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Resumo

Hoje em dia, existem vários sensores e mecanismos para estimar a trajetória e lo-

calização de um robô móvel, relativamente ao seu meio de navegação. Normalmente os

mecanismos de posicionamento absoluta são os mais precisos, mas também são os mais

caros, e requerem equipamento pré instalado, exterior ao robô. Portanto, um sistema

capaz de medir o seu movimento e localização relativamente ao seu meio de navegação

(posicionamento relativo) tem sido uma àrea de investigação fulcral desde o ińıcio do

aparecimento dos véıculos autónomos. Com o aumento do desempenho computacional,

a visão por computador tem-se tornado mais rápida e, portanto, tornado posśıvel incor-

porá-la num robô móvel. Em abordagens feature based de odometria visual, a estimação

de modelos implica a ausência total de falsas associações de features (outliers) para se ter

uma correta estimação. A rejeição de outliers é um processo delicado, tendo em conta que

existe sempre um compromisso entre a velocidade e fiabilidade do sistema.

Esta dissertação propõe um sistema de posição 2D, para uso interior, usando odome-

tria visual. O robô móvel tem uma câmera apontada ao teto, para a análise de imagem.

Como requisitos, o teto e chão (onde o robô se move) devem ser planos. Na literatura, o

RANSAC é um método muito usado para a rejeição de outliers. No entanto, pode ser lento

em circunstâncias cŕıtica. Por conseguinte, é proposto um novo algoritmo que acelera o

RANSAC, mantendo a sua fiabilidade. O algoritmo, chamado FMBF, consiste na com-

paração de padrões de textura entre as imagens, preservando os padrões mais parecidos.

Existem vários tipos de comparações, com differentes custos e fiabilidade computacional.

O FMBF gere estas comparações, a fim de otimizar o compromisso entre velocidade e

fiabilidade.

Palavras Chave: Odometria Visual, RANdom SAmple Consensus (RANSAC),

Feature Metrics Best Fit (FMBF), Features.
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Abstract

Nowadays, several sensors and mechanisms are available to estimate a mobile robot

trajectory and location with respect to its surroundings. Usually absolute positioning

mechanisms are the most accurate, but they also are the most expensive ones, and require

pre installed equipment in the environment. Therefore, a system capable of measuring

its motion and location within the environment (relative positioning) has been a research

goal since the beginning of autonomous vehicles. With the increasing of the computa-

tional performance, computer vision has become faster and, therefore, became possible to

incorporate it in a mobile robot. In visual odometry feature based approaches, the model

estimation requires absence of feature association outliers for an accurate motion. Outliers

rejection is a delicate process considering there is always a trade-off between speed and

reliability of the system.

This dissertation proposes an indoor 2D position system using Visual Odometry. The

mobile robot has a camera pointed to the ceiling, for image analysis. As requirements,

the ceiling and the floor (where the robot moves) must be planes. In the literature,

RANSAC is a widely used method for outlier rejection. However, it might be slow in critical

circumstances. Therefore, it is proposed a new algorithm that accelerates RANSAC,

maintaining its reliability. The algorithm, called FMBF, consists on comparing image

texture patterns between pictures, preserving the most similar ones. There are several

types of comparisons, with different computational cost and reliability. FMBF manages

those comparisons in order to optimize the trade-off between speed and reliability.

Keywords: Visual Odometry (VO), RANSAC, FMBF, Features.
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Chapter 1

Introduction

This chapter introduces the navigation and mapping systems for AGV, based on the

literature. An overview is performed about several sensors and techniques available to use

in SLAM. The proposed system of the dissertation is revealed, using the VO technique

alone. The objectives and contributions are presented in order to solve the literature

problems. An algorithm approach is proposed to make VO a faster process. Also, the

structure of the dissertation is presented, organized by chapters.

1.1 Motivation

Mobile robot navigation and mapping has been central research topic for the last

few years. An autonomous mobile robot needs to track its path and locate its position

relative to the environment. Such task is still a challenge when operating in unknown and

unstructured environments. However, from a theoretical and conceptual point of view,

it is now considered a solved problem. SLAM is a critical underlying method for the

resolution of this problem. SLAM has the purpose of building a consistent map while

simultaneously estimating the robot position within the map. SLAM may be designed

for different domains such as to outdoor or indoor, to wheeled or legged, to underwater

and to airborne systems. Furthermore, robots are built for different purposes, leading to

a wide variety of navigation mechanisms. Therefore, the complexity of the surroundings

and the way the robot interacts with the surroundings varies considerably. Due to current

technology limits, there is not a standard approach regarding this matter. In order to

1
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achieve SLAM, different types of sensors are used, contributing for the efficiency of the

process. Combinations of sensors are chosen, according to the environment and robots

tasks purposes.

Wheel odometry, Inertial Measurement Unit (IMU), magnetic compasses, active bea-

cons, VO, are very common techniques associated to the estimation of a vehicle position

and location. Nevertheless, when combining several sensors for that purpose, visual odom-

etry is usually a favourite choice. The main reason is that VO is very versatile, considering

it is not restricted to a particular locomotion method, and the relation between motion

estimation accuracy and the system expense is very appealing.

1.2 Proposed System

This dissertation aims to implement an indoor 2D tracking position system for a

mobile robot through a VO operation, using a single camera pointed to the ceiling. The

robot motion is estimated through successive comparisons between picture frames of the

ceiling. In each frame, several local patterns are detected, designated as landmarks or

features. The consecutive frames need to have overlapped areas, where the features can

be compared and matched. By matching features throughout the frame sequence, the

robot motion of the last frame in relation to the first frame is estimated.

This system is limited to a 2D path. The ceiling has to be a plane as well as the floor

where the robot moves. Running a VO system in real time is a major goal in the literature.

The algorithm needs to be fast and reliable enough to accomplish real time. The most

burdensome process is the feature matching between frames. Therefore, a new algorithm

approach is implemented in this dissertation, which aims to reduce the computational cost

of the feature matching process.

1.3 Objectives and Contributions

In the literature, the feature matching, that compares all features from one frame

to all other features from the other frame, is extremely computationally expensive. This

dissertation proposes an approach using this method, taking advantage of its high accu-
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racy, but reducing the computational cost considerably. The features used are specifically

designated as corners (described in section 2.3.5), detected by the algorithm Features from

Accelerated Segment Test (FAST). Each corner is considered a special pixel, positioned in

pixel coordinates. Therefore, every corner has a Corner Signature (CS) which consists in

all distances to the other corners of the same frame. Also, with two corner neighbours of a

certain corner, a Corner Triangle Signature (CTS) is created. It is required a certain num-

ber of CS comparisons with a high similarity to have a frame match. Therefore, instead

of comparing all CS of one frame to all CS of the other frame, the CS comparisons run

until such number of comparisons with high similarity is achieved. Additionally, for each

corner comparison a CS comparison is performed only if a CTS inexpensive comparison is

approved. For corner matches quick rejection, a pre corner filtering is performed in pairs

of frames, before the feature matching, based on a corner detection parameter (designated

as FAST threshold). Also, in order to have an appropriate number of corner detections

per frame, a corner controller is presented, based on the last used FAST threshold and

number of detected corners.

The work developed in this dissertation, led to a paper presented in an international

conference, [CECV14].

1.4 Organization

This dissertation is organized as follows.

Chapter 1 introduces the navigation and mapping systems for AGV, based on the

literature. An overview is performed about SLAM and several sensors and techniques

used for it. It is revealed the proposed system of the dissertation, using the VO technique

alone, and its constraints. The objectives and contributions are presented in order to solve

the literature problems. It is proposed an algorithm approach to make VO faster. Also,

the structure of the dissertation is presented, organized by chapters.

Chapter 2 contains a literature review about mobile robotics position systems. It per-

forms an overview about several sensors and techniques used in SLAM. The sensors are

divided in absolute and relative positioning types, and comparisons are performed between

them. The benefits and inconvenients of each sensor are emphasized and several compar-
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isons are performed. Several VO techniques presented in the literature are explained and

mentioned where they belong in the VO block diagram. Feature detection, feature match-

ing and outlier removal are explained in detail and presented their importance to the

success of a VO process.

Chapter 3 presents the VO solution proposed in this dissertation. It describes the

camera projection that takes picture frames and justifies why the limited resolution of the

frame. The FAST corner detector is detailed explained along with the differences between

several FAST-n, varying n. After detecting the corners in one frame, it is explained

how corner signatures are created in order to allow the corner matching between frames.

RANSAC used alone for corner matching would bring a high temporal complexity, as

stated. Therefore, the FMBF is carefully detailed in order to prove the reduction of such

complexity. Using the frames, a map is performed throughout the trajectory. It is also

mentioned how the camera calibration was performed, using several pictures taken to a

certain plane. And also, the two simulators used to validate the FMBF algorithm are

detailed.

Chapter 4 illustrates the experimental results of three particular tests. In the first

test, nine frames of the same ceiling are used to build a map. In the second test, twenty

four pictures of an other ceiling are used to estimate the robot path. In the third test, a

video is used to create a map, based on where the robot went through.

And finally, chapter 5 presents a conclusion based on the performed VO solution. It

mentions previous, non efficient, tests that did not use FMBF. MATLAB is referred as

a slow language for online calculations. Also, the experimental results brought a new

understanding, related to the motion estimation accuracy. For future work, it is suggested

to use a faster programming language and a more robust corner detector. Also, several

more VO techniques to raise the estimation reliability, along with other sensor techniques.



Chapter 2

AGV Localisation

This chapter contains a literature review about mobile robotics position systems. An

overview about several sensors and techniques used in SLAM is performed. The sensors

are divided in absolute and relative positioning types, and comparisons are performed

between them. In each sensor the benefits and inconvenients are highlighted and several

comparisons are shown. It is explained several VO techniques presented in the literature

and mentioned where they belong in the VO block diagram. Feature detection, feature

matching and outlier removal are detailed and presented their relevance to the success of

a VO process.

2.1 SLAM

In the 1986 IEEE Robotics and Automation Conference held in San Francisco was

firstly proposed the probabilistic SLAM problem. A discussion between many researchers

led to the recognition that a consistent probabilistic mapping was a fundamental problem

in robotics with major conceptual and computational issues that needed to be addressed

[DwB06]. In [SSC87, DW87] was established the statistical basis for describing relation-

ships between landmarks and manipulating geometric uncertainty. Those works had the

purpose of showing that there is a high degree of correlation between the estimates of the

location of different landmarks in a map, and that these correlations grow with successive

observations. Several results, regarding this issue, were demonstrated in visual navigation

[AF88] and sonar-based navigation using Kalman filter type algorithms [CL85, Cro89].

5
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Therefore, the solution for localisation and mapping required a joint state composed of

the vehicle pose (i.e., position and orientation) and every landmark position, to be updated

following each landmark observation [SSC87]. Currently that is how SLAM is performed.

In SLAM the mobile robot can build a map of an environment and at the same time

use the map to determine its location. Both the trajectory of the robot and the location of

all landmarks are estimated online and without any location awareness in advance. Figure

2.1 illustrates an example SLAM draft.

Figure 2.1: Example of the SLAM problem.

In the figure a mobile robot moves through an environment taking relative observations

of a number of landmarks using a sensor located on the robot. At time instant k the

following quantities are defined:

1. xk: state vector of the location and orientation of the vehicle.

2. uk: control vector, applied at time k − 1 to drive the vehicle to state xk at time k.

3. mi: vector describing the location of the ith landmark whose true location is assumed

time invariant.

4. zk,i: observation taken from the vehicle of the location of the ith landmark at time k.

The observation is written simply as zk when the specific landmark is not relevant
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to the discussion, or there are multiple landmark observations at a time k.

The following sets are also defined:

1. X0:k = {x0, x1, ..., xk} = {X0:k−1, xk} : History of the vehicle locations.

2. U0:k = {u1, u2, ..., uk} = {U0:k−1, uk} : History of control inputs.

3. m = {m1,m2, ...,mn} : Set of all landmarks.

4. Z0:k = {z1, z2, ..., zk} = {Z0:k−1, zk} : Set of all landmark observations.

SLAM requires the probability distribution P (xk,m|Z0:k, U0:k, x0) be computed for all

k times. This probability distribution describes the joint posterior density of the landmark

locations and the vehicle state, at time k, through the recorded observations and control

inputs from the start until time k, and the initial state of the vehicle.

A recursive solution is used to the SLAM problem [DwB06]. It starts with an esti-

mation of P (xk−1,m|Z0:k−1, U0:k−1) at time k − 1, where the joint posterior is computed

using Bayes Theorem, following a control uk and an observation zk. This computation

requires a state transition model and an observation model, describing the effect to the

control input and observation respectively.

The most common representation for these models is in the form of a state-space model

with additive Gaussian noise, leading to the use the Extended Kalman Filter (EKF).

The motion model of the vehicle can then be described in terms of a probability

distribution of state transitions in the form of:

P (xk|xk−1, uk) : xk = f(xk−1, uk) + wk, (2.1)

where f(.) models vehicle kinematics and where wk are additive, zero mean uncorrelated

Gaussian motion disturbances with covariance Qk.

The observation model describes the probability of making an observation zk when

the vehicle location and landmark locations are known, and is described in the form:

P (zk|xk,m) : zk = h(xk,m) + vk, (2.2)
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where h(.) describes the geometry of the observation and where vk are additive, zero mean

uncorrelated Gaussian observation errors with covariance Rk.

2.2 Absolute and Relative Positioning

There are two basic position estimation methods, absolute and relative positioning,

for a mobile robot. If possible, they are usually employed together for better reliability

[BK87, SCDE95]. Relative positioning is based on monitoring robot poses, computing

the offset from a known starting position. Absolute positioning methods rely on systems

external to the robot mechanisms. They can be implemented by a variety of methods

and sensors, but all of them present relevant inconvenients. For example, navigation

beacons and landmarks have a significant accuracy, but require costly installations and

maintenance. Or map-matching methods, also very accurate, are usually slow, preventing

general commercial applications. Therefore, with these measurements it is necessary for

the work environment either be prepared or be known and mapped with high precision

[BKP92].

GPS can be used only outdoors and has a poor accuracy of 10 to 30 meters for non

military devices. Such limitation is imposed by the US government deliberately, through

small errors in timing and satellite position to prevent a hostile nation from using GPS in

support of precision weapons delivery.

2.3 Sensors and Techniques

There is a wide variety of sensors and techniques for mobile robot positioning:

1. Classical odometry (wheeled), where the number of wheel revolutions is monitored;

2. IMU, which measures acceleration and orientation;

3. Magnetic compasses, that measures the Earth magnetic field;

4. Active beacons, which uses triangulation and trilateration;

5. Visual odometry, where visual frame features are matched;
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6. LASER, which analyses scanned features.

Nevertheless, only the first five methods are worth devoting some attention for the

background of this work.

2.3.1 Odometry

Odometry is one of the most used positioning systems for mobile robots. It is inex-

pensive, accurate in short term and allows high sampling rates. The principle operation

of odometry is the aggregation of incremental motion information over time. The vehi-

cle localisation is estimated by calculating the performed displacement from the initial

position. Due to the incremental nature of this measure type, the measure uncertainty

increases over time [BEFW97]. In particular, orientation errors cause significant lateral

errors, which grow proportionally with the distance traveled by the robot. With time those

errors may become so large that the estimated robot position is completely wrong after

10 m of travel [GT94]. Nevertheless, most researchers invest in odometry considering that

navigation tasks could be simplified by improving the odometric accuracy. For example,

in order to obtain more reliable position estimations, [SD+99] and [GT94] propose fusing

odometric data with absolute position measurements.

Odometry is based on simple equations, which translates wheel revolutions into robot

linear displacement relative to the floor, in order to provide the robot local reference

relative to the global reference, as illustrated in figure 2.2.

