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Resumo

Nesta tese duas formulações de trajectórias de tempo mínimo usando controlo óptimo são propostas: Tempo

mínimo num caminho prescrito e um método de optimização de trajectória. Primeiro, são introduzidas

noções importantes de dinâmica de veículo são introduzidas, seguindo-se uma reformulação usando o método

de Euler-Lagrange para transformar o problema numa forma que facilita a implementação. De seguida, a

pista é parametrizada e aplica-se uma transformação de variáveis que facilita a formulação é feita. O prob-

lema de optimização é formulado no contínuo e aplica-se um método de transcrição directa para transformar

o problema de controlo óptimo num de optimização de grande escala. Por fim, obtêm-se soluções para o

problema em causa usando programas de soluções de optimização baseados em métodos de ponto interior, de

programação sequencial quadrática(SQP) e de programação sequencial de cones de segunda ordem(SOCP).

Palavras-Chave: Optimização de Trajectória, Controlo Óptimo, Planeamento de Movimento
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Abstract

This work proposes two Optimal Control formulations: Minimum time path tracking and minimum Time

trajectory optimization. Firstly, the vehicle dynamics is introduced and is reformulated in a way that eases

the optimization formulation. Secondly, the track is parametrized and a change of variables is performed

to adapt the optimal control problem. To transform the problem in a large scale optimization problems

direct transcription methods were employed. At last, the problem is solved exploiting nonlinear optimization

methods, such as interior-point(IP) and sequential quadratic programming(SQP) and Second Order Cone

Programming (SOCP).

Keywords: Trajectory Optimization, Optimal Control, Motion Planning
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Nomenclature

Roman Symbols

wf - Half front track

wr - Half rear track

a1 - Distance from front axle to the car center of gravity

a2 - Distance from front axle to the car center of gravity

a - Acceleration in body coordinates

l - Wheelbase

F - Force

v - Velocity in body coordinates

V - Velocity in fixed frame coordinates coordinates

K - Longitudinal Resistance Coefficient

M - Moment

m - Mass

Rg - Wheel Loaded Radius

ww - Wheel angular velocity

CSR - Tyre longitudinal stiffness

Cα - Tyre cornering stiffness

I - Moment of Inertia

r - Yaw rate

s - Variable defining the distance traveled in a path

t - Time

q - Generalized coordinates

L - Lagrangian vector

M - Mass matrix

C - Centripetal and resistive forces matrix

F - Tyre friction related terms matrix

u - Vector of inputs

m - Modified mass related terms matrix

c - Modified Centripetal and resistive forces matrix

f - Modified tyre friction related terms matrix

iv



up - Pedal input signal

T - Final simulated time

f - Auxiliary variable representing velocity

b - Variable representing the transversal position of the vehicle compared to a reference path

c - First derivative of b

d - Second derivative of b

n - Vector normal to the vehicle x-axis in xy plane

J - Jacobian matrix

Greek Symbols

ϕ - Roll angle

θ - Pitch angle

ψ - Yaw angle

ν - Tyre coefficient of friction

α - Tyre slip angle

γ - Camber angle δ - Steering angle

β - Relation between the lateral and longitudinal velocity

κ - Curvature

ω - Convex set

Subscripts

ax - Quantity in direction of x-axis

ay - Quantity in direction of y-axis

az - Quantity in direction of z-axis

af - Front wheel(s)

ar - Rear wheel(s)

ao - Outer wheel(s)

ai - Inner wheel(s)

a0 - Initial state
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Superscripts

ȧ - First time derivative

ä - Second time derivative

a′ - First spatial derivative

a′′ - Second spatial derivative

a - Lower bound

ā - Upper bound

ak - Position k in a path discrtized in K points

Abbreviations

CoG - Center of Gravity

SR - Wheel Slip Ratio

GA - Genetic Algorithm

SQP - Sequential Quadratic Programming

SCP - Sequential Convex Programming

SOCP - Second Order Cone Programming

IP - Interior Point
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1 Introduction

1.1 Motivation

An important role of engineers and technicians within the automotive and motorsport indus-

try is to thorough investigate the dynamic potential of a vehicle, thus improving its setup

to drive as fast as possible to ultimately minimize the lap time over a circuit. The art of

modelling vehicle dynamics and simulate the car behaviour has been used for decades and

has helped this industry to reduce the expensive time spent on track and in test benches as

4-post rig or 7-post rig. In Formula 1, for example, simulation has been taken to an extreme,

due to the limited test time on track imposed by Federation Internationale de l’Automobile

(FIA). Within this high technological industry it is where it is speculated that lap time sim-

ulations are most advanced. It developed from one point car with acceleration and velocity,

to a two track model, incorporating the four wheels, to, ultimately, lap time simulation with

embedded multibody dynamics.

Nonetheless, motorsport is not the only sector exploring trajectory optimization problems.

