣∣
x̂−

k

(4.38a)

Mk = ∂hk
∂v

∣∣∣∣
x̂−

k

. (4.38b)

It is assumed that both noise processes are additive in their respective equations
and thus the Lk−1 and Mk matrices are appropriately sized identities. This means that
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the regular linear Kalman filter equations may be applied as they were presented. Since
the state-space system is already linear, the Fk−1 matrix remains as in (4.15) and the
time update equations (4.16) and (4.18) may be applied. To obtain the time-variant Hk

matrix from the non-linear measurement, the Jacobian is applied to (4.34) and results in,
for the EKF-V

HE−V
k = dyk

dx
=



H11 H12 H13 0 0 0 0 0 0 0 0 0
H21 H22 H23 0 0 0 0 0 0 0 0 0
H31 H32 H33 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 H47 H48 H49 0 0 0
0 0 0 0 0 0 H57 H58 H59 0 0 0
0 0 0 0 0 0 H67 H68 H69 0 0 0
H71 H72 H73 0 0 0 H77 H78 H79 0 0 0
H81 H82 H83 0 0 0 H87 H88 H89 0 0 0
H91 H92 H93 0 0 0 H97 H98 H99 0 0 0
0 0 0 0 0 0 H107 H108 H109 0 0 0



, (4.39)

and for the EKF-A

HE−A
k = dyk

dx

=



H11 H12 H13 0 0 0 0 0 0 0 0 0 0 0 0 0 00
H21 H22 H23 0 0 0 0 0 0 0 0 0 0 0 0 0 00
H31 H32 H33 0 0 0 0 0 0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 0 H47 H48 H49 0 0 0 0 00
0 0 0 0 0 0 0 0 0 H57 H58 H59 0 0 0 0 00
0 0 0 0 0 0 0 0 0 H67 H68 H69 0 0 0 0 00
H71 H72 H73 0 0 0 0 0 0 H77 H78 H79 0 0 0 0 00
H81 H82 H83 0 0 0 0 0 0 H87 H88 H89 0 0 0 0 00
H91 H92 H93 0 0 0 0 0 0 H97 H98 H99 0 0 0 0 00
0 0 0 0 0 0 0 0 0 H107 H108 H109 0 0 0 0 00



,

(4.40)
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where

H11 = pty
2+ptz

2

σ1
H12 = −ptxpty

σ1

H13 = −ptxptz

σ1
H21 = −ptxpty

σ1

H22 = ptx
2+ptz

2

σ1
H23 = −ptyptz

σ1

H31 = −ptxptz

σ1
H32 = −ptyptz

σ1

H33 = ptx
2+pty

2

σ1
H41 = pby

2+pbz
2

σ2

H42 = −pbxpby

σ2
H43 = −pbxpbz

σ2

H51 = −pbxpby

σ2
H52 = pbx

2+pbz
2

σ2

H53 = −pbypbz

σ2
H61 = −pbxpbz

σ2

H62 = −pbypbz

σ2
H63 = pbx

2+pby
2

σ2

H11 = (pty−pby)2+(ptz−pbz)2

σ3
H12 = −(ptx−pbx)(pty−pby)

σ3

H13 = −(ptx−pbx)(ptz−pbz)
σ3

H21 = −(ptx−pbx)(ptypby)
σ3

H22 = (ptx−pbx)2+(ptz−pbz)2

σ3
H23 = −(pty−pby)(ptz−pbz)

σ3

H31 = −(ptx−pbx)(ptz−pbz)
σ3

H32 = −(pty−pby)(ptz−pbz)
σ3

H33 = (ptx−pbx)2+(pty−pby)2

σ3
σ1 = (ptx2 + pty

2 + ptz
2)

3
2

σ2 = (pbx2 + pby
2 + pbz

2)
3
2 σ3 =

(
(ptx − pbx)2 + (pty − pby)2 + (ptz − pbz)2

) 3
2

(4.41)

With these results, the measurement-update equations (4.20), (4.19) and (4.21) may
be applied as previously described.

4.5 Simulation Results

In order to verify the validity of the filters developed in the current chapter, numer-
ical simulations were performed using the simulation setup previously defined in chapter
2.4. To recap, the simulations comprise a range of artificial trajectories which model
some assumed target behaviors. These will be fed to the estimators in order to evaluate
the importance of the design considerations in the final performance, as well as compare
the designs to each other. Again, the presented results will be the ones obtained after
extensive iterative manual tuning of the measurement-error and estimate-error covariance
matrices. Additionally, the best results from the present chapter’s filters will be com-
pared to the best results from the ones designed in Chapter 3 for trade-off considerations
in increased computational and model complexities.