Figure 2.2: Global reference and robot local reference.
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However, wheel slippage may prevent the proportional translation into linear motion,

among other smaller causes. There are two types of errors to consider, designated as

systematic and non-systematic [Bor96]. Systematic errors result from kinematic imper-

fections of the robot, such as, differences in wheel diameters or uncertainty associated

with the exact wheelbase. Non-systematic errors result from the interaction of the wheels

with the floor, such as, wheel slippage or bumps and cracks. In [Bor96] a method, called

UMBmark, was designed to measure odometry systematic errors. UMBmark requires

that the mobile robot follows an experience with stipulated conditions, in order to obtain

a numeric value that expresses the odometric accuracy. In addition, similar to the latter,

the extended UMBmark method was designed to measure non-systematic errors. In both

cases, a calibration procedure was developed to reject or reduce odometry errors, providing

a more reliable odometry process.

2.3.2 Inertial Measurement Unit

IMU is also an option when it comes to estimate a mobile robot position. It uses

gyroscopes and accelerometers to measure rate of rotation and acceleration, respectively

[BEFW97]. IMU systems have the advantage of being independent from external refer-

ences. However, they have other serious disadvantages, as show in [BDW95] and [BDw94].

Studies found that there is a very poor signal-to-noise ratio at lower accelerations. Mea-

surements need to be integrated twice, for accelerometers, to obtain the position, which

makes these sensors extremely sensitive to drift. Also, they are sensitive to uneven ground.

If there is a small disturbance in a perfectly horizontal position, the sensor detects a com-

ponent of the gravitational acceleration g, adding more error to the system.

Gyroscopes provide information related to the rate of rotation of a vehicle only, which

means their data need to be integrated once. They are more accurate than accelerometers,

but also more costly. Gyroscopes can help compensate the foremost weakness of odometry,

that is, large lateral position error. Small momentary orientation errors cause a constantly

growing lateral position error. Therefore, detecting and correcting immediately orientation

errors would be of great benefit.

Figure 2.3 illustrates the 6 DOF an IMU sensor can read.
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Figure 2.3: 6 DOF read by the IMU sensor.

2.3.3 Magnetic Compasses

A magnetic compass is a sensor that provides a measure of absolute heading. This

is important in solving navigation needs for mobile robots, considering the accumulated

dead-reckoning errors are none. However, one unavoidable disadvantage of any magnetic

compass is that the Earth magnetic field is often distorted near steel structures [BKP92]

or power lines. For this reason, these sensors are not reliable for indoor applications.

There are different sensor systems, base on a variety of physical properties related to

the Earth magnetic field. For example: mechanical magnetic compasses, fluxgate com-

passes, hall-effect compasses, magnetoresistive compasses, and magnetoelastic compasses,

among other. The most used sensor for mobile robot applications is the fluxgate compass.

By maintaining in a certain level attitude, it measures the horizontal component of the

Earth magnetic field. As advantages it has low power consumption, intolerance to shock

or vibration, quick start-up, and low cost. If the robot is projected to operate in uneven

terrain, the sensor should be gimbal-mounted and mechanically dampened, in order to

prevent large errors from the vertical component of the geomagnetic field [BEFW97].
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2.3.4 Active Beacons

Active beacons are widely used for ships and airplanes, as well as on commercial

mobile robotic systems. This navigation system provides accurate positioning information

with minimal processing, as active beacons can be easily detected. It results that this

approach stands high sampling rates with high reliability, but the cost of installation and

maintenance is also very high. There are two different types of active beacon systems:

trilateration and triangulation [BEFW97].

Trilateration is based on distance measurements to calculate the beacon sources, which

leads to the estimation of the vehicle position. Usually there are three or more transmitters

mounted at known locations in the environment and a receiver on board the vehicle. In

reverse, there may be receivers mounted in the environment and one transmitter on board

the vehicle. The famous Global Positioning System (GPS) is a particular trilateration

example.

In triangulation there are three or more active transmitters mounted in know locations,

as in trilateration. However, instead of estimating the position of the robot using the

distances between transmitters and receiver, it uses the angles αk ∈ {α1, α2, α3} between

the sensor and the three longitudinal axis, performed between the transmitters Bk ∈

{B1, B2, B3} and the sensor R. The sensor keeps on rotating on board, and registers the

three angles. From these three measurements the robot coordinates and orientation can

be computed. Figure 2.4 illustrates the draft of the triangulation active beacon type.

Figure 2.4: Triangulation draft of the active beacons system.
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2.3.5 Visual Odometry

Nowadays, computer vision is an important application to mobile robotics. SLAM

has often been performed using other sensors rather than regular cameras. However,

recent improvements in both sensors and computing hardware have made real-time vision

processing much more practical for SLAM applications, as computer vision algorithms

mature. Furthermore, cameras are inexpensive and provide high information bandwidth,

serving as cheap and precise localisation sensor.

The term VO was created in 2004 by Nistér in his landmark paper [NNB04]. This

term was chosen due to its similarity to wheel odometry. VO operates by successively

estimate the pose of the vehicle through examination of the changes that motion induces

on the images of its onboard cameras. A stereo head or a single camera may be used.

As requirements, there should be sufficient illumination in the environment and a static

scene with enough texture to allow apparent motion to be extracted. This system aims

to construct the trajectory of the vehicle with no prior knowledge of the scene nor the

motion for the pose estimation (relative positioning system). Consecutive picture frames

should be captured by ensuring that they have sufficient scene overlap. VO works by

detecting features (also named as keypoints or interest points) in the frames and matching

them over overlapping areas from consecutive frames. The feature detection is usually

performed with features such as corners or blobs. Figure 2.5 illustrates an example of

blobs detection.

Figure 2.5: Example of blobs detection. From [FS11].
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The feature matching may be performed by matching features in pairs of frames, or

tracking features throughout several frames.

VO is not restricted to a particular locomotion method. It can be used in any robot

with sufficiently high quality camera [FS11]. Compared to wheeled odometry, it has no

slippage problems in uneven terrain or other adverse conditions. Nevertheless, outdoor

terrains is in some way more challenging than indoor environments. Outdoors are un-

structured, and simpler features such as corners, planes and lines that are abundant in

indoor environments rarely exist in natural environments [AK07].

There is no ideal and unique VO solutions for every possible working environment.

The optimal solution should be chosen accurately according to the specific navigation and

the given computational resources. Furthermore, many approaches use VO in conjunction

with information from other sources such as GPS, inertia sensors, wheel encoders, among

others [CECV14, How08, MCM07, KCS11]. In the three decades of VO history, only in

the third decade real-time flourished, which has led this system to be used on another

planet by two Mars exploration rovers for the first time. In Mars, rovers used IMU and

wheeled encoder-based odometry that achieved well within the design goal of at most 10%

error. However, the rover vehicles were also driven along slippery slopes tilted as high

as 31 degrees. In such conditions VO was employed to maintain a sufficiently accurate

onboard position estimation [Mai05].

In [AK07] an approach using VO, IMU and GPS was used in rough terrain, accom-

plishing localisations over several hundreds of meters within 1% of error.

In [NNB04] it is described a real-time method for deriving vehicle motion from monoc-

ular and stereo video sequences, in autonomous ground vehicles. Obstacle detection and

mapping is performed using visual input in stereo data, as well as, estimating the motion

of the platform in real-time.

2.3.5.1 The problem

The problem of estimating a vehicle egomotion from visual input alone was first trig-

gered by Moravec [Mor80], supported by NASA Mars exploration program. The work of

Moravec stands out for describing one of the earliest corner detectors, know today as the
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Moravec corner detector, and for presenting the first motion estimation pipeline, whose

main functioning blocks are still used today. Figure 2.6 presents that pipeline for a VO

system.

Figure 2.6: A block diagram showing the main components of a VO system.

The image sequence can be stereo or monocular. Moravec used monocular for Mars

rovers. His VO system performed a 3D motion estimation with 6 Degrees of Freedom

(DOF), equipped with what he termed a slider stereo: a single camera sliding on a rail.

The robot moved in a stop-and-go fashion, digitizing images and analysing them using

extracted corners. Corners were detected in the images by his operator. The motion was

then computed through a rigid body transformation to align the triangulated 3D points

seen at two consecutive robot positions [FS11].

Most of the research done in VO has been produced using stereo cameras. Superior

results were demonstrated in trajectory recovery for a planetary rover, due to absolute

scale possession [MS87].

In both camera options, egomotion estimates alone results in accumulation errors

which grows with the distance travelled, leading to increased orientation errors [OMSM00].

This error accumulation generates a drift of the estimated trajectory from the real path.

The VO drift can be reduced through combination with other sensors as mentioned pre-

viously. However, it is of common interest increase the visual reliability. Therefore, ap-

proaches like window bundle adjustment and loop closure were developed. The window

bundle adjustment consists on performing a pose estimation using, not just the last pose,

but rather the previous m poses. In [KAS11] it is proved that windowed bundle adjust-
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ment can decrease the final position error by a factor of 2-5 on a 10km VO experiment.

Loop closure implies realizing when the robot returns to a previously visited area. This

approach is more common in Visual SLAM (VSLAM), considering it is necessary to keep

track of the map landmarks, in order to recognize a visited area.

2.4 VO Motion Estimation

In the case of a monocular system, the set of images taken at times k is denoted by

I0:n = {I0, ..., In}. In case of a stereo system, there are a left and a right image at every

time instant, denoted by Il,0:n = {Il,0, ..., Il,n} and Ir,0:n = {Ir,0, ..., Ir,n}. For simplicity,

the camera coordinate frame is assumed to be also the robot coordinate frame. Two

camera positions at adjacent time instants k − 1 and k are related by the rigid body

transformation Hk,k−1 ∈ <4×4 of the following form:

Hk,k−1 =

 Rk,k−1 Tk,k−1

0 1

 , (2.3)

where Rk,k−1 ∈ SO(3) is the rotation matrix, and Tk,k−1 ∈ <3×1 the translation vector.

The set H1:n = {H1,0, ...,Hn:n−1} contains all subsequent motions. Camera poses are

C0:n = {C0, ..., Cn}, containing the transformations of the camera with respect to the

initial coordinate frame frame at k = 0. The current pose Cn is computed by concatenating

all the transformations Hk,k−1 (k = 1, ..., n), and therefore, Cn = Cn−1Hn,n−1, whereas

C0 is the camera pose at the instant k = 0, which can be set arbitrarily be the user.

VO aims to compute the relative transformations Hk,k−1 from the images Ik and Ik−1,

and then to concatenate the transformations in order to recover the full trajectory C0,n

of the camera [FS11]. Figure 2.7 illustrates an example of the VO problem with stereo

camera.

In the figure, each pair of blue rectangles represents a pair of images captured by

the stereo camera, therefore, a robot pose. The black stars represent natural features in

the environment, which are represented as orange starts when projected in the digitalized

images of the cameras.
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Figure 2.7: Illustration of the VO problem. From [FS11].

2.5 Detecting and Matching Features

Besides feature based methods, to compute the relative motion Hk,k−1, may also be

used appearance based methods, and hybrid methods. Appearance based methods use

the intensity information of all the pixels in two input image (or subregion). A known

example of this method is using all the pixels in two images to compute the relative motion

using a harmonic Fourier transform [MGD07]. This method has the advantage of working

with low texture, but it is computationally extremely expensive. Hybrid methods use a

combination of the other two.

In feature detection, the image is searched for salient keypoints that are likely to

match well in other images. Point detectors, such as corners of blobs, are important for

VO because of their accurate positioning measurements in the image. A corner is defined

as a point at the intersection of two or more edges. A blob is an image pattern different

from its immediate neighbourhood in intensity, colour, and texture.

Feature detectors are characterized by: accurate localization (in position and scale),

repeatability (i.e., features should be redetected across frames), computational efficiency,
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robustness (to noise and blur), distinctiveness (distinguish features for easier feature

matching), and invariance (to illumination, rotation, scale and perspective distortion).

To accomplish feature matching (or tracking), features are characterized by a set of

metrics, named feature descriptor. For example, the simplest descriptor of a feature is its

appearance (i.e., the intensity of the pixels in a path around the feature point).

The simplest way for matching features between two frames is to compare all fea-

ture descriptors from one frame with all feature descriptors from the other frame. Such

comparisons are performed by similarity between pairs of feature descriptors. However,

exhaustive matching becomes quadratic with the number of features, which is computa-

tionally expensive, and could became impractical when the number of features is large.

Other feature matching methods like multidimensional tree search or hash table could be

used [BL97]. Figure 2.8 illustrates an example of feature matching in two frames.

Figure 2.8: Example of feature matching between two frames.

In the example the camera poses are c and c′, the features are of type fk and f ′k, the

corresponding points in the environment are of type pk, and the pose transformation is

Hc
c′ (k ∈ {1, 2, 3, 4, 5}).

Feature tracking is an alternative to feature matching. It consists on detecting features
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in the first image and search for their corresponding matches in the following images. This

method is suitable for situations when the amount of motion and appearance deformation

between adjacent frames is small. However, the features can suffer large changes in long

images sequences, providing bad a outcome [FS11].

2.6 Feature Detectors

In the VO literature there are many point feature detectors. The most common corners

detectors are: Moravec [Mor80], Förstner [FG87], Harris [HS88], Shi-Tomasi [ST94], and

FAST [RD05]. And the most common blob detectors are: SIFT [TW09], SURF [BTG06],

and CENSURE [AKB08]. Here is made an overview of Moravec and Harris, which have

been widely used in VO applications, and FAST that is used in this work. Although

FAST is not the most robust in 3D localization, the literature claims this feature detector

is currently the fastest one, among the other corner detectors [FS12]. Therefore, FAST is

chosen for this work due to its speed, and due to the fact that this work aims to accomplish

2D localization. With 2D localization, significantly less complex than 3D, there is not a

significant difference in the corner detectors in terms of robustness.

2.6.1 Moravec Corner Detector

Moravec operator is considered a corner detector, since it defines interest points as

points where there is a large intensity variation in every direction. The concept ”point

of interest” as distinct regions in images was defined by Moravec. In his work, it was

concluded that to find matching regions in consecutive image frames, these interest points

could be used. This proved to be a vital low level processing step in determining the

existence and location of objects in the vehicle environment [Mor80].

The Moravec corner detector algorithm is stated below. Considering the image inten-

sity of a pixel at (x, y) by I(x, y).

Input:

1. Grayscale image,

2. Binary window w(x, y),
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3. Threshold T.

Output:

1. Map indicating position of each detected corner.

Algorithm:

1. For each pixel (x, y) in the image calculate the intensity variation from a shift (u, v)

as: Vu,v(x, y) =
∑
x,y
w(x, y)[I(x + u, y + v) − I(x, y)]2, where the shifts (u, v) are:

(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1).

2. Construct the cornerness map by calculating the conerness measure C(x, y) for each

pixel (x, y) by: C(x, y) = min(Vu,y(x, y)).

3. Threshold the interest map by setting all C(x, y) below a threshold T to zero.

4. Perform non-maximal suppression to find local maxima.

All the remaining non-zero points in the cornerness map are corners.

Harris corner detector [HS88] was developed as a successor of Moravec corner detector.

The difference lies on a Gaussian window w(x, y) = exp(−x2+y2

2σ2 ), instead of a binary

window vulnerable to noise, and in the use of a the Taylor expansion to compute all shifts,

instead of using a set of shifts at every 45 degree. Results proved Harris to be more efficient

and robust to noise [HS88, DNB+12].

2.6.2 FAST Feature Detector

It is stated that the FAST detector is sufficiently fast allowing online operation of the

tracking system [RD05]. In order to detect a corner, a test is performed at a pixel p by

examining a circle of 16 pixels (a Bresenham circle of radius 3) surrounding p. A corner

is detected at p if the intensities of at least 12 contiguous pixels are all above or all below

the intensity of p by some threshold t. This is illustrated in figure 2.9.

The highlighted squares are the pixels used in the corner detection. The pixel C is the

centre of a detected corner. The dashed lines passes through 12 contiguous pixels which

are brighter than C by more than the threshold.
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Figure 2.9: FAST detection in an image patch. From [RD05]

The test of this condition is optimized by examining pixels 1, 9, 5 and 13, to reject

candidate pixels more quickly, considering a corner exists only if three of these test points

are all above or below the intensity of p by the threshold.

A corner is categorized as positive, where the intensities of the contiguous pixels of

the segment test are greater that the intensity of the pixel in the centre, and negative, on

the contrary.