Within mobile robotics research this topic has been gaining popularity, mostly to compute

optimal trajectories, either minimum time or minimum energy, over uneven terrains, or over

a space with obstacles. Assembling this both examples, one easily gets to one of the most

trendy subject nowadays, which is the autonomous, or self-driving, cars. Moreover, trajec-

tory optimization, nowadays, incorporates very important fields such as image precessing,

to identify other vehicles, obstacles, traffic signals and traffic marks. But its application

it is not restricted to cars, it has also been widely used in aerospace and aeronautical, to

guide spacecrafts and aeroplanes. Furthermore, recent research in aerial unmanned vehicles

(UAV’s) has also been investigating optimal trajectories for drones. In this area, this topic

is of utmost importance, since big enterprises have been exploring drone goods delivery and

also first aid assistance.

This is still a topic to mature, there are not yet solutions widely recognized as the formula

to solve this problem by the scientific community and remains one of the most appealing

this field. Besides, this topic explores a confessed passion for the automotive and, more

specifically, motorsport industry.
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1.2 Literature Review

Trajectory optimization is a specificity of the more general and commonly used term mo-

tion planning. In [2] LaValle presented motion planning as an important collision course of

robotics, artificial intelligence and control theory. In robotics, motion planning is related

with problems such as how to move an object from one division into another without hitting

anything. The field has been maturing and nowadays is common to include uncertainties

and multiple bodies. In regards of artificial intelligence, planning was typically related with

the sequence of operations necessary for the transition from an initial state into a desired

one. Mostly since the 1990’s, there has been a growing interest within the control field to

find the open-loop trajectories for non-linear systems. Motion planning is a key subject that

is inherent to a great number of robotics applications, from medical applications [3, 4, 5],

industrial applications [6], autonomous urban-navigation [7, 8, 9, 10] and military logistics

[11].

In the 1980’s and beggining of 1990’s, robotics manipulators were too slow to justify their

use economically. Their productivity was limited by speed, which was limited by torque ac-

tuators. Nonetheless, increasing torques was not seen as the best solution, due to the increase

in cost, power consumption and inertia. The solution to justify the use of manipulators was

to perform minimum time motion planning, i.e. minimize the time needed to perform a given

task, subject to actuator’s constraints [12]. The scientific community that study and concern

motion planning and trajectory optimization, including minimum time and minimum energy

problems, has three widely accepted approaches to solve this family of problems. The first

method was proposed by Brobow, Dubowsky and Gibson in [12]. It is a practical method that

surpassed the limited computational of that time by defining a path by a small number of

control points and then using a novel algorithm, at that time, to compute the minimum time

velocity profile. Next the control points position is varied in order to get the minimum time

trajectory, thus it can be reckoned as an indirect method. The solution for a special family

of paths was proven to be bang-bang. This method was mainly used for manipulators, but

was also successfully applied to an unmanned ground vehicle (UGV) over an uneven terrain

[13]. Later, the algorithm was improved to deal with manipulator dynamic singularities [14],

which expanded its applicability, since it presented a method to solve non bang-bang prob-

lems. Other similar approaches were presented such as [15], which have modelled the torque

2



constraints as quadratic instead of a mere function of velocity and position. Shiller’s later

work, once again exploits this approach to introduce more efficient algorithms, for offline and

online motion planning, using the branch and bound method with more careful constraints

classification for a car over uneven terrain and with multiple obstacles [16]. The solution

provided in [17] was also innovative since it is assumed to be one order of magnitude faster

than [12, 15]. Such results were achieved by an exhaustive exploration of the switching points

timing, i.e., the timing determines when the robot should accelerate or decelerate, which is

the most demanding task in terms of computational time. Another strategy to solve this

problem is to apply Bellman’s dynamic programming principal [18, 15], but due to its high

computational effort has not been widely used.

The second great method to solve this problem is by direct transcription [19, 20, 21],

which is mostly, within the field of trajectory optimization, a strategy to solve Optimal

Control problems. This method transforms a continuous problem into a dicrete one, reducing

therefore the complexity of some problems and increasing its computational efficiency. To

use direct transcription one has to formulate the problem as convex, and once it is done

each variable is discretized, facilitating the solution of the problem. This approach has been

successfully applied not only to a manipulator to minimize time over a fixed path [22, 23, 24]

but also for minimizing time in a track subject to its boundaries and to the car dynamics

[25, 26, 27, 28].

Recently, optimal lap time methods converged with multibody dynamics systems mod-

elling to enrich and better represent vehicle dynamics [29, 30]. This formulation, although

difficult to model as a convex, thus hard to solve, constitutes the most realistic approach.

1.3 Thesis Outline

In section 2 is presented an explanation of vehicle dynamics concepts used in this work. It

starts by defining the reference axis and the most important geometric features. Next a

simple explanation of tyre mechanics is made, with particular attention to the tyre linear

model. A two track model, named full car model in this work, was deduced and linearized

to be than simplified, obtaining the bicycle model.