For this set of simulations the initial estimates were assumed totally unknown and
the following initial values were given for the Kalman-V and Kalman-A respectively

xK−V0 = 06×1 (4.42a)
xK−A0 = 09×1 . (4.42b)

As for the R0, P0 and Q0 matrices, these were firstly defined as unity matrices of
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appropriate size and then manually tuned to values that gave the best estimates of
position. After extensive testing the best values for these matrices were found to be

QK−V
0 = 5× 10−4 I6×6 (4.43a)

RK−V
0 = 5 I3×3 (4.43b)

PK−V
0 =

 100 I3×3 03×3

03×3 100 I3×3

 (4.43c)

for the Kalman-V filter, and

QK−A
0 = 1× 10−7 I9×9 (4.44a)

RK−A
0 = 5 I3×3 (4.44b)

PK−A
0 =


100 I3×3 03×3 03×3

03×3 5 I3×3 03×3

03×3 03×3 I3×3

 (4.44c)

for the Kalman-A filter.

The results of the simulations performed on the Kalman-V and Kalman-A solutions
are presented in Fig. 4.1 and 4.2, with the error characteristics described in Tables 4.1
and 4.2.

px (m) py (m) pz (m)
µ σ µ σ µ σ

Constant Velocity 0.4953 0.8269 -0.4519 0.4350 -0.0165 0.0905
Constant Acceleration 0.7261 0.6421 0.2567 0.5611 -0.0133 0.0902
Sinusoidal Velocity 0.2306 1.8529 -0.1212 1.6718 0.0014 0.1909

Table 4.1: Estimate error mean and standard deviations for Kalman-V solution

px (m) py (m) pz (m)
µ σ µ σ µ σ

Constant Velocity 0.4953 0.7564 -0.4949 0.3751 -0.0269 0.0987
Constant Acceleration 0.0584 0.8827 -0.1482 0.5441 -0.0099 0.1081
Sinusoidal Velocity 0.4388 1.6632 -0.5582 2.3360 -0.0023 0.1941

Table 4.2: Estimate error mean and standard deviations for Kalman-A solution

With this in mind, the same process used previously is applied and the norm of the
vector difference between the estimate and the real value is computed and the results of
this Loosely Coupled solutions are presented for the three artificial trajectories, in Fig.
4.3, 4.4, and 4.5.

Finally, in order to evaluate the relative performance of the simulated situations,
Table 4.3 presents the RMS error of the position estimate for the final 50 seconds of
simulation.
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Simulation Kalman-V Kalman-A RLS-V RLS-A
Constant Velocity 0.7687 (m) 0.6300 (m) 0.6022 (m) 0.8459 (m)

Constant Acceleration 1.3873 (m) 0.8118 (m) 2.6982 (m) 0.8314 (m)
Sinusoidal Velocity 3.2238 (m) 3.9639 (m) 3.1984 (m) 3.3307 (m)

Table 4.3: Estimate RMS error comparisons for the Kalman filter solutions

From Fig. 4.3 and Table 4.3, we are able to conclude that both designed filters are
equivalent in performance for the constant velocity case, with the Kalman-A filter having
a slightly more oscillatory behavior in the initial stage. This is the expected behavior
for the considered situation since both models accurately describe the modeled motion.
The initial oscillatory behavior of the Kalman-A filtered is explained by the fact that it
is attempting to estimate the acceleration of the target without any direct measurement
information, contrary to the Kalman-V filter that, correctly for the present situation,
assumes zero acceleration.

For the constant acceleration case, in Fig. 4.4 we can observe that while initially
both filters have similar error, the Kalman-V’s error levels rise steadily while the Kalman-
A’s remain somewhat constant which is supported by the Table. Again, this goes towards
the expected outcome. The Kalman-A filter is a better model for the considered situation
and as such has a long term better performance than the Kalman-V. The latter considers
an oversimplified model that while in the short term compensates for its own inadequacy,
fails in the long term to maintain an estimate as good as the more complex model.

Finally, regarding the sinusoidal velocity simulation, we may observe in Fig. 4.5
that both filters exhibit poorer estimates of the target position. This is an expected
behavior since, as observed in the Least Squares (LS) solutions, either model is not an
accurate representation of the evaluated motion. However, due to the periodicity of the
present case, the errors do not grow unbound and we observe periodic decreases in error
in regions where the actual trajectory crosses the estimated trajectory. Furthermore, we
see a better long term estimate provided by the Kalman-V filter from Table 4.3, while
the initial estimate is better by the Kalman-A filter. The fact that the initial estimate is
better provided by the Kalman-A filter is due to the beginning of the motion being similar
to a constant acceleration motion, while the better long term estimate by the Kalman-V
filter is due to the fact that the latter has a faster response to wide variations than the
first.