Figure 2.10 shows a corner detection using FAST, where positive and negative corners

are distinguished as red and yellow.

Figure 2.10: FAST detection in a frame. From [RD05]

Table 2.1 presents the time taken to perform feature detection on a PAL field (768×288

pixels) on a test system, using FAST, SUSAN and Harris, detectors.

The FAST algorithm was tested with different sizes for the contiguous arc of the

segment test. The arc with size 9 was proved to have more repeatability [RPD10].
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Table 2.1: Time taken to perform a feature detection with FAST, SUSAN and Harris.
From [RD05].

Detector FAST SUSAN Harris

Time (ms) 2,6 11,8 44

More recently, FAST-ER algorithm was developed as a FAST successor. With a

new heuristic for feature detection and using machine learning, it was demonstrated to

represent significant improvements in repeatability, yielding a detector that is very fast and

has a very high quality. The FAST-ER feature detector authors claim in [RPD10] (2010)

it is able to fully process live PAL video using less than 5% of the available processing

time. By comparison, most other detectors cannot even operate at frame rate (Harris

detector 115%) [RPD10].

2.7 Outlier removal

Usually the corner matches are contaminated by outliers, i.e., wrong corner asso-

ciations. Image noise, occlusions, blur, and changes in viewpoint and illumination are

possible causes for outliers, that the mathematical model of the feature detector does not

take into account [FS12]. Most feature matching techniques assume linear illumination

changes, pure camera rotation and scaling, or affine distortions. Therefore, for an accurate

estimation of the camera motion, it is crucial to remove the outliers. RANSAC is the most

widely used method for outlier removal and is explained as follows.

2.7.1 RANSAC

For outlier removal the solution consists in taking advantage of the geometric con-

strains of the motion model. RANSAC was established as the standard method for model

estimation of data contaminated with outliers. This method consists in computing model

hypotheses from randomly sampled sets of data points and verify theses hypotheses on

the other data points. Then, the selected solution is the model hypotheses that shows the

highest consensus with the other data.

Figure 2.11 illustrates the estimation of a line that approximates the representing
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model of the inliers, contained on a set of data.

Figure 2.11: Estimated inliers of a data set contaminated with outliers.

For the stereo camera motion estimation, as used in VO, the estimated model is the

relative motion between two camera positions, and the data points are the candidate

features correspondences.

The RANSAC algorithm works as follows:

1. Initial: let D be a set of M features correspondences

2. Repeat

2.1. Randomly select a sample of υ points from D

2.2. Fit a model to these points

2.3. Compute the distance of all other points to this model

2.4. Create the inlier set (count the number of points whose distance from the model

is lower than d)

2.5. Store these inliers

2.6. Until the maximum number of iteration reached

3. The solution of the problem is the set with the maximum number of inliers

4. Estimate the model using all the inliers.

The number of iterations necessary to guarantee that a correct solution is found can

be computed as N = log(1−P )
log(1−(1−ε)s) . where ε is the percentage of outliers in the data points,

s is the number of data points from which the model can be instantiated, and P is the

requested probability of success [FB81]. Usually N is multiplied by a factor of 10 to make

sure of the solution success. As illustrated, RANSAC is a probabilistic method and is non-
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deterministic considering it exhibits a different solution on different runs. Nevertheless,

the solution tends to be stable when the number of iterations is increased.

2.7.2 Summary

SLAM aims to build a map of the environment and at the same time use the map

to determine the location of the robot. Several sensors may be used for this purpose,

such as: classical odometry, IMU, magnetic compasses, active beacons, visual odometry,

LASER, among other. The sensors may be of type absolute or relative positioning. The

absolute positioning sensors are more expensive and less flexible, considering it requires

pre installed equipments in the environment. Therefore, relative positioning sensors are

of major importance.

Classical odometry (wheeled) was one of the first robots estimation techniques. How-

ever, despite being limited to a particular locomotion (wheeled) it is vulnerable to drift,

which cause large position estimation errors. Magnetic compasses are efficient sensors

when only the magnetic field of the Earth is present, otherwise it loses its functionality.

Active beacons, as GPS, are very efficient and accurate, however it is very expensive to due

its external equipments. IMU are very used nowadays, due to its low cost and considering

it has 6 DOF information. Visual Odometry is also very used and its number of fans is

growing nowadays. It is a cheap system that requires only a camera and is accurate when

using robust algorithms.

Visual Odometry requires analysing frames, comparing them, and estimate the motion

performed by the robot. In each frame, several features (image patterns) are detected

for later comparison between frames. The features detection is very importance for the

good performance of the VO process. Therefore, there are many feature detectors in the

literature, such as: Moravec [Mor80], Harris [HP88], FAST [RD05], among others. In

order to estimate a good motion model, the features from the frames need to be matches,

and it is important to remove the outliers that contaminate data. RANSAC is an iterative

algorithm used in the literature, for this purpose. A motion model of the robot is then is

estimated with the inliers.



Chapter 3

Visual Odometry and Mapping

This chapter illustrates the VO solution proposed in this dissertation. It is described

the camera projection that takes picture frames and justifies why the limited resolution

of the frame. The FAST corner detector is detailed along with the differences between

several FAST-n, varying n. RANSAC used alone for corner matching would bring a high

temporal complexity, as stated. After detecting the corners in one frame, it is presented

how corner signatures are created in order to allow the corner matching between frames.

Therefore, the FMBF is carefully detailed in order to prove the decrease of such complexity.

Using the frames, a map is performed throughout the path. It is also mentioned how the

camera calibration was performed, using several pictures of a certain plane. Also, the two

simulators used to validate the FMBF algorithm are detailed.

3.1 A Visual Odometry approach

3.1.1 Introduction

As mentioned previously, Visual Odometry (VO) is the process of estimating the

egomotion of a rigid body using only video input. The VO proposed approach consists

on estimating the egomotion of a robot using a monocular scheme for video input. The

robot is aimed to work on a horizontal surface only, in an indoor environment, with a

singular and perspective camera rigidly attached, pointed to the ceiling. The ceiling and

the floor are both parallel planes, and are the means of interaction of the robot with the

25
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world. Considering the robot is wheeled and the camera has no proper motion, its image

projection is also a plane, parallel to the ceiling.

Figure 3.1 presents a perspective view of the robot motion in one dimension. The

ceiling is represented as a black line pattern, scanned by the camera (grey) with a field

of view represented by the light green triangle. The body of the robot is shown as blue

rectangle. The red arrow indicates the performed motion.

Figure 3.1: Perspective view of the robot, performing a one dimension movement.

While the robot moves, image features are extracted and matched throughout the

picture frame sequence, enabling the estimation of the robot egomotion on the floor.

There is no feature triangulation and the full process is performed in 2D data. Hence, this

system produces a 3 Degrees of Freedom (DOF) pose of the robot (x, y, yaw).

Figure 3.2 presents an example of two successive picture frames taken from a ceiling.

Figure 3.2: Example of two successive picture frames taken to a certain ceiling. Top:

geometric dispersions of both frames of the ceiling. Bottom: collected frame data.
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The first frame corresponds to the green rectangle and the second frame to the blue

rectangle. The second frame is taken after a movement that changes all the coordinates of

the 3 DOF. The red shaded region is the area common to both frames. It is in this area

that extracted features from both frames are matched and, through calculations, conceive

the estimation of the frames geometric transformation. That transformation represents

the position and orientation of the robot when the second frame is taken, relative to the

position and orientation of the robot when the first frame is taken. In other words, it is

the estimation of a segment of motion. Therefore, by taking a sequence of several frames,

several segments of motion can be estimated and enchained, creating a full trajectory of

the robot.

3.1.1.1 Context

This VO approach uses a feature based type method. This means, features are

extracted from each frame of the sequence, for egomotion estimation purpose [NNB04,

CSS04]. Other authors use feature less motion estimation [MGD07]. Instead of detect-

ing features, the harmonic 2D Fourier transform is applied in all the pixels from the two

frames, in order to compute the relative motion. In feature based methods, features point

out landmarks of the environment that are repeated over frames. When a robot movement

is performed, there are landmarks that show up in the current frame and in the previous

frame, in different locations. The pixel coordinates of the same landmark are known in

both frames. Therefore, considering landmarks are physically static in the environment,

through simple kinematics, the transformation matrix is calculated.

The point features, such as corners or blobs are effective because of their accurate

position measurements in the frames. A corner is considered a point of intersection between

two or more edges, whereas a blob is an image pattern which differs from its close range

neighbourhood. FAST feature detector [RD05] is the feature detector technique used

in this work. This tool provides corner features with high efficiency and repeatability

level. Blobs are more distinctive than corners and better localized in scale. Nevertheless,

corners are faster to detect, and in this work no scale variance is used, because the robot

moves through a plane (the floor) and collects features from another plane (the ceiling).
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Therefore, the distance between the planes is constant and it is assumed to be known in

advance.

For feature correspondence in different frames, some authors use feature tracking

method [Mor80, SLL01, MCM07], while others use feature matching [NNB04, Low03,

How08, CECV14]. Feature tracking consists on detecting features in one frame and track

them in the following frames, based on local search techniques. This method is recom-

mended for small-scale environments, where motions between frames are short (it was

used in the first VO researches). Feature matching consists on detecting and matching

features independently based on similar metrics. This method is currently more employed,

considering the increasing research on large-scale environments, and it is followed in this

work.

After extracting corners from the frames, the available metrics are corner coordinates

and corner symmetry. For the corner matching method to work, a set of algorithms is

used, to obtain extra corner metrics. Those metrics are CS which are divided by distance

(Corner Distance Signature, CDS) and triangle (Corner Triangle Signature, CTS). Also,

CTS is divided by angle (Corner Triangle Angle Signature, CTAS) and distance (Corner

Triangle Distance Signature, CTDS). CDS is a set of all the Euclidean distances (in pixels

units) between the other corners of the frame and the corner respective to the signature.

CTAS is a set of angle amplitudes of triangles, made by the respective corner and nearby

chosen neighbours. CTDS is a set of pairs of distances made by the respective corner and

the neighbours of the same triangle which performs CTAS. The corner symmetry describes

if the respective corner is either much brighter or much darker than the arc of pixels from

FAST detector. See section 3.1.3 and 3.1.4 for the explanation of these concepts.

False corner associations, called outliers, contaminating data is an obstacle that needs

careful attention. To achieve corner matching, the outliers need to be removed for a pos-

terior correct motion estimation. RANdom SAmple Consensus (RANSAC) is an accurate

algorithm for this task [FB81]. However, a large number of outliers are involved after

corners detection, increasing significantly RANSAC computational cost. Therefore, a new

matching method was developed to remove most of the outliers. This method is here de-

nominated as Feature Metrics Best Fit (FMBF). Similar to a Nearest Neighbour classifier
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(NN) methodology [Bha10], FMBF finds the best fit of feature metrics for the corners that

are extracted from consecutive frames. Section 3.1.5.2 describes this process in detail.

A block diagram in figure 3.3 represents the VO pipeline in this case study.

Figure 3.3: VO block diagram.

3.1.2 Picture frame capture

Picture frames are captured by a perspective camera model. Other authors with 3D

approaches use omnidirectional camera models [GD00]. Such camera models have a field

of view beyond 180 degrees, and could be useful for 3D mapping, considering the wide

amount of the environment information at once.

Experimental results use a frame resolution of 320×240 pixel (i.e., 320 of width and

240 of height). Using this FAST approach (detailed in section 3.1.3) the experiments of

this work prove that higher resolutions are not viable. Corners repeatability suffers a

substantial decline and time consuming rises. For 3D approaches, where scale-variance is

unavoidable, this problem is managed with FAST - Enhanced Repeatability (FAST-ER)

[RPD10].

The ceiling observed by the camera is assumed to be a plane, with minimal roughness.

There are no pre processing algorithms for image noise, camera shacking or blur treatment.

The frames sampling rate changes with the algorithms time consumption. For different

algorithms combinations and adjustments the sampling rate varies.

Figure 3.4 shows the projection of a perspective camera model. Evidently the scene

plane is measured in SI units and the image plane is measured in pixels. Section 3.3

describes the conversion between those units.
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Figure 3.4: Perspective projection: scene plane (SI) and image plane (px) .

3.1.3 FAST feature detection

The FAST feature detector is a method that detects corner features in frames. There

are several definitions of corners such as the result of geometric discontinuities, or small

patches of texture. FAST computes a corner response and defines corners to be large local

maxima of such response. This method requires frames with one colour channel, meaning

grey scale intensity is considered on pixels. In order to test if a pixel is elected as a corner,

a circle of 16 pixels (with a radius of 3) around a candidate corner p is analysed. The circle

L ∈ {1, ..., 16} with locations l ∈ L consists on pixels positioned relative to p, denoted by

p → l. A pixel p → l can be darker, brighter or similar to p, according to the difference

between its intensity Ip→l and p intensity Ip, by a threshold t. These three states are

presented as:

Sp→l =


d, Ip→l ≤ Ip − t (darker)

s, Ip − t < Ip→l ≤ Ip + t (similar)

b, Ip + t ≤ Ip→l (brighter)

(3.1)

The locations of an arc of n contiguous pixels, inside the circle, is denoted by A =

{1, ..., n}, and each pixel location by a ∈ A. If the circle around p contains an arc p→ A

with all pixels darker then Ip−t or brighter then Ip+t, p is considered a corner. Otherwise,

no corner is considered. Let P be the set of all pixels in a frame. Three subsets of P are

denoted as Pd, Ps and Pb, where:

Pd = {p ∈ P,∀a ∈ A : Sp→a = d}, (3.2)

and Ps and Pb are defined similarly. Pd is the set of pixels called negative corners, Pb is
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the set of pixels called positive corners, and Ps are non corners.

FAST was originally made only for n = 12 arc size (FAST-12) [RD05]. Compared to

other known corner detectors, such as DoG [Low04], SUSAN [SB97], Harris [HP88], Shi-

Tomasi [ST94], FAST-12 is faster, but its repeatability is not higher. Later on, approaches

of FAST-n [RPD10] were studied, with n ∈ {9, ..., 16}, and results prove that FAST-9 is

the most efficient of FAST-n.

Figure 3.5 illustrates a 9 point segment test corner detection in an frame patch. The

highlighted blue squares correspond to the 16 pixels of the circle, used in the corner

detection. The pixel at p is the centre of a candidate corner. The arc is presented by the

dashed green line that passes through 9 contiguous pixels.

Figure 3.5: FAST feature detection in a frame patch.

Let Q be a subset of locations of L, Q = {1, 5, 9, 13}, shown in figure 3.6. To determine

if p is a corner, the pixels p → Q are examined first. If Sp→1 and Sp→9 are both s, then

p can not be a corner. If p can still be a corner, pixels Sp→5 and Sp→13 are examined

similarly. This is a quick rejection that makes the algorithm faster.

Figure 3.6: Frame patch and the pixels with Q locations.
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For a certain n, the number of detected corners decreases with t increasing. Hence, it

is important to use an appropriate t to regulate the number of detected corners, depending

on prior purposes. When a corner is found there are two implemented approaches. The

faster one is to test each pixel of p → L in sequence, and stop when an arc p → A is

found. The other approach is to keep testing the rest of p → L after p → A is found, for

further analyses. With the complete information of p ∈ P̄s corner circles in one frame, it

is possible to control the number of detected corners on the next frame. This process is

explained in section 3.1.7.1 in detail.

Figure 3.7 shows two successive frames (distinguished by different robot position) and

the point corners at red (negative corners) and yellow (positive corners), extracted from

FAST-9 with a threshold t = 22.

Figure 3.7: Corner points extracted from FAST-9 with t = 22. Top: 108 corners. Bottom:
165 corners.
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By decreasing the threshold to t = 18, figure 3.8 presents the increase of the extracted

corners, using FAST-9.

Figure 3.8: Corner points extracted from FAST-9 with t = 18. Top: 222 corners. Bottom:

375 corners.