Following the evaluation of the Kalman filters designed in section 4.3, the same
procedure was applied to the EKFs designed in section 4.4. The results of the simulations
are presented in Fig. 4.6, 4.7, 4.8, 4.9, and 4.10 and in Tables 4.4, 4.5, and 4.6.

Analyzing Fig. 4.8, we can observe that both designed EKFs have similar conver-
gence and performance for the constant velocity case. This is according to expectations
and previous results with linear Kalman filters. We see, however, a slightly minor oscil-
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px (m) py (m) pz (m)
µ σ µ σ µ σ

Constant Velocity 0.3372 0.1466 -0.3310 0.1456 -0.0135 0.0676
Constant Acceleration 0.4627 0.2590 0.0258 0.3043 -0.0098 0.0954
Sinusoidal Velocity -0.4628 0.6836 -0.1140 0.5691 0.0243 0.1282

Table 4.4: Estimate error mean and standard deviations for EKF-V solution

px (m) py (m) pz (m)
µ σ µ σ µ σ

Constant Velocity 0.3333 0.2724 -0.3164 0.2644 -0.0135 0.0979
Constant Acceleration 0.4062 0.3447 -0.0464 0.4129 -0.0032 0.1325
Sinusoidal Velocity -0.1598 1.2425 -0.0671 0.3330 0.0143 0.2153

Table 4.5: Estimate error mean and standard deviations for EKF-A solution

lation of the estimation error of the EKF-V in relation to the EKF-A. This may be the
result of the assumed model of the EKF-V being simpler than that of the EKF-A while
remaining fully valid for the modeled behavior. In any case, the difference in long term
performance while observable from Table 4.6 is negligible for a real world implementation.
As far as convergence time is concerned, the EKF-A presents a faster convergence which
may be advantageous for certain implementation cases.

Moving on to Fig. 4.9, the results are similar to those observed in the previous
simulation. This is surprising since for the same case, using linear Kalman filters produced
noticeable differences in long term performance between the two assumed models, namely
a continuously growing error in the constant velocity model’s estimate. Convergence time
and oscillation, however remain sources of performance difference between the models,
most importantly the first. By using a motion model in the EKF-V that is less accurate
in the simulated situation, we delay convergence even further than for the previous model.
The final stretch of simulation, however, presents an almost identical RMS error in the
two solutions.

Finally, in Fig. 4.10 both filters present superior performance than in the previous
cases with the EKF-V filter having a better and more consistent estimate than the EKF-A.
The convergence time is again larger than that of the EKF-A filter.
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Simulation EKF-V EKF-A Kalman-V Kalman-A RLS-V RLS-A
Constant Velocity 0.3754 (m) 0.6439 (m) 0.7687 (m) 0.6300 (m) 0.6022 (m) 0.8459 (m)

Constant Acceleration 0.7901 (m) 0.7859 (m) 1.3873 (m) 0.8118 (m) 2.6982 (m) 0.8314 (m)
Sinusoidal Velocity 1.0006 (m) 1.2815 (m) 3.2238 (m) 3.9639 (m) 3.1984 (m) 3.3307 (m)

Table 4.6: Estimate RMS error comparisons for the EKF solutions
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Figure 4.1: Position estimate errors of the Kalman-V solution
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Figure 4.2: Position estimate errors of the Kalman-A solution
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Figure 4.3: Position estimate errors of the Kalman filters for the constant velocity case
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Figure 4.4: Position estimate errors of the Kalman filters for the constant acceleration case

43



0 50 100 150
0

5

10

15

20

25

30

35

40

Position estimate errors using Kalman Filter

Time (s)

M
ea
su
re
d
d
is
ta
n
ce

er
ro
r
(m

)

 

 

Kalman−V

Kalman−A

(a) Position estimate error (m)

0 50 100 150
0

10

20

30

40

50

60

Position estimate errors comparison

Time (s)

M
ea
su
re
d
d
is
ta
n
ce

er
ro
r
(%

of
ra
n
ge
)

 

 

RLS−A

Kalman−V

Kalman−A

(b) Position estimate error as percentage of range

Figure 4.5: Position estimate errors of the Kalman filters for the sinusoidal velocity case
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Figure 4.6: Position estimate errors of the EKF-V solution