The different number of extracted corners between two successive frames occurs due

to two possibilities. First, due to image noise or FAST detection imperfections (i.e.,

repeatability uncertainty). And second, due to the motion of the image projection, as

figure 3.9 illustrates. The red corner points are extracted in both frames. The other

corner points are extracted only in the respective colour frame.

This corners variation in successive frames brings a problem for feature matching. A

detailed justification is presented in section 3.1.5.
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Figure 3.9: The problem of disappearing corners between frames due to the robot motion.

3.1.3.1 Frame resolution dependency

The smallest unit of digital images are pixels. Pixels are unsplittable, and shaped as

squares. As a consequence, usually image transformations change the information of the

original image pixels (except for rotations with angles multiples of 90◦, and translations

with integer displacement values, where the full image is maintained). The following

equation describes how a transformation is performed, for every pixel in two images, where

(x, y) are the pixel coordinates of the original image and (x∗, y∗) are the pixel coordinates

of the transformed image. The rotation angle is ϕ and, Tx and Ty is the translation

displacement in its respective axes.


x∗

y∗

1

 =


cos(ϕ) −sen(ϕ) Tx

sen(ϕ) cos(ϕ) Ty

0 0 1



x

y

1

 (3.3)

To create the human illusion that the original image is preserved, interpolations may

be applied, such as nearest-neighbour, bilinear, biquadratic, among others. If images has

high resolution and the current zoom makes pixels too small to be individually noticed,

that illusion works. In return, at a pixel scale, the differences in both images are visible

for humans, and countable for computers.

This specific image translation is not virtual but physical (camera translation). Nev-

ertheless, it complies with the same principles regarding the loss of pixel information.
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In images with low resolutions, a transformation does not affect pixel colour patterns

as much as it affects in images with higher resolutions. Colour patterns are more likely to

remain the same, considering pixels are large enough to tolerate the image transformation.

Another reason is that those pixels represent a larger portion of the world, whereas one

pixel of low resolution has the colour of the average of several pixels of high resolution,

which makes them less vulnerable to Gaussian noise.

With the FAST circle test segment of size 16 pixels, colour patterns are likely to

remain the same for certain resolutions. However, further explanations demonstrate that

the lower the resolution, less accurate this system is. As mentioned earlier, that resolution

needs to be 320×240 pixel. Figure 3.10 shows how Gaussian noise and a perspective

rotation may interfere in corner detection of the same location, for an experiment with a

640×480 pixel resolution.

Figure 3.10: Corner detection interfered by Gaussian noise and perspective rotation.

Observing the figure, in the right side of each of the both plots, many random pixel

patterns are observed in areas where only one colour should be seen. This effect results



36 CHAPTER 3. VISUAL ODOMETRY AND MAPPING

from the camera Gaussian noise. Both of the blue circles represent the segment test that

should validate the middle pixel point. However, the noise distorts the tests which leads to

different output in both cases. This means the probability of classifying both middle pixel

points as the same corner is low. The figure also demonstrates a perspective rotation,

between (a) and (b), that disrupts edges natural patterns. Figure 3.11 shows a more

detailed example of this disruption. An edge pattern on an image, with 1 pixel thick, is

presented before (a) and after (b) a perspective rotation.

Figure 3.11: Influence of a perspective rotation in corner detection with high resolution.

In the figure, both plots have segment test masks represented by 16 blue squares. The

edge in (a) has a valid corner p, as an arc of 9 pixels p → A is observed. When taking a

picture of that edge after a rotation, the picture of the same edge could be obtained has

shown in (b). In (b) the edge is distorted, compared to (a), preventing the existence of

an other arc p→ A, leading to no corner detection. In conclusion, this is why the corner

repeatability is highly affected for hight resolutions.

3.1.4 Corner features treatment

Before matching the corner features, corner signatures are created from corner coordi-

nates extracted from FAST. This is a requisite because FMBF works by comparing corner

signatures.
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3.1.4.1 Corner Distance Signature

A corner distance signature is a sorted set of all Euclidean distances between a corner

point and all other corner points from the same frame. Through the set of corner coor-

dinates in one frame, all corner distance signatures are calculated using the Pythagorean

theorem. Figure 3.12 represents a corner distance signature (blue lines) of a corner indi-

cated as an orange cross.

Figure 3.12: Representation of a corner distance signature (blue lines).

The process of calculating N corner distance signatures in the worst case has a O(N2)

cost. Let W = {p1, ..., pN} be the set of all corner coordinates where pk ∈ Z2 is the kth

corner point on the frame. The cost can be reduced to less then a half, considering the

distances between pa and pb and between pb and pa are the same. Therefore, this process

is performed as illustrated in figure 3.13, for N = 7. The pk corner points are represented

as grey squares, identified by its k index, and the necessary calculations are represented

by the blue lines.

The number of necessary iterations are It(N) =
∑N−1

n=1 n. Simple deduction leads to

the following equation:

It(N) =
N × (N − 1)

2
(3.4)
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Figure 3.13: Necessary iterations for the calculation of 7 corner distance signatures.

3.1.4.2 Corner Triangle Signature

In a corner triangle signature, a CTAS is a set of angle amplitudes Θ, with size L∆.

The ith angle θi ∈ Θ is from a triangle consisting of: the corner point pk associated to the

corner signature and two other neighbouring corner points (corner neighbour a, pk,i,a, and

corner neighbour b, pk,i,b). The angle formed at the vertex pk of this triangle is referred

as the angle θi.

A CTDS is a set of pairs of distances Φ, also with length L∆. The ith pair of distances

{φk,i,a, φk,i,b} ∈ Φ corresponds to the distances between the corner neighbours and the

corner in concern, where φk,i,a is the distance between pk and pk,i,a, and φk,i,b is the

distance between pk and pk,i,b.

For every CTS in a match between two frames, there is a minimum distance for

neighbours acceptance t∆. Figure 3.14 illustrates a corner concerned to the respective

CTS and several corner neighbours. Within the red circle, with radius t∆, the corner

neighbours are not accounted. The rest of the red points (where L∆ = 3) correspond to

the neighbours where calculations are performed to obtain Θ and Φ.

All of the L∆ triangles have the vertex of pk in common, but each of them are made

with different neighbours. The index i corresponds to the ascending order of the distances

between each pair of neighbours and pk. That is, θ1 corresponds to the triangle of the

nearest pair (first) of neighbours, θ2 to the second, and so forth.
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Figure 3.14: Three angles of a corner triangle signature.

3.1.5 Corner features matching

Feature matching is the process of finding the correspondence for each feature in

consecutive frames (if possible). Generically, two consecutive frames, the first with Nα

and the second with Nβ number of corners, have MC = Nα ×Nβ matches combinations.

In other words, MC is the number of all the possible matches for all corners, between two

frames. Figure 3.15 gives the notion of the tremendous amount of matches combinations

only for 11 corners in each frame (MC = 121). Red points are corners and blue line are

representations of the possible match combinations.

Figure 3.15: Abstract case of matches combinations.

FAST reduces this number, considering that corners are separated by corner symmetry

(negative and positive ones). The corner matches combinations are then:

MC = Nα,d ×Nβ,d +Nα,b ×Nβ,b (3.5)

The number of negative corners in frame α is Nα,d, and the others are defined similarly.
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As previously illustrated, d notation is for negatives (darker) and b for positives (brighter).

Obviously Nα = Nα,d + Nα,b and Nβ = Nβ,d + Nβ,b. Figure 3.16 presents the reduction

of the combinations with corners separated by corner symmetry. Negative corners are

shown as red and positive corners are shown as yellow. Nα,d = 5, Nβ,d = 5, Nα,b = 6 and

Nβ,b = 6. In this example, the corner matches combinations are reduced approximately

to the half, MC = 61.

Figure 3.16: Matches combinations divided by corner symmetry.

However, the intended corner matches are presented in figure 3.17. In this example,

those 11 matches are the matches that need to be found by any matching method. This

means, in 61 possible cases, 50 are outliers (that need to be rejected) and 11 are the wanted

inliers.

Figure 3.17: Correct intended corner matches.

For simplicity, the previous synthetic example has 100% corner repeatability between

frames, only a few corners are presented, positive and negative corners are separated
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physically, the corners are homogeneously distributed and no image motion (rotation or

translation) is performed.

Figure 3.18 presents an example which differs in a rotation and in the existence of

non repeated corners, compared to the previous example.

Figure 3.18: Correct matches with non repeated corners.

Let Min be the number of inliers, Mout the number of outliers (between frame α and

β); Nr the number of repeated corners and Nα,nr the number of non repeated corners,

in frame α (similarly to frame β). The values of Min and Nr are always equal. Their

difference lies on notation: Min for number of corner matches and Nr for number of

corners.

Table 3.1 presents the number of corners (by their characteristics) and the matches

of the previous example.

Table 3.1: Number of corners and matches of a synthetic example.

Nα,d Nα,b Nβ,d Nβ,b Nα,nr Nβ,nr Nr Nα Nβ Min Mout MC

7 9 8 7 5 4 11 16 15 11 108 119

The portion of outliers is approximately ηout = 91%, whereby inliers are only ηin = 9%.

Generically, the repeated corners portion of frame α is ηα,r = Nr
Nα

, the portion of inliers

is ηin = Min
MC and the portion of outliers is obviously ηout = MC−Min

MC .

In the best case scenario, positive and negative corners are divided equally: Nα,d =
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Nα,b = Nα
2 , Nβ,d = Nβ,b =

Nβ
2 . Hence, using equation 3.5,

MCbc = Nα,d ×Nβ,d +Nα,b ×Nβ,b

=
Nα ×Nβ

2
(best case) (3.6)

For the sake of simplicity let’s consider both frames with equal number of corners:

N = Nα = Nβ,

Consequently:

ηr = ηα,r = ηβ,r,

The number of combinations for both case scenarios are:

MCbc =
N2

2
(best case) and MCwc = N2 (worst case),

This leads to:

ηout(N) =
MCbc −Min

MCbc

=
N2

2 −Nr

N2

2

=
N2

2 − ηr ×N
N2

2

= 100%− 2× ηr
N

(best case) (3.7)

And

ηout(N) =
MCwc −Min

MCwc

=
N2 −Nr

N2

=
N2 − ηr ×N

N2

= 100%− ηr
N

(worst case) (3.8)
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Figure 3.19 presents a graph with the outlier portions ηout depending on the number

of corners N , for different five instances. The graph shows how outliers behave varying

the repeatability portions, 50%, 80% and 100%. It also shows how the worst (WC) and

the best case scenarios (BC) affects the outlier quantities.

Figure 3.19: Graph of the outliers portion in function of the corner number for different
repeatability.

3.1.5.1 RANSAC

RANSAC (RANdom SAmple Consensus) is an iterative method used to reject outliers.

It estimates the parameters of the mathematical model of the inliers contained on a set

of observed data, contaminated with outliers. RANSAC is non-deterministic given the

fact that it produces reasonable results with a certain probability, which increases as more

iterations are allowed.

Generically, the algorithm selects data points randomly to estimate the model param-

eters. The model is evaluated by the number of inliers that fits in it. A point is considered

an inlier if the distance from the point and the model is under a threshold. Many models

are tested this way It times (iterations). In the end the model with the largest number of

inliers is selected and a more accurate model based on all the inliers is recomputed. The

used algorithm is specifically presented in Algorithm 3.1.

The input parameters of this algorithm are:
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D - a set of data matches;

υ - the minimum number of data matches required to create the model;

It - the number of iterations performed by the algorithm;

tmd - a threshold value for determining when a corner match fits a model;

Input : D, υ, It, tmd

Output: BM , BCS

It ⇐ 0

BM ⇐ null

BCS ⇐ null

while k ≤ It do

CS ⇐ RandomSelectData(D, υ) // Selects υ random matches from D

MM ⇐ TransformationModel(CS) // Estimates the model of CS

for i⇐ 1 to Length(D) do

if Contains(CS,D(i)) = 0 then // If match of D is not in CS

if Distance(MM,D(i)) < tmd then // If match fits model

CS = Concat(CS,D(i)) // Adds match to CS

if Length(CS) > Length(BCS) then

BCS = CS

BM = MM

BM ⇐ TransformationModel(BCS) // Estimates the model of BCS

Algorithm 3.1: RANSAC used algorithm.

In each iteration, a consensus set (CS) is randomly generated with υ matches from

the data. A maybe model (MM) is created from this CS. Then, for every match in data

not in CS, if match fits MM with a distance smaller than t, that match is added to CS.

This distance is calculated based on motion calculus which is explained in detail in section

3.1.6, as well as the use of plausible values for the threshold tmd. The best consensus set

(BCS) and the best model (BM) is updated in each iteration if a new model is found

with more inliers then the previous best model. In the end BCS is considered to have all

the inliers of D, therefore BM is estimated with BCS for a more accurate model. In this
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work, the model used in RANSAC (MM and BM) is the matrix rigid body transformation

Hk,k−1, of equation 2.3.

The number of iterations of the algorithm It is selected so the probability ρ of selecting

at least one sample with all inliers is high enough. In this context, a sample is a set of υ

number of matches. In the literature, and in this work, it is used ρ = 0.99. The authors

of RANSAC [FB81] state that It is calculated by the following:

It =
log(1− ρ)

log(1− (1− ηout)υ)
(3.9)

where ηout is the probability of selecting an outlier and υ the minimum number of data

matches required to create the model, as mentioned previously.

To create a model for this VO approach, the minimum of υ is 2. Section 3.1.6 presents

an explanation in detail.

Analysing carefully the Algorithm 3.1, the first instruction in each iteration is crucial

to the “success” of the iteration. When all the matches in a sample are inliers a correct

maybe model is created. Considering, in the for loop, each data match is verified if it fits

in the model, more inliers will be found, and the model quality will increase. Therefore,

υ needs to be as low as possible so that the probability of choosing υ inliers is high.

Considering that the probability of finding an outlier match is as stated by equation 3.8

for worst case, finding an inlier is ηr
N probable. With υ = 2, the probability of finding 2

inliers when selecting random matches is much lower (ηrN )2. This related to the fact that

It grows exponentially while increasing υ in equation 3.9.

Using the graph of figure 3.19, for N = 20 in the best case, ηout = 0.9. This means

It = log(1−0.99)
log(1−(1−0.9)2)

= 458. To ensure that the corner repeatability is high enough, N is

usually aimed to 30, which makes It exponentially higher than with N = 20.

Using equation 3.9 and making It depending on N , figure 3.20 shows the graph of

It = log(1−ρ)
log(1−ηout(N)υ) , in order to understand the behaviour of the number of iterations while

increasing the number of corners. Worst and best cases are presented with a common

repeatability of 70%.

This exponential behaviour is a serious problem for computational cost. Hence, in

order to reduce the number of match combinations MC, other methods could be used
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Figure 3.20: Graph of the number of iterations in function of the number of corners.

prior to RANSAC.

3.1.5.2 Feature Metrics Best Fit

Feature Metrics Best Fit (FMBF) is a method created in this work, whose purpose

is to find a match between two frames with the best fit of the corner signature metrics.

The probability of a corner distance signature (CDS) being unique for a certain corner

is very high, and it increases with the number of corners per frame. Therefore, the first

approach of this method consisted on comparing all CDS of frame α with all CDS of frame

β, separately for negative and positive corners. This is highly accurate, but it also has a

high computational cost, considering comparing two CDS is already O(N) in the best case

scenario. Therefore, in order to reduce the number of CDS comparisons, a new option

is inserted. The frame match could finalize when a certain number of accurate corner

matches tma is approved. For an accurate admission of the best matches, several stages

may be tested. Those stages are applied to each corner match as presented bellow:

1. Comparison of CTAS, the set of angles Θ;

2. Comparison of CTDS, the set of pairs of distances Φ;
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3. Comparison of CDS;

4. Admission of the best matches.

Note that when mentioning corner comparisons, they are always perform between two

distinct frames.

Opposing to CDS that is meant to approve corner matches, CTS is designed to reject

corner matches in order to save computational cost. Hence, later on it is shown that stage

1 and 2 can be used for quick inaccurate corner matches rejection. This prevents such

corner matches from wasting time in stage 3, which is the most time consuming stage.

Stage 1 consists on approving a corner match if the set of angles Θ are not very

different between two corners. Let’s consider Θi the set of angles of the ith corner of frame

α, and Θj the set of angles of the jth corner of frame β. The set of differences, of the set of

angles, is DΘ,i,j =| Θi−Θj |. A certain corner is approved at stage 1, if all the differences

in DΘ,i,j are lower than a certain threshold tΘ.

Stage 2 consists on approving a corner match if the set of pairs of distances Φ is not

very different between two corners. Let’s consider Φi the set of pairs of distances of the

ith corner of frame α, and Φj the set of pairs of distances of the jth corner of frame β.

To perform a Φ comparison, it is necessary to have a set of pairs of differences, which

corresponds to the differences between Φi and Φj , i.e., DΦ,i,j =| Φi−Φj |. Similar to stage

1, stage 2 is approved, for a certain corner match, if DΦ,i,j have all differences lower than

a certain threshold tΦ.

For better performances of stages 1 and 2, it is essential to use neighbours (pk,i,a

and pk,i,b) with distances higher than t∆. This is due to the discrete nature of frame

information. In the real world, the points around a middle point have an infinite number of

possible positions, regardless the radius. Instead, with circles in digital images, the number

of positions is limited by the radius. Figure 3.21 shows an usual way of performing circles

with pixels. It is not possible to have all the pixels performing the exact same distance

from the middle pixel. Therefore, to perform complete circles, the pixels around the middle

pixel need be positioned where their distances are the most approximately as possible to

the intended radius.
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Figure 3.21: Several discrete circles with different radius approximations.

This means, when the distance between corners and their neighbours is 1 pixel, the

neighbours can only assume angles multiples of 90◦. If that distance is 2 pixels, the

neighbours can only assume angles multiples of 45◦, and so forth. Hence, with high t∆

values, the probability of having different corners with the same CTS decreases, which leads

to a more efficient rejection. Obviously t∆ can not be larger than the frame dimensions,

otherwise it is not possible to perform a CTS. Figure 3.22 presents a practical extreme

example of this situation. Notice that the image is not a real extraction of corners.

Coloured pixels are intentionally placed in the image in order to illustrate a perceivable

example.

Figure 3.22: An example that leads to a wrong CTS match: a) frame α, b) frame β.

In each plot of the figure, the orange square represents the corner of the CTS in study.

If t∆ = 0 was always used, CTS would be performed with the closest neighbours repre-

sented by the red square. Hence, the CTS of the corners in study on both plots would have
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Θ = {90◦} (it is assumed L∆ = 1 for simplification). This means different corners with the

same CTS. Nevertheless, by choosing an experimental value for t∆, for example t∆ = 2

the CTS of each corner in study would be performed by the blue neighbours indicated by

the dashed lines.

It is important to mention that high L∆ is not viable. A corner triangle signature

with many triangles makes them match between corners more difficult to accomplish due

to the existence of non repeatable corners. In other words, real corner matches might not

be detected because stage 1 or 2 do not approve them due to broken CTS. Figure 3.23

illustrates a synthetic example of how a non repeated corner influences CTS.

Figure 3.23: Influence of a non repeated corner in CTS.

In each frame, the yellow point represents the corner in study. Its neighbours are as

blue points, carefully placed for easy understanding. The arcs attach the neighbours that

perform the triangles of CTS. The blue ones exists in both frames, in return the red ones

do not. The corner represented at orange shows up only in the second frame, changing

the CTS. Due to its location, it changes all the triangles performed with neighbouring

corners that are further then the neighbours of triangle 2 (in this example triangle 3 and

4 are affected).

The example of the figure is very simplistic. There is only one non repeated corner and

only in one frame. In reality non repeated corners are scattered in the frames. Therefore,

to avoid this incident, generally the used L∆ values are 1 or 2.
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In stage 3 CDS comparisons are performed and are analysed by the average of the

differences between corner distances (in pixels). That average value represents the quality

of a CDS match and is denoted as QCDS (defined in equation 3.10). Hence, the best

matches are the ones which have lower QCDS . If QCDS is lower than a threshold tCDS ,

the match counts as an approved one. Each CDS comparison requires comparing at least

tD (threshold chosen by the user) distances of both of this metrics. If that is not possible,

the corner match is discarded.

The calculation of a CDS comparison is not trivial and its details are explained below.

Let Sα = [sα,1, ..., sα,Nα−1]ᵀ be a vector of a CDS, of a certain corner, in frame α. For the

following explanation it is not necessary to mention a particular corner. The notation Sβ

is similarly calculated, for frame β.

Ideally, the process of comparing two CDS would be as follows:

Q∗CDS = average(|Sα − Sβ|)

= average


∣∣∣∣∣∣∣∣∣∣


sα,1

...

sα,Nα−1

−


sβ,1

...

sβ,Nβ−1


∣∣∣∣∣∣∣∣∣∣



= average




|sα,1 − sβ,1|

...∣∣sα,Nα−1 − sβ,Nβ−1

∣∣


 (3.10)

This way, the computational cost for this operation would be always and only linear.

However, due to possible corner repeatability lower than 100%, this process becomes more

complex. Figure 3.24 shows an example where the same corner in different frames has

different CDS, due to non repeatable corners present in the frames.

The corner in analysis is illustrated as yellow points in both frames. The blue and

orange lines represent the distances of CDS. The red points are the neighbour corners

used to create the signature. Those neighbours are designated by numeration, according

to their distance to the yellow corner, in an ascendant order. The corners respective to

the orange lines do not exist in the consecutive frames. In return, the corners respective

to the blue lines are repeated in both frames. This means all the orange distances could



3.1. A VISUAL ODOMETRY APPROACH 51

Figure 3.24: Correct matches with non repeated corners.

be called noise in a corner distance signature. Therefore, the orange distances must be

discarded so the comparison between each signature could be performed only with the blue

distances only. For the sake of abstraction, let’s consider a set of distances {s1, ..., sn}

whose indices are attributed according to their assortment (sk < sk+1). Table 3.2

presents the corner neighbours sorted by their distances to the yellow corner, and their

correspondences between frame α and β.

Table 3.2: Correspondence of 2 CDS.

Distances s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s12 s13 s14

Corners α N/A 1 2 3 4 5 6 7 8 N/A N/A 9 10

Corners β 1 2 3 4 N/A 5 6 N/A 7 8 9 10 11

The set of repeated distances from frame α is denominated as Sα,r, and set of re-

peated distances from frame β is denominated as Sβ,r. In this theoretical example,

Sα,r = {s2, s3, s4, s6, s7, s9, s13, s14} and Sβ,r = {s2, s3, s4, s6, s7, s9, s13, s14}, leading to

QCDS = average(|Sα,r − Sβ,r|) = 0. However, assuming the algorithm discards the non

repeated distances correctly, QCDS = 0 happens theoretically only in particular conditions

(robot motions with angle rotations multiples of 90◦, and translations with integer dis-

placement values). In practice, those conditions are highly unlikely to occur, Sα,r ≈ Sβ,r,

and the best corner matches are the ones with the lower QCDS .

The process of discarding the non repeated distances is explained below. Let sα,i be

the ith distance of Sα and sα,j be the jth distance of Sβ. Let’s call the action of finding



52 CHAPTER 3. VISUAL ODOMETRY AND MAPPING

sβ,j , nearest distance to sα,i, a marriage, and the undo of this action a divorce. This means

every marriage has an associated difference (between distances) ∆si,j = |sα,i − sβ,j |. The

mechanism consists on making as many marriages as possible with ∆si,j as low as possible.

Before a marriage is performed, the distance sβ,j might be already married. If that is the

case, the older marriage is compared to the candidate marriage and the one with lower

∆si,j prevails. This means divorce of the older marriage, if the new marriage prevails. In

figure 3.25 natural numbers are attributed to the distances of both CDS. This leads to

unreal differences ∆si,j , but it is easier to understand.

Figure 3.25: An example of CDS matching calculation.

The green lines represent the marriages that prevail, and the green dashed line repre-

sents a divorce. The red dashed line presents a marriage attempt that has failed.

The algorithm always runs through the array Sα, i.e., Sβ is searched for distances

in order to match with individual Sα distances. In the example of the figure occur the

following phases:

1. Marriage between 1 and 2;

2. Marriage between 6 and 7 (4 never gets married);

3. Marriage between 9 and 12;

4. Divorce of 9, because of marriage between 12 and 12;

5. Marriage between 16 and 17;
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6. Failure of 19 to get married with 17, because 17 has already a marriage with lower

∆si,j .

The rejections of non repeated distances are mostly done by marriages and divorces.

Nevertheless, there is still the possibility of two non repeated distances (i.e., distances

derived of non repeated corners) getting married. This prejudices the CDS match by

decreasing its quality (QCDS rises). In table 3.3 is illustrated 2 CDS and the differences

between each distance. For the sake of simplicity, there are no divorces and no single

distances (every distance is married).

Table 3.3: A CDS match with unfavourable marriages.

sα 1 9 15 20 35 50 55 57

sβ 2 4 17 26 40 51 54 56

∆s 1 5 2 6 5 1 1 1

As the table shows, the differences of the unfavourable marriages (orange) are higher

than the others. This means an easy rejection of those differences. When the marriages

process ends, the average of all differences is calculated, but QCDS is not yet attributed.

Instead, a method equivalent to a low-pass filter (of signal analysis study field) cuts off

the high differences. Every difference higher than the average multiplied by a threshold

t∆s is discarded. A new average is calculated and QCDS assumes its value. Figure 3.26

shows an example of this method. Every difference above the red dashed line is discarded.

Figure 3.26: Filtering of unfavourable differences.
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In step 4 the set of approved corner matches is analysed and Ma best matches are

accepted according to their QCDS . Let matrix B be a structured set of quality values of

all matches, and QCDS,i,j ∈ B. Hence, QCDS,i,j is the quality of the match between the ith

corner of frame α and the jth corner of frame β, where i ∈ {1, ..., Nα} and j ∈ {1, .., Nβ}. If

such match was previously discarded for some reason, QCDS,i,j assumes a null value. ~B is

the set of quality match values of matrix B, structured as ~B = {QCDS,1,1, ..., QCDS,Nα,1, ...,

QCDS,1,2, ..., QCDS,Nα,Nβ}. Figure 3.27, illustrates an example of B and ~B with size 9.

Figure 3.27: Example of a conversion of B to ~B.

For the algorithm purpose, ~B is then sorted in an ascendant order. This means, the

first value is the best match quality (lowest QCDS) and the last value the worst match

quality (highest QCDS). The algorithm collects the values of ~B from the beginning until

tmb values are found, or a null value is found. The threshold tmb is chosen by the user.

This collection is performed with no repeated indexes i or j of QCDS,i,j , to guarantee no

corners repetition in different corner matches. Therefore, the number of accepted corner

matches is always Ma ≤ tmb.

FMBF has 4 running options:

1. Run stage 1, 2, 3 and 4;

2. Run stage 2, 3 and 4;

3. Run stage 3 and 4;

4. Run stage 3 not limited to tma and run 4.
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In option 1, 2 and 3, FMBF runs the stages 1, 2 and 3, until tma approved random

corner matches are found. In option 4, all corner match combinations are tested, in order

to make sure a valuable frame match is calculated.

This options system performs a trade-off between computational speed and efficiency,

as illustrated in figure 3.28.

Figure 3.28: Trade-off between speed and efficiency of FMBF options.

If option 4 is always used, the algorithm will calculate many and accurate matches,

because it runs throughout all the existing match combinations (MC number of CDS

comparisons). However, it is very slow. Instead, if option 1 is always used, it works very

fast in certain frame matches with hight corner repeatability. Still, it exceedingly rejects

correct matches in certain frame matches, preventing its success.

RANSAC is used after FMBF in order to make sure the approved corner matches have

a motion model in common. The accepted corner matches have small portions of outliers.

Therefore, the number of iterations It is low and RANSAC presents a small computational

cost. The fact that RANSAC may reject some portion of the accepted corner matches

means that the number of the RANSAC elected corner matches, Me, can be lower or equal

to Ma. To reckon the calculated frame match as correct, Me needs to be higher than a

certain threshold te.

In order to fulfil a correct motion estimation, with a balance between speed and

efficiency, the following ascendant steps are used:

Step 1: Run option 1 in FMBF. If Ma is NOT higher than te, go to step 3.

Step 2: Run RANSAC. If Me is higher than te, go to step 9.
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Step 3: Run option 2 in FMBF. If Ma is NOT higher than te, go to step 5.

Step 4: Run RANSAC. If Me is higher than te, go to step 9.

Step 5: Run option 3 in FMBF. If Ma is NOT higher than te, go to step 7.

Step 6: Run RANSAC. If Me is higher than te, go to step 9.

Step 7: Run option 4 in FMBF.

Step 8: Run RANSAC.

Step 9: Move on to the motion estimation.

The set of matches provided by RANSAC is denominated as E.

3.1.6 Motion estimation

The motion estimation process estimates a transformation model of the robot motion,

base on all the provided feature matches. This motion is a relative motion, considering

it is performed between pairs of frames. If one frame motion estimation fails, the next

estimated motions will be incorrect relatively to the origin of the path. Motion estimations

may fail if the corner repeatability between frames is not enough. Some authors use

windowed bundle adjustment to prevent this from happening [OMSM00]. Performing

frame matches between the current frame and several previous frames increases the quality

of the motion estimation. In the future that approach could be used in this work, to

increase its robustness. For the moment this work is focused on obtaining the best results

with fewer and essential methods.

The set of robot poses denoted by C0:n = {C0, ..., Cn} contains all the transformations

with respect to the initial coordinate frame at k = 0. Let I0:n = {I0, ..., In} be the set of

n frames taken by the camera. Hence, at the moment k, the robot pose Ck corresponds

to the same moment as when frame Ik is taken. Ck assumes the following form:

Ck =


cos(θ) −sen(θ) X

sen(θ) cos(θ) Y

0 0 1

 (3.11)

where θ is the robot orientation, and X and Y are the x and y coordinates of the robot

pose respectively.



3.1. A VISUAL ODOMETRY APPROACH 57

Two robot positions at adjacent time instants k − 1 and k are related by the rigid

body transformation Hk,k−1 ∈ <3×3 of the following form:

Hk,k−1 = Tk,k−1Rk,k−1 (3.12)

where Tk,k−1 is the translation matrix of the format:

Tk,k−1 =


1 0 x

0 1 y

0 0 1

 (3.13)

and Rk,k−1 is the rotation matrix of the format:

Rk,k−1 =


cos(ϕ) −sen(ϕ) 0

sen(ϕ) cos(ϕ) 0

0 0 1

 (3.14)

where ϕ is the rotation angle.

Therefore, the set H1:n = {H1,0, ...,Hn,n−1} contains all subsequent motions. To

simplify the notation, from now on, Hk is used instead of Hk,k−1. The current pose

Cn can be computed by concatenating all the transformations Hk (k = 1, ..., n). Hence,

Cn = Cn−1Hn, where C0 is the robot pose at the origin (instant k = 0). In other words,

Hk is the position of the reference Ck according to the reference Ck−1. C0 can be set

arbitrarily and corresponds to the identity matrix of size 3.

The estimation of Ĥk is performed through 3 references: the frames Ik and Ik−1 central

references and the ceiling reference created by the corners of the elected matches. By using

the centre of each Ik to perform motion calculations, it is assumed to be coincident with

the centre of the robot itself. With this 2D position system, 2 points (corners) is enough to

create a ceiling reference. One for the reference position, and the other for its orientation.

This is why in RANSAC υ = 2. Let’s consider Hβ the transformation between the central

reference of Ik−1 and the ceiling reference, and Hα the transformation between the central

reference of Ik and the ceiling reference. Therefore, Ĥk = HαHβ
−1. Figure 3.29 illustrates

Ĥk by the orange arrow and, Hα and Hβ by the yellow arrows.
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Figure 3.29: Reference relation between a pair of frames.

The ceiling reference can be stipulated anywhere inside the red area, as long as it

is the same for Hα and Hβ calculations. The previous figure shows 3 ceiling reference

examples as red. The higher is the number of points, the more accurate is the estimation

of Ĥk.