45



0 50 100 150
−20

−10

0

10

20

Position estimate errors using EKF-A solution

Time (s)

E
st
im

a
te

er
ro
r
(m

)

 

 

p
x

p
y

p
z

(a) Constant Velocity trajectory

0 50 100 150
−20

−10

0

10

20

Position estimate errors using EKF-A solution

Time (s)

E
st
im

a
te

er
ro
r
(m

)

 

 

p
x

p
y

p
z

(b) Constant Acceleration trajectory

0 50 100 150
−20

−10

0

10

20

Position estimate errors using EKF-A solution

Time (s)

E
st
im

a
te

er
ro
r
(m

)

 

 

p
x

p
y

p
z

(c) Sinusoidal Velocity trajectory

Figure 4.7: Position estimate errors of the EKF-A solution

46



0 50 100 150
0

5

10

15

20

25

30

35

40

Position estimate errors using EKF

Time (s)

M
ea
su
re
d
d
is
ta
n
ce

er
ro
r
(m

)

 

 

EKF−V

EKF−A

(a) Position estimate error (m)

0 50 100 150
0

10

20

30

40

50

60

Position estimate errors comparison

Time (s)

M
ea
su
re
d
d
is
ta
n
ce

er
ro
r
(%

of
ra
n
ge
)

 

 

EKF−V

EKF−A

Kalman−V

Kalman−A

(b) Position estimate error as percentage of range

Figure 4.8: Position estimate errors of the Extended Kalman filters for the constant velocity case
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Figure 4.9: Position estimate errors of the Extended Kalman filters for the constant acceleration case
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Figure 4.10: Position estimate errors of the Extended Kalman filters for the sinusoidal velocity case
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Chapter 5

Conclusion and Future Work

In this work a novel approach to the tracking of underwater moving targets is de-
veloped based on acoustic signal Direction of Arrival (DoA) information obtainable with
an arrangement of existing Ultra Short Baseline (USBL) array systems and their relative
spacial information. The target position is found to be possible to compute with the avail-
able measurements and estimation methods are designed that improve the accuracy of the
position results and allow for the addition of target velocity and acceleration estimation.

Two algebraic methods are presented that permit the computation of a target po-
sition based on the DoA information of an acoustic signal that is emitted by the target,
calculated at two different positions where USBL arrays are deployed. Both methods
validity conditions were evaluated and described. A set of simulated conditions were for-
mulated to cover a range of possible mission scenarios and were applied to the previously
presented methods. It was found possible to calculate a position estimate in all situations,
although with varying degrees of error.

LS estimation methods were applied in loosely-coupled linear estimators, for which
the measurements were used as the externally computed position values obtained from
the algebraic solutions. Two such estimators were designed, one which estimates the
target velocity, and one which besides estimating the target velocity, also estimates its
acceleration. Due to implementation concerns, LS algorithm was altered in favor of a
recursive approach to the estimation into an RLS solution. In this same process, a de-
pendence on the measurement error expected characteristics was added in the form of a
measurement-error covariance matrix. The developed methods were simulated in the pre-
viously described conditions and the position estimate errors were found to be significantly
lower than those of the algebraic solutions.

In order to further improve the quality of the position estimates, Kalman filtering
techniques were used. Firstly a loosely-coupled approach was taken which was similar
to the RLS solution. The results of the algebraic solutions were used as measurements
which gave the system a linear time-invariant observation model. Again, two variants
of the filter were presented, both estimating velocity, and one estimating acceleration.
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These were also simulated and it was found that either variant presented a comparable
or better performance in the constant velocity and constant acceleration simulations than
their RLS counterparts, however presenting a worse performance in the sinusoidal velocity
case.

Finally, a tightly-coupled approach was taken in order to extract increased accuracy
from the measurements and eliminate the need to compute position fixes externally to
the estimator. This resulted in a non-linear observation model and the Kalman filter was
modified to an Extended Kalman Filter. This solution was derived for both the velocity
and the velocity and acceleration estimators and simulated in the same conditions as
before. It was found that both models presented better performance than any previous
design with the simpler velocity estimating model giving the best estimate in two of the
three simulated situations.

With the results obtained in this work, the next step clearly lies in the validation of
the premises with field tests, creating a prototype using the already available tools and
structures. This path would involve solving certain technical aspects not in the scope of
this work such as information transfer between receiver arrays, target signal detection and
DoA calculation, and algorithm optimization for a real-time, computationally constrained
embedded environment.
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