As shown in figure 3.30, the set of points (of the elected matches) is divided in two

sets. The average of each set performs a virtual point. It is with those 2 virtual points

that the ceiling reference is computed (a point and a vector).

Figure 3.30: Ceiling reference creation.

The model that RANSAC estimates in each iteration is Ĥk, for the providing corner

matches. It is known that a corner, in frame α coordinates pα, transformed by Hk, is the

same corner, in frame β coordinates pβ. That is: pβ = pαHk. Therefore, an estimation

p̂β = pαĤk is performed, and pβ (from the match that links pα and pβ) is compared to p̂β.
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This comparison is made by measuring the distance between both points, which needs to

be under a certain threshold tmd, in order for the match pα ←→ pβ to fit the model Ĥk.

3.1.7 Process chain

The FAST detector method becomes slower with higher number of detecting corners,

i.e., lower threshold t. High number of corners increases the number of signature com-

parisons, leading to high computational costs. It also decreases the corner repeatability

between frames, reducing the corner signature comparisons efficiency. Therefore, it is

important to control the number of detected corners.

A corner controller was initial developed in this work. Ideally, it would control the

number of corners as the block diagram represented in figure 3.31, also proposed in this

work.

Figure 3.31: Ideal block diagram.

As shown in the figure, the controller aims to cause the extraction of Nask number

of asked corners in FAST detection. It is not possible to create a model representing the

relation between tk and Nk, for a given Ik. However, the controller provides tk, estimated

to influence the number of corners Nk, based on how tk−1 has influenced Nk−1, in Ik−1.

The FAST detector provides a set of 16 colour intensity differences, for each detected

corner, denominated as ∆Ip→L. Those differences are the ones performed between the

pixels of the circle segment test and the pixel in the middle, ∆Ip→L = {|Ip−Ip→l| : ∀l ∈ L}.

Hence, for each corner in a certain frame, it is possible to know the maximum threshold

tmax necessary to make the corner detectable. In other words, each corner as a tmax and

is detected if t belongs to {0, ..., tmax}.
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3.1.7.1 Choice of detecting a corner

The corner detector used in this work is FAST-9, therefore the size of the arc p→ A

is at least 9. This means, a detected corner has an arc p → A of at least 9 pixels.

Nevertheless, for the calculation of tmax the size of p → A is always the minimum, 9.

Therefore, let’s consider a corner with an arc p → A of exact size 9. Hence, there is a

subset of 9 contiguous differences in the set ∆Ip→L, all above the t used to detect the

corner. Such subset is denominated as ∆Ip→A. This means the minimum of ∆Ip→A is

the tmax of the corner. Despite FAST detecting the corner with a certain p→ A, it does

not mean there are not other arcs of size 9 in the circle p → L, allowing the detection

of the same corner. In fact, there are 16 possibilities for ∆Ip→A to be positioned in the

set ∆Ip→L. This means 16 minimums (from ∆Ip→A of each possible position) need to be

taken into account. An arc p → A can be positioned according A = {fi, ..., fi + 8} and

i ∈ {1, ..., 16}, where:

fi =


i, i ≤ 16

16− i, i > 16

In figure 3.32 the structure of the segment test is illustrated with its pixel enumerated

by i, in the left. Only 5 arc positions are indicated with lines (red and green). In the right

side are the representations of the arc position possibilities.

Figure 3.32: Determine tmax through ∆Ip→L.

The value of tmax is thus the maximum of all 16 minimums.
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3.1.7.2 Controlling the number of corners

Applying the previous process in every detected corner of frame Ik, a set of tmax

values is obtained, denominated as Υk. That set is sorted in a descendent order. Its size

is obviously Nk, considering each value is associated with each corner of Ik. If Nask is

smaller than Nk, then the output tk+1 of the corner controller is the Nask
th value of Υk.

Figure 3.33 illustrates an example, where Nk = 15 and Nask = 12.

Figure 3.33: Example of choosing tk+1 in Υk, using Nask.

In this example Υk is an integer number sequence from 31 to 45, for simplification.

Nask = 12, therefore the chosen threshold is 34. Hence, if the FAST detector runs in the

same frame with a threshold of 34, the corners respective to the tmax indexed from 1 to

12 would be detected. This means, tk+1 is projected for Ik. Obviously, FAST is applied

in the next frame Ik+1 and not in Ik, which means the process is not going to work fully

as expected. Nevertheless, it is assumed that the intersected area between Ik and Ik+1 is

large enough to allow this process to work with enough precision.

If Nask is larger than Nk, than a mathematical function is used. It is know that the

number of corners varies exponentially with the decreasing of the threshold. Therefore,

the used function is:

tk+1 = tk − ab(Nask−Nk) (3.15)

After some tests, the chosen (default) values are: a = 1, 1 and b = 0, 5.

3.1.7.3 Windowed Corner Adjustment

The previous described controller tries to control the number of corners per frame

in order to reduce the computational cost, as mentioned previously. However, once in

a while there are occasions where Nk is significantly different from Nask, slowing down
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the algorithm considerably. I may result from function 3.15 not fitting accurately to the

real number of corners variation, or due to successive frames having low repeatability.

Therefore, Windowed Corner Adjustment (WCA) is developed in this work to solve that

problem.

In WCA a low threshold is chosen so that a high number of corners is detected,

i.e.: Nask is high. Those corners are then filtered, before the frame matching process.

Filtering consists on selecting a number of corners Nf according to their tmax values

(however, the number of selected corners can be slightly different than Nf ). Such filtering

is performed considering pairs of sets Υk ←→ Υk+1, in order to reject the corners with

tmax much different in each pair. With WCA, Nf number of corners (approximately) are

used directly in the frame matching process. Without WCA, that number is Nask. Using

WCA, the experiments show that Nask should be twice or three times Nf , to guarantee

that Nf number of corners are selected.

In the pair Υk ←→ Υk+1 the lower limit of the filter is the minimum between the

values of the Nf
th position, in Υk and Υk+1. The higher limit of the filter is the minimum

between the values respective to the 1st position, in Υk and Υk+1. Figure 3.34 illustrates

an example of this process, with 3 pairs of sets Υk and Nf = 12.

Figure 3.34: Example of WCA filtering 3 pairs of sets Υk with Nf = 12.
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The values of Υk are inside the blue grids. The orange values are the ones that are

discarded and the green ones are accepted, in respective pairs. At the left of each set is

the indexation of their values. The red index is Nf .

In this example, Υ2, in the pair on the middle, and Υ3, in the pair on the right, are

filtered with 11 number of corners, even with Nf = 12. That occurs because Υ2 and Υ3

have their last values higher then their pairs, and their 12th lower then their pairs.

Without WCA, the corner controller is used to reduce the computational cost of the

FAST detector and, consequently, the feature matching process. With WCA, the corner

controller is used just to reduce the computational cost of the FAST detector, considering

that the corners are filtered by WCA, before the matching process.

The WCA is an important breakthrough of this work, because it allows detecting a

large portion of corners, and provides a selected set of strong candidate matches to the

frame matching process. This reduces the frame matching process time consuming and

increases the frame matching quality.

The block diagram with WCA is therefore illustrated in figure 3.35.

Figure 3.35: Block diagram with WCA.

Using WCA filter is always convenient. Therefore, the above block diagram is used in

all tests of the experimental results of this work.

3.2 Mapping

This VO system is designed to work only in 2D. Therefore, while the robot is moving

in a 2D plane, the taken frames of the ceiling where it passed through are recorded in

order to create a 2D map. The first frame is placed in the origin and the others are placed

using their pose Ck, related to the origin. Figure 3.36 shows a sequence of taken frames.
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Figure 3.36: Frame sequence taken from a ceiling.

Figure 3.37 illustrates the map performed with the previous frame sequence.

Figure 3.37: Map performed by a frame sequence.

3.3 Camera calibration

In order to obtain the robot motion in SI units, a conversion is performed from pixels

units. To perform such conversion, it is important to understand the relation between the

distance from the lens of the camera to the ceiling b, and the camera Field Of View (FOV)
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angle. Figure 3.38 shows the geometry of the field of view of a generic perspective camera.

Figure 3.38: Field of view of the camera.

Through the geometry of the figure, doing the maths, FOV is calculated by:

FOV = 2 atan
(m

2b

)
(3.16)

The distance b is split in b1 and b2 (b = b1 + b2). Quantity b1 is the distance between

the lens and the edge of the camera entrance, and b2 is the distance between that edge

and the ceiling. And m is a dimension of the picture (width or height). Hence, the

millimetres/pixels relation is performed by knowing m in pixels and in millimetres. The

values of m and b2 are possible to be measured directly, and vary from scene to scene.

But, FOV and b1 are camera features. Hence, the purpose of the camera calibration is to

calculate those features, for a certain camera. Knowing those features and the distance

b2, m is calculated by:

m = 2 tan

(
FOV

2

)
× b

= 2 tan

(
FOV

2

)
× (b1 + b2) (3.17)
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Every camera taking rectangular images have different FOV for width and height

dimensions. It is possible to calculate one FOV by knowing the other, through the Aspect

Ratio (AR) of the image. The camera used in this work is a webcam with 2.0 megapixels,

and the resolution used for this calibration is 640 × 480 pixels, leading to an AR of 4/3.

For better metrical accuracy both FOV are calculated experimentally.

In order to calculate FOV and b1, several pictures are taken to a parallel plane, with

different distances b2 from it. The plane has measurements written in SI units, allowing

to find the image dimensions in millimetres. Figure 3.39 corresponds to a picture taken

with b2 = 1200 mm.

Figure 3.39: A calibration picture.

In the figure, the number in the middle corresponds to the distance b2, and the numbers

in sequences correspond to width and height scales, respectively. Those scales are in

centimetres, but the conversion is performed to millimetres. Therefore, in this picture 500

mm corresponds to 310 px (between 50 and 0 in the picture) and 600 mm corresponds

to 373 px (between 60 and 0 in the picture). In conclusion, considering the resolution of
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640× 480 pixels, this camera visualizes an area of 1032, 3× 772, 1 mm from a distance of

1200 mm.

One more picture taken at a different distance then 1200 mm would enable the cal-

culation the camera features. However, for a more accurate calibration, 10 pictures are

taken. Table 3.4 shows the results of several taken pictures varying b2.

Table 3.4: Behaviour of the field of view.

b2 (mm) 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Mw (px) 310 286 260 242 225 210 197 186 174 165

Mh (px) 373 343 312 291 270 252 237 223 209 198

mw (mm) 1032 1119 1231 1322 1422 1524 1624 1720 1839 1939

mh (mm) 772 842 923 990 1067 1143 1215 1292 1378 1455

AR 1, 34 1, 33 1, 33 1, 34 1, 33 1, 33 1, 34 1, 33 1, 34 1, 33

Ω640×480(mm/px) 1, 61 1, 75 1, 92 2, 06 2, 22 2, 38 2, 53 2, 69 2, 87 3, 03

Ω′(mm/px) 258 280 308 330 356 381 406 430 460 485

The measures Mw px and Mh px correspond to 500 mm and 600 mm respectively.

Through linearisation, mw and mh are calculated, corresponding to 640 px and 480 px,

respectively. The indexes w and h means width and height. Considering the measures

Mw and Mh are performed by human eye, the AR is used to chose those values more

accurately. That is, when collecting Mw and Mh values, they may be adjusted in a few

pixels so that AR is as close as possible to 4/3 (1, 3(3)). The relation between millimetre

and pixel is calculated by dividing mw per 640 (or mh per 480, considering the differences

are insignificant) and is denoted by Ω640×480. However, such relation works only for

the resolution used in the calibration. A normalized relation millimetre/pixel, denoted

by Ω′, is calculated by the average of the division between mw per 4 and mh per 3,

Ω′ = 1
2

(
mw
4 + mh

3

)
. Therefore, Ω640×480 = 1

160×Ω′, i.e., in order to obtain millimetre/pixel

for the resolution 640× 480, Ω′ is divided by factor of 160. Let’s consider gw×h a generic

factor for a certain resolution (w × h). Hence, g is obtained by gw×h = w
4 (or gw×h = h

3 ).

And generically: Ωw×h = 1
gw×h

× Ω′.

With the values of the previous table b2, mw and mh, the graph presented in figure

3.40 is created.

As expected, a linear behaviour is found between m and b2, both in height and width.

Both functions are linear, of y = mx+ b type, where y is m and x is b2.
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Figure 3.40: Calibration graph.

With the values of the previous table b2 and Ω′, the graph presented in figure 3.41 is

created.

Figure 3.41: Millimetre per pixel in function of the distance b2.

Therefore, the function of the previous graph,

Ω′(b2) = 0, 2525b2 + 3, 045, (3.18)

is the one used to convert from pixels to millimetres. Considering the motion of the robot

is (X,Y ) in pixels, ( 1
gw×h

× Ω′(b2)×X, 1
gw×h

× Ω′(b2)× Y ) is the motion of the robot in

millimetres, for a certain b2.
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The straight lines from the graph of figure 3.40 indirectly represents the previously

mentioned features of the camera. However, those lines are only mathematical abstrac-

tions. It is FOV that is commonly used feature a camera in this field of study. Therefore,

let’s consider FOVw the FOV measured in a scale of width and FOVh similarly for the

scale of height. Using equation 3.16,

FOVw = 2 atan

(
1

2

mw

b1w + b2

)
(3.19)

and

FOVh = 2 atan

(
1

2

mh

b1h + b2

)
(3.20)

The calculation of b1w is performed by finding x when the width line y = 1, 01x+13, 15

intercepts the x axis, and b1h is similarly calculated with the height line y = 0, 76x+ 8, 41.

Hence, b1w = 13, 02 mm and b1h = 11, 07 mm. The difference between b1w and b1h occurs

due to measure uncertainties, and are insignificant. In order to calculate both FOV, two

random points (mw, b2) and (mh, b2), from width and height lines respectively, are chosen.

This leads to: FOVw = 53, 59◦ and FOVh = 41, 61◦.

3.4 Simulation

Considering VO is composed by a sequence of processes, it is convenient to validate

the under developing process sequence, during the development period. As is well known,

the processes can be validated by checking every included instruction, through the whole

complex system. However, that is not an efficient way of validation. First of all, it is

time consuming for the developer. Furthermore, it is not accurate and viable. Therefore,

simulators are of major importance to perform the validation of the system. Simulators

can simulate a certain imposed reality and provide automatic analyses regarding certain

processes. Analysis of the processes behaviours, error dispersion and error identification

can be used in order to understand the algorithm reactions to the reality imposed by the

simulators. It should also be noted that working with simulators facilitates the maturation

of the underlying ideas while research moves on.
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3.4.1 Corner Signatures Simulator

The signatures simulator is used to validate the feature matching algorithm, concern-

ing corner signatures. Two virtual frames are generated with the coordinates of several

points, simulating corner locations. The second frame (β) has a virtual rotation and a

translation relatively to the first frame (α). The conditions imposed for that simulation

are based on the following values: number of points of the first frame Nα, number of points

of the second frame Nβ, number of requested repeated points RP and frame projective

transformation H(X,Y, ϕ). Hence, those values may vary for different tests in order to

facilitate, or make it harder for the matching algorithm.

Frame α is generated including Nα random points with different coordinates. Let Pi
α

be the coordinates of the points of frame α, with the format [x y]T , with i ∈ {1, ..., Nα},

x ∈ {1, ..., w}, y ∈ {1, ..., h}, w is frame width and h is frame height. Pi
β is similar, for

frame β. The projective transformation matrix H(X,Y, ϕ) is calculated as follows:

H(X,Y, ϕ) = T (X,Y )×R(ϕ) (3.21)

Where:

T (X,Y ) =


1 0 X

0 1 Y

0 0 1

 (3.22)

and

R(ϕ) =


cos(ϕ) −sen(ϕ) 0

sen(ϕ) cos(ϕ) 0

0 0 1

 (3.23)

Frame β is generated including Nβ points. From those points, the number of repeated

points is denoted as Nr, and their coordinates are calculated according to the following

equation:

 Pi
β

1

 = H(X,Y, ϕ)−1

 Pi
α

1

 (3.24)
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The rest of the points are randomly generated.

The following figures present an example of a simulation. In this example the imposed

motion is: X = 15 mm, Y = 40 mm and ϕ = 30◦, and the imposed conditions are:

Nα = 12, Nβ = 14 and RP = 10. Figure 3.42 illustrates the geometry relation between

frame α and β.

Figure 3.42: Geometry of both frames in a random example of a signature simulation.

The number of points inside the intercepted area, between both frames, is denoted as

Nia and N̄α
ia is for the number of points outside that area, in frame α. In the figure, the

repeated points are shown as red, the other points belong only to the frame correspondent

to their colour. By chance, two points of frame α are out of the intercepted area between

both frames (N̄α
ia = 2), which provides the possibility of generating all requested repeated

points (considering Nα−RP = 2). In general, if RP > Nia then Nr = Nα−N̄α
ia, otherwise

the number of repeated points is as requested (Nr = RP ). This limitation is previously

mentioned in section 3.1.2, and illustrated in figure 3.9. After generating all Nr points in

frame β, more points are randomly generated until performing Nβ points.

Figure 3.43 presents the output of the frame matching algorithm performed in the

above virtual frames. As mentioned previously, only the coordinates of the points are

used in this simulator, the pictures are used just for visualization purposes.
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Figure 3.43: A signature simulation match.

The estimated matches are indicated as green lines, linking pairs of points highlighted

with blue circles.

Table 3.5 presents the results of the previous simulation.

Table 3.5: Results of the corner signatures simulation.

Nα 14

Nβ 10

RP 10

Nr 10

CornerMatches Correct = 10 Undetected = 0 Incorrect = 0

DOF X(px) Y(px) ϕ(◦)

Simulated Motion 15, 00 40, 00 30, 00

Estimated Motion 14, 98 40, 27 30, 11

Absolute Errors 0, 02 0, 27 0, 11

Relative Errors 0, 13% 0, 68% 0, 37%

As illustrated in the table, the number of repeated points agree with the number of

requested repeated points (RP = Nr). This occurs because the virtual overlapped areas

between frames contains exactly the number of repeated points (RP ).

This example has high corner repeatability, which leads to a correct motion estimation.

The errors are considered small and insignificant.

3.4.2 Picture Frames Simulator

The picture frames simulator is used to validate the feature matching algorithm, con-

cerning all corners metrics. Its goal is to manipulate the path of the robot, taking virtual

frames of a certain ceiling. The simulation consists on choosing a large picture to work as
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a background, where virtual robot positions are selected by mouse clicking. Such positions

are drawn in the background linked with straight lines. Figure 3.44 illustrates an example

of a path selection option.

Figure 3.44: Path selection option.

It is known that the distance between frames is a limitation of the matching algorithm.

Therefore, while the user is choosing the path, a red circle is drawn in order to identify

the area where the next position could be placed. Outside the circle it is not allowed to

place the next position. The radius of the circle is by default half of the frame height,

to guarantee that the intercepted area between frames is large enough. The last selected

position is used only to state the orientation of its previous position. In the example of

the previous figure it is simulated the robot moving always forward. Figure 3.45 presents

the location and orientation of the taken virtual frames, in the previous example.

Figure 3.46 displays the four previous virtual frames.



74 CHAPTER 3. VISUAL ODOMETRY AND MAPPING

Figure 3.45: Locations and orientations of the virtual frames.

Figure 3.46: Virtual frame sequence.

Figure 3.47 shows the output of the frame matching algorithm for frame 1 and 2.



3.4. SIMULATION 75

Figure 3.47: Matching between frame 1 and 2.

Figure 3.48 shows the output of the frame matching algorithm for frame 2 and 3.

Figure 3.48: Matching between frame 2 and 3.

Figure 3.49 shows the output of the frame matching algorithm for frame 3 and 4.

Figure 3.49: Matching between frame 3 and 4.

In the end of the simulation 3 pictures are presented with: groundtruth, the path
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estimation and both. Figure 3.50 shows those 3 pictures correspond to the previous

example.

Figure 3.50: Groundtruth and path estimation.

Table 3.6 presents the results of the picture frames simulation example. The attempts

is the number of option attempts performed by the FMBF algorithm, and Me is the

number of matches approved, used for motion estimation.

Table 3.6: Results of the picture frames simulation.

Frame Match 1←→ 2 2←→ 3 3←→ 4

Attempts 3 2 3

Me 6 5 13

Nα 51 32 31

Nβ 32 50 29

DOF X(px) Y(px) ϕ(◦) X(px) Y(px) ϕ(◦) X(px) Y(px) ϕ(◦)

Sim. Motion 24, 19 0, 00 −77, 47 29, 73 0, 00 107, 98 32, 25 0, 00 −87, 81

Est. Motion 24, 73 −1, 17 −77, 14 29, 76 −0, 31 108, 19 32, 35 −0, 16 −87, 86

Abs. Errors 0, 54 1, 17 0, 33 0, 03 0, 31 0, 20 0, 10 0, 16 0, 06

Rel. Errors 2, 23% − 0, 43% 0, 01% − 0, 19% 0, 31% − 0, 07%

It is verified that there is always a small error associated to the motion estimation,

due to the discrete nature of the digital images (already mentioned in section 3.1.4.2).

If there are matches, used for one single motion estimation, that happen to be wrong, a

large irretrievable motion error damages the whole robot path estimation. In other words,

errors are either significantly large or small. This is the reason why the frame matching

method needs to be robust, in order not to fail even if it means being slow for certain

difficult matching cases. In fact, simulations showed that every frame match having more
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than 4 accepted matches (Me > 4) is worth trust. In the other hand, Me ≤ 4 has a high

probability of being wrong. After several tests using the simulator, performing low relative

errors, the next step is to perform experiments in reality.

3.4.3 Summary

The implemented VO approach requires a camera pointed to a ceiling. Both the

ceiling and the floor must be planes. The system takes frames from the ceiling and detects

corners with FAST detector. In order to perform frame matches, corners are compared

and matched. There are many outliers in the corner match which need to be removed.

RANSAC is a widely used method for removing outliers. However, it is an iterative method

that performs too many iterations in order to provide an efficient output. Therefore, the

FMBF algorithm was created to reduce the number of outliers in the corner matches

provided to RANSAC.

Before using FMBF, corners need a treatment. Corner Distance Signatures are cre-

ated. CTS comparisons are very efficient, although they are very time consuming. Corner

Triangle Signatures are also created. These ones are composed by Corner Triangle Dis-

tance Signatures and Corner Triangle Angle Signatures. A CTS comparison is not very

efficient, but it is very fast. Therefore, CTS are used to reject the most obvious outliers

before using CDS for accurate inlier selections. FMBF attempts to find the balance in the

trade-off between speed and efficiency.

The provided corner matches inliers are then used for motion estimation. The corners

are considered to be static references in the environment, and it is through them that the

motion is calculated.

In order to control the FAST detector speed, a corner controller is used. Hence, the

number of detected corners are approximately as asked.

WCA is a very important tool developed in this work. Before the frame match, the

corner matches are pre filtered by WCA with insignificant time consuming. WCA performs

a filtering in pairs of frames, based on all the maximum threshold each corner has.

To create a map, the estimated poses are used to concatenate the taken frames.

The camera is calibrated base on several frames taken to a certain plane. The frames
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are taken perpendicularly to the plane and the plane has several written metric on it.

Therefore, based on those metrics in millimetres and on the image projection in pixels, a

function is created to convert pixels in millimetres.



Chapter 4

Experimental results

This chapter shows the experimental results of three particular tests. In the first test,

nine frames of the same ceiling are used to build a map. In the second test, twenty four

pictures of an other ceiling are used to estimate the robot path. In the third test, a video

is used to create a map, based on where the robot went through.

4.1 Introduction

Digital image manipulation is used abundantly in this approach, therefore, matrix

calculations, as well as complex algorithms using arrays and arrays indexes. MATLAB is

a powerful tool that facilitates matrix manipulations and signal processing. That is the

reason why this approach is developed in MATLAB language. However, it is know that

certain tasks written in C language would be significantly faster then this implementation.

In future work this should be taken into consideration.

4.2 FAST Detector time dependency

The authors of FAST detector claim it takes 2,6 ms to detect corners in a frame of

768×288 px of resolution [RD05]. However, in this work, this tool is developed in MATLAB

with no concerns about its speed. MATLAB language is slow and the programming of

this implementation is performed with no optimizations considering memory allocation

management, or instructions reduction to improve the computational cost. Which is why

79
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the same task takes several seconds. In the experimental results, the time the FAST

detector spends is not presented. It is theoretically considered to be no more than 2,6 ms,

considering the used frames always have 320× 240 px of resolution.

Several experiments were performed to the FAST detector with different thresholds in

a MATLAB environment. A relation between FAST time consuming and the number of

detected corners is observed based on those experiments. Figure 4.1 illustrates a graph of

that relation. The resolution of the frames used in those experiments is 320× 240 pixels.

Figure 4.1: Graph of FAST Time per number of detected corners.

By analysing the behaviour of the FAST time consuming in all number of detected

corners, it can approximately described by y = 3, 2x × 103 + 4, 49. However, not all the

range of detected corners is used. In fact only the interval [20; 200] is relevant for this

work. Therefore, a smaller window is presented in the graph to show that interval in more

detail. A new behaviour is observed and it approximately fits the following expression

y = 7,4x+866,9
x+191,8 .

In conclusion, the FAST detector, built for this work, in MATLAB language consumes
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between 5 and 6 seconds.

4.3 Experiences

For the experimental results two collections of ceiling pictures are used. Both are

taken from two different laboratories, denoted by lab 1 and lab 2. There are three types of

tests for the experimental results, in both labs. The first one (test A) consists in 9 pictures

from lab 2, to create a map. The second one (test B) consists in 24 taken pictures in lab

1, to perform a VO process. And the third one (test C ) consists in a video scene recorded

in lab 2, to perform a map. A VO process only outputs the robot positions of the path.

To perform a map it is necessary to run a VO process and concatenate the taken frames

afterwards, considering the robot motion.

4.3.1 Picture Map

The 9 pictures are taken by a robot, completely still, in 9 different positions. Therefore,

there is no image distortion between frames. Instead, faster lightness variation could cause

reduction of repeatability. Figure 4.2 presents the respective frame sequence, sorted by

their numbers.

This test used the input parameters of table 4.1.

Table 4.1: Input parameters of test A.

t 24

Nf 30

tD 40%

tma 60

tmb 14

t∆s 8

t∆ 20 px

tCDS 0, 8 px

L∆ 1

tΘ 2, 3◦

tΦ 4 px

tmd 0, 8

ηout 80%

te 4

In this test no corner controller is applied. The FAST threshold is t = 24 for every

frame. The matching differences is a proportion (tD = 40%) of the minimum of Nα
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Figure 4.2: Frame sequence for test A.

and Nβ, in each frame matching (i.e., tD = 0.4 ×min(Nα, Nβ)). RANSAC is used with

ηout = 0, 8, whereas It = 113. FMBF provides an outlier portion less than 80%. Therefore,

as previously mentioned, RANSAC is used to safeguard that all corner matches are inliers

of the chosen model. Considering 113 iterations consumes 10% of the average time of

FMBF, ηout = 80% can be afforded. It is worth mention though, ηout could be reduced in

other situations, for time optimization in a milliseconds scale.

Table 4.2 presents the number of detected corners in each frame of this test.

Table 4.2: Number of detected corners in each frame, of test A.

k 1 2 3 4 5 6 7 8 9

Nk 93 98 183 73 125 203 54 103 193

Figure 4.3 presents the graph performed with the values of the table.

Considering that the corner controller was not applied in this test, the FAST threshold

is constant (t = 24). This graph shows how the number of detect corners can vary in frames

of the same scenario, differed by displacement, with the same threshold t.
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Figure 4.3: Graph of the number of detected corners per frame from test A.

Table 4.3 presents the selected corners by WCA and corner match combinations.

Table 4.3: Number of selected corners and corner match combinations of test A.

Frame Match 1 2 3 4 5 6 7 8

Nα 29 31 92 32 31 108 30 35

Nβ 39 51 32 59 51 30 57 90

|∆N | 10 20 60 27 20 78 27 55

MC 1131 1581 2944 1888 1581 3240 1710 3150

The module of the difference between Nα and Nβ is denoted as |∆N |. The corner

match combinations are considered for the worst case, whereas MC = Nα ×Nβ.

Figure 4.4 illustrates a graph, with the selected corners in frame α and β provided by

WCA, whose values are presented in the table.

As the graph shows, most of the times, the number of the selected corners are above

Nf (which is intended). Concerning this test, the frame match 3 and 6 are a problem, as

seen later on. The numbers Nα and Nβ are significantly different, which means high MC,

and therefore more time consuming in frame matching.

Table 4.4 presents the number of attempts, Me for frame match quality, and the time
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Figure 4.4: Graph of the number of selected corners in frame α and β, of test A.

consuming.

Table 4.4: Frame match quality and time consuming of test A.

Frame Match 1 2 3 4 5 6 7 8

Attempts 1 1 4 3 4 4 3 1

CS Creation T ime (ms) 28, 6 21, 3 42, 3 25, 0 20, 8 62, 2 23, 2 41, 5

FMBF T ime (s) 0, 58 0, 48 33, 27 1, 41 5, 32 41, 41 0, 90 0, 68

RANSAC T ime (s) 0, 18 0, 17 0, 17 0, 18 0, 17 0, 17 0, 17 0, 17

Matching T ime (s) 0, 79 0, 67 33, 49 1, 60 5, 52 41, 64 1, 09 0, 89

As mentioned before, attempts is the number of option attempts performed by the

FMBF algorithm. CS Creation Time has a smaller scale due to its significance. The

Matching Time is the sum of all 3 times.

Figure 4.5 shows the frame matching time consuming, the number of attempts, the

difference between Nα and Nβ in module, and the number of corner combinations. Those

parameters are presented in table 4.3 and 4.4.

As seen in the graph, there is a direct relation in the behaviour of MC and |∆N |.

They both vary equality in the same proportion. The algorithm tried to select Nf in both
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Figure 4.5: Graph of the relation between time and several frame match properties (A).

frames. There is always one of them that works as a reference, where a threshold tmax is

chosen (considering Nf ). Therefore, the corners of that reference frame is selected close to

the number Nf . The corners of the other frame is selected with this same threshold tmax.

Hence, if both frames have their corners significantly different, then the difference between

the number of selected corners (|∆N |) is high. In this case MC is also high, because it

is equal to the multiplication of a number close to Nf with a number significantly higher

than Nf . If both frames have Nα and Nβ close to Nf , than MC is lower, because it is

equal to the multiplication two numbers close to Nf .

In the graph it is also verified that Time is related to MC as expected. In most of

the cases, when MC is high, Time is high. With this test there is not enough information

to find a relation between the Attempts and others. However, it certainly affected Time,

considering each attempt is running a whole new FMBF option.

Table 4.5 presents the accepted matches by FMBF Ma, the elected corner matches by

RANSAC Me, and the rejection portion given by Ma−Me
Ma

.
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Table 4.5: Frame match quality and time consuming of test A.

Frame Match 1 2 3 4 5 6 7 8

Ma 14 14 14 14 14 14 14 13

Me 6 5 5 6 13 11 9 5

RANSAC Rejection (%) 51, 1 64, 3 64, 3 57, 1 7, 1 21, 4 35, 7 61, 5

Figure 4.6 illustrates a graph of the values presented in the table.

Figure 4.6: Graph of the RANSAC rejection in test A.

The higher is the number of elected corner matches, the higher is the guarantee that

the frame match is correct. Nevertheless, the RANSAC Rejection portion is not strictly

associated with the accepted corner match outlier portion. RANSAC could be rejecting

high or low portions considering the threshold tmd. In any case, the rejection should be

demanding, to guarantee that there are not wrong corner matches (outliers).

Table 4.6 presents the robot motion in the previous test.

Table 4.6: Results of the robot motion in test A.

Motion

Frame Match X (px) Y (px) θ (◦)

1 −17, 38 −1, 22 0, 89

2 −16, 22 1, 10 0, 97

3 37, 59 −18, 87 1, 60

4 −15, 60 −1, 00 −0, 99

5 −19, 00 −2, 00 −0, 00

6 36, 55 −18, 10 0, 31

7 −18, 04 0, 38 0, 88

8 −17, 55 −1, 73 −0, 69
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Figure 4.7 illustrates the geometry of the path performed by the robot, in pixels.

Figure 4.7: Geometry of the path performed by the robot in test A.

Here it is obvious why the frame matches, number 3 (match of position 3 and 4) and

number 6 (match of position 6 and 7), are more problematic. Their motion distance are

larger than the others, as illustrated in figure 4.7.

Figure 4.8 shows the map performed with the frames acquired by the robot in this

test.

Figure 4.8: Map performed by the taken frames of the test A.
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There are small imperfection in the map, concerning brightness, due to lightness differ-

ence in frames. Also, there are small frame displacement imperfection due to uncertainty

errors performed by the algorithm.

4.3.2 Frame Visual Odometry

The second set, of 24 pictures, are also taken by the a robot, completely still, in 24

different positions. The ceiling used for this test was decorated by some textures, in order

to perform contrast from its white colour. Figure 4.9 presents a picture of the ceiling, to

show the mentioned textures.

Figure 4.9: Picture of the Lab 1 ceiling.

This test used the input parameters of table 4.7.

This test exemplifies a VO process with a large frame sequence. Therefore, the corner

controller is applied so that Nk attempts to follow Nask. In this test the image contrast

is high, therefore it is expected to have corner signatures “cleaner” than in the previous

test, i.e., with less distance noise. Hence, tD is higher for faster frame matching (tD =

0.5×min(Nα, Nβ)).
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Table 4.7: Input parameters of the frame test B.

Nf 30

Nask 60

tD 50%

tma 60

tmb 14

t∆s 8

t∆ 20 px

tCDS 0, 8 px

L∆ 1

tΘ 2, 3◦

tΦ 4 px

tmd 0, 8

ηout 80%

te 4

Figure 4.10 presents the corner controller effect.

Figure 4.10: Corner controller effect of test B.

Most importantly, the number of detected corners Nk can not be bellow Nf , otherwise

frame match is not performed. Nevertheless, the lower is Nk the lower is the time that

FAST consumes. As illustrated, Nk does not vary linearly with the threshold tk, and there

are some oscillations in Nk, around Nask.

Figure 4.11 illustrates a graph, with the WCA selected corners in frame α and β.
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Figure 4.11: Number of collected corners per match of test B.

In this test, the number of selected corners in some cases happen to be bellow Nf .

However, the differences are small portions that do not affect the frame match.

Figure 4.12 shows the frame matching time consuming, the number of attempts, the

difference between Nα and Nβ in module, and the number of corner combinations.

In comparison between this test and the previous one, this graph shows smaller differ-

ences ∆N , which lead to smaller MC. Therefore, there are less number of attempts and

the option 4, which is the most time expensive, is never reached. As a consequence, time

is lower.

Figure 4.13 presents the accepted matches by FMBF Ma, the elected frames by

RANSAC Me, and the rejection portion given by Ma−Me
Ma

.

The RANSAC Rejection is lower, which means the frame matches have better quality

compared to the previous test, considering both tests have the same input parameters.

Figure 4.14 presents a graph with the robot positions performed in this test.

Figure 4.15 shows a graph of the error between the real and the estimated robot

positions. Such error corresponds to the distance between the position of Ck in the ground

truth and the estimated position of Ĉk.
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Figure 4.12: Graph of the relation between time and several frame match properties (B).

Figure 4.13: Graph of the RANSAC rejection in test B
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Figure 4.14: Robot position graph analysis of test B.

Figure 4.15: Error of the absolute poses in test B.
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In general, the pose errors are related to three uncertainties. The camera calibration

uses measurements of a physical wall, and also pixels measurements from the taken pictures

of the wall. The frame pixel units always have uncertainties associated, in each robot

motion estimation. To collect the pictures from the ceiling, the robot was placed in its

positions by hand, as well as the physical measurements of those positions were made by

hand.

Figure 4.16 presents a frame match example of this test (between 14 and 15 frames).

Figure 4.16: Frame match between frames 14 and 15, of test B.

Figure 4.17 presents the map performed by the taken frames.

Figure 4.17: Map performed by the taken frames of test B.
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In this map the lightness differences and displacement imperfection are more evident.

The light of this laboratory comes through a window. Therefore, the closer the robot is

to the window, the brighter are the frames.

4.3.3 Video Mapping

Computing the robot motion in SI units is just a matter of measuring the distance β2

and using function 3.18, Ω′(β2). In this sub-chapter the tests do not have ground truth

and their validation is performed by manual inspection of each frame match.

To test this system limitations, a 2 minutes video of the laboratory 2 ceiling was

used for 5 specific parameter configurations. The video scene has 3000 frames, therefore,

25 Frames Per Second (FPS). However, the tests were performed with smaller frame

sampling rates. One type of test was performed with 1 frame per 6 frames of the scene

(25
6 FPS), which means 500 frames in total. The other type of test was performed with 1

frame per 10 frames of the scene (25
10 FPS), whereby 300 frames in total.

Table 4.8 illustrates the input parameters that are always the same in all tests.

Table 4.8: Input parameters common to the 5 parameter configurations.

t∆s 8

t∆ 20 px

tCDS 0, 8 px

L∆ 1

tΘ 2, 3◦

tΦ 4 px

tmd 0, 8

ηout 80%

te 4

In fact, those input parameters are recommended to be used by default. Advanced

users may perform adjustments in unique occasions. Table 4.9 illustrates the rest of the

input parameters, for 5 parameter configurations.

By testing such amounts of frames increases the odds of finding failures in frame

matches. In fact, a new kind of failure was found, consisting in corners of the elected

corner matches being too close to each other, providing a wrong motion estimation. Such

failure is designated as Close Corners (CC). On the other hand, Wrong Match failure

(WM) means that there are wrong corner matches in the correspondent frame match.
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Table 4.9: Most important input parameters.

Test 1 2 3 4 5

Frame Sampling Rate (FPS) 24
10

25
6

25
6

25
6

25
6

Number of frames 300 500 500 500 500

Nf 30 30 30 30 30

Nask 90 90 90 90 90

tD 50% 50% 55% 45% 45%

tma 60 60 60 100 200

tmb 14 14 14 14 14

Figure 4.18 shows an example of the CC problem.

Figure 4.18: Example of Close Corners problem.

Technically, CC is more of a vulnerability occurring with low probability rather than

a failure. In fact, CC is the limit case of the corners dispersion. The more the corners are

scattered in the frames, lower is the error in the motion estimation. Nevertheless, CC is

designated as a failure, for simplicity.

Table 4.10 presents the failures and time results of the 5 parameter configurations.

Table 4.10: Failures and time results.

Test 1 2 3 4 5

Failure Type WM CC WM CC WM CC WM CC WM CC

Failure Number 3 2 2 4 5 3 0 1 0 0

Average T ime per match (s) 3, 85 2, 46 2, 81 2, 73 3, 44

Total T ime (s) 1154 1232 1401 1364 1720

In this video the robot moves through a larger area, whereby the drift error becomes

significant. The current estimated pose has a substantial accumulated motion error equal
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to the sum of the errors performed in all previous motions. From all 5 parameter config-

urations, the fifth one is the most accurate and, therefore, it is the test in study.

Figure 4.19 shows the corner controller effect on this test.

Figure 4.19: Corner controller effect of test C.

Figure 4.20 presents the RANSAC Rejection on this test.

Figure 4.21 presents the frame matches time consuming of this test.

Figure 4.22 presents a graph with the robot positions performed in this test.

Figure 4.23 shows the map performed by the taken frames of this test.

The corner controller effect and the RANSAC Rejection as an appropriate behaviour.

In order for this system to work in a sequence of 500 frames, it needs to be more tolerant,

to increase the chances of solving all the difficult frame matches. That is why tma needs

to be high. As a consequence the time consuming rises, considering the options 1, 2 and

3 of FMBF approvals always need to run tma comparisons each. However, the inevitable

drift is observed in the map of figure 4.23. An evident drift is seen throughout the path

of the red dashed line, whereas the robot groundtruth is approximately the green dashed

line. The yellow squares indicate locations that should be the same.

In order to reduce the drift, bundle adjustment and loop closure are recommended

techniques. Using a window of several frames to perform frame matching reduces the
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Figure 4.20: RANSAC Rejection of test C.

Figure 4.21: Time consuming of the frame matches of test C.
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Figure 4.22: Robot positions graph of test C.

Figure 4.23: Map performed by the taken frames of test C.
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matching errors, delaying the drift. Loop closure updates the robot location when it

passes through a previous known location, therefore removing the drift since then. For

further suggestions to reduce drift see section 5.2.

4.4 Error relation

It is important to be aware of this system limitations, regarding the motion between

pairs of frames. As mentioned in chapter 3, pairs of frames need to have an overlapped

area in order to perform the frame matching. Also, the size of that area is important for

an accurate motion estimation. Therefore, this system was tested with several random

motions between pairs of frames, in order to understand the error behaviour depending on

displacement and orientation of the robot. To eliminate the human uncertainty, instead of

using real motion, these tests were performed in the corner signature simulator. The used

inputs are the same used in test C, of section 4.3.3. Figure 4.24 illustrates a 3 dimensional

graph, where the error is depending on the displacement and the orientation of the robot.

Figure 4.24: Graph of the error depending of the robot displacement and orientation,
between pairs of frames.
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The displacement is the distance, in pixels, between poses. It is considered that the

maximum possible robot displacement between frames is half of the lower dimension of

the frame. The frame dimensions are 340 × 240 px, whereas the lower dimension is 240,

and the half is it is 120. Therefore, both the error and the displacement are normalized

in percentage, whereby 120 px is 100%.

The figure shows an area, highlighted with a red rectangle, where the error is admis-

sible, lower than 10%.

Figure 4.25 shows the graph only from the displacement perspective.

Figure 4.25: Graph of the error depending of the robot displacement for orientations below
180◦.

The error behaviour, from the displacement perspective is not admissible, considering

it is larger than 10%. In this case, all tests between 0◦ and 180◦ are presented. Decreasing

the angles range to the half, between 0◦ and 90◦, the graph of figure 4.26 is verified.

With motion estimations, with orientation between 0◦ and 90◦, the displacement can

be used between 0% and 13%. And if the orientation angle is reduced to 30◦, figure 4.27

shows the error behaviour of this situation.

With motion estimations, with orientation between 0◦ and 30◦, the displacement can

be used between 0% and 22%.

This means there is a trade-off between the maximum possible displacement and
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Figure 4.26: Graph of the error depending of the robot displacement for orientations below
90◦.

Figure 4.27: Graph of the error depending of the robot displacement for orientations below
30◦.
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orientation of the robot between two frames. Such limitation should be respected, in

order to accomplish correct motion estimations.

4.5 Summary

In this implementation, FAST is very slow compared to the speed that its authors

claim to have. A relation between the FAST detector time consuming and the number

of detected corners was created, through several tests. And follows the behaviour: y =

7,4x+866,9
x+191,8 in the interval [20; 200].

In the experimental results three types of tests are performed. The first one is picture

map, which used frames taken completely sill, from lab 2. In shows that WCA works,

attempting to select Nf corners in each frame. The robot motion estimations is shown as

well as the map. The map was built through the robot estimated poses. There are several

imperfection in the map due to the brightness and to light differences. Also, displacement

imperfections, due to uncertainty errors performed by the motion estimation.

The test frame visual odometry uses frames taken completely still, from lab 1. It

shows that the corner controller attempts to provide the number of asked corners. This

test is validated with the groundtruth. The absolute error of each frame transformation

is approximately 150mm average.

The video mapping consists in a video of 3000 frames. However, the FPS are reduced.

From all 5 parameter configurations, the fifth one, with 300 frames, is the most accurate

and used for further analysis. In this test it is verified a new vulnerability called Close

Corners. This contributes to drift raises. In the map it is visible a large drift, contributing

to wrong pose estimations. The drift is caused by small error accumulations throughout

the motion estimations.

An error relation is created to provide the system limitations regarding the orientation

and the displacement. The range of angles between 0◦ and 180◦ should not be used between

robot motions. With ranges of angles between 0◦ and 90◦ the displacement can be used

until 13%. And with ranges between 0◦ and 30◦ the displacement can be used until 22%.



Chapter 5

Conclusions and Future Work

This chapter presents a conclusion based on the performed VO solution. It mentions

previous, non efficient, tests that did not use FMBF. As a high level language, MATLAB

is a slow language for online calculations. The experimental results brought a new under-

standing, related to the motion estimation accuracy. For future work, it is suggested to

use a faster programming language and a more robust corner detector. Also, several more

VO techniques to increase the estimation reliability, along with other sensor techniques.

5.1 Conclusions

This dissertation implements a VO system for a mobile robot path estimation. With

a camera pointed to the ceiling, frames are analysed and matched in order to estimate the

robot motion. The FAST detector is used in each frame to detect corners. Before, the

frame matching process, Corner Signatures are created for posterior use in the algorithm

FMBF. The Corner Signatures consist in Corner Distance Signatures and Corner Triangle

Signatures. CDS comparisons are very efficient, but very slow, while CTS comparisons

are fast, but not so efficient. FMBF is a method that attempts to find the balance in the

trade-off between speed and efficiency, using CDS and CTS corner comparisons, between

pairs of frames.

The number of detected corners is controlled by a corner controller created in this

work. With this controller, the corner detection time consuming is improved.

WCA is a very important tool developed in this work. Before the frame match, the
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corner matches are pre filtered by WCA with insignificant time consuming. WCA performs

a filtering in pairs of frames, based on all the maximum threshold each corner has.

The selected corner matches are then used for motion estimation. The corners are

considered to be static references in the environment, and it is through them that the

motion is calculated.

The maps are created using the estimated poses for frames concatenations.

In the video mapping test it is verified a new vulnerability called Close Corners. This

contributes to drift raises. In the map it is visible a large drift, contributing to wrong

pose estimations. The drift is caused by small error accumulations throughout the motion

estimations. In this test, a new vulnerability was observed. As mentioned, and observed

in figure 4.18, Close Corners (CC) may cause high motion estimation errors. This vul-

nerability also triggered a new understanding. The more the corners are scatted all other

the frames, better is the estimation motion accuracy, and the more the corners dispersion

gets close to the CC situation, worse is the estimation motion accuracy. Therefore, VO

drift increases when the corners dispersion tends to a CC situation.

Using MATLAB language it is not possible to perform an online path estimation with

a reasonable speed, as seen in the visual odometry test of section 4.3.2. MATLAB was used

for fast programming, as a high level programming language it is. Also, the programming

code is not fully optimized in terms of temporal complexity.

5.2 Future Work

Considering the MATLAB language mentioned speed problem, for future work, it is

proposed to implement this approach in C language, as well as, optimize the code in terms

of memory allocation, reducing the number of variables and always use pointers wherever

it is possible.

To save time in corner detection, next step should be to use the FAST-ER detector

instead of FAST detector.

In terms of the VO system reliability, the drift should be reduced using window bundle

adjustment and loop closure detection. By using window bundle adjustment, several frame

matches, between the current frame and previous frames, are considered to the current
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motion estimation, reducing the local motion error. Using loop closure, all the drift

performed since the previous recognized location is eliminated. Also, to reduce Close

Corners situations, the vector of the ceiling reference (figure 3.30) should be accepted

only if higher than a certain stipulated threshold. And, the virtual points that create

the ceiling reference (3.1.6) need to be chosen so that the vector has a length as high as

possible.

In order to create a robust system for motion estimation, in future work, it is important

to combine VO with other motion sensors, such as IMU and wheel odometry, to increase

the redundancy of the system, fusing the information of all techniques. The work developed

in this dissertation was already used in experiments, combined with other motion sensors,

which led to a paper presented in an international conference, [CECV14].
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