Section 3 describes the first trajectory optimization formulation used, which is based on

genetic algorithms. Starting with the track parametrization and interpolation, followed by

3



a genetic algorithm explanation, and, finally, an explanation of the path planning method

used.

Section 4 addresses optimal control trajectory optimization methods. Two different appli-

cations are presented in this method. First, an optimal control minimum time path track-

ing is presented. This subsection starts with a reformulation, through the Euler-Lagrange

method, of the dynamics presented in section 2, along with a variable transformation that

eases the following problem formulation. Than the problem is formulated in a convex way

and direct transcription methods are applied to transform the optimal control problem in

a large scale optimization problem. The minimum time path tracking problem subsection

ends with a problem reformulation in the form of Second Order Cone Programming problem.

The second method presented is the optimal control minimum time trajectory optimization

problem, which is a generalization of the minimum time path tracking. First, the new track

parametrization is presented and than the dynamics are reformulated. Analogously, the

problem is formulated and direct transcription methods are employed.

In section 5 the results and discussion, for all algorithms explored in this work, are pre-

sented.

In section 6 one can find the conclusions.

This work ends with section 7 in where the future work is proposed.
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2 Vehicle Dynamics

In this section the vehicle model and its inherent dynamics will be addressed. Starting from

the reference axis choice, followed by tyre dynamics, full car and bicycle model. The latter

limitations and assumptions shall be explained. To arrange the system in a more practical

form a state-space system is derived for a linearized bicycle model.

2.1 Reference Axis

The discipline of vehicle dynamics has been studied for the last century, it has moved from

the study of simple classical vehicles to modelling, simulation and optimization of multi-

body dynamics systems. Attention to this field has been growing mostly due to advances in

positioning, sensing, decision and control.

To study the vehicle one must first define a proper reference axis, the one chosen in this

work is represented in fig. 1.

z, Fz, ψy, Fy

My, θ

x, Fx

Mx, φ

a2

a1

l

wr

wf

Figure 1: Representation of the reference axis used

In which, φ , θ and ψ are the roll, pitch and yaw angles, respectively. As well as Fx, Fy,

Fz and Mx, My, Mz are, respectively, the forces and moments about the axis x, y and z. The

distance from the front and rear axle to the CoG is defined as a1 and a2, respectively. The

sum of a1 and a2 is the wheelbase, defined in this work as l.
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2.2 Tyre Dynamics

The cornering ability of a vehicle relies on the tires friction and deformation, therefore this

interaction supplies the tractive, braking and cornering forces [31]. As can be seen in fig. 2,

along with the forces tires also generate moments, mostly due to non uniform load distribution

in the tire print, which generate a decentralized resultant force. Such moments are Mx,

overturning or roll moment, My, rolling resistance torque or pitch moment and Mz, self-

alignment torque or yaw moment. My is a torque acting in the opposite way of the wheel

rotation, therefore creating resistance. Such torque increases with velocity and naturally with

the contact patch area. Mz is a moment that is particularly important for suspension and

steering systems design, since it is one of the causes of the well known self-aligning moment on

the steering wheel. In very advanced applications, considering this effect for vehicle dynamics

applications may help to better understand the driver feedback and possible traction losses.

Figure 2: Tire forces and moments [1].

Tyre modelling is a complex subject, in which there are two principal types of models,

the theoretical models and the ones that rely on experimental data to obtain a function

that better describe such phenomenon. One of the most used tyre model is the Pacejka

Magic Formula [32], which uses experimental data to adjust the form of the tyre parameters

functions generated through the theoretical model.

2.2.1 Tyre Longitudinal Dynamics

To accelerate or brake a vehicle a longitudinal force must be developed between the tyre

footprint and the road. When a moment is applied to the wheel spin axis, slip ratio occurs
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and a longitudinal force, Fx is generated [1]. Slip ratio is defined as

SR =
Rgww
vx

− 1 (1)

with Rg as the tyre loaded radius, ww is the tyre’s angular velocity, vx is the wheel forward

velocity.

The longitudinal force generated by the tyre, fig. 3, is defined as

Fx = µx(SR, γ, α, ww, T, Fz)Fz ≈ CSRSR (2)

with µx defined as the tyre longitudinal coefficient of friction. The issue arises when trying to

determine this coefficient, since it varies in a nonlinear fashion with the slip ratio and is also

dependent on the wheel camber, γ, wheel angular velocity, operating temperature, T , tyre

normal load. Furthermore, µx is not independent on the tyre lateral dynamics, that is why

the wheel slip angle, α, appear in equation 2. To overcome such issue it is usual to merge the

longitudinal and lateral slips in a combined wheel slip [33]. On equation 2, CSR, which arises

from a linearization about the origin, is regarded as longitudinal slip coefficient defined as

CSR =

∣∣∣∣ limSR→0

∂Fx
SR

∣∣∣∣ (3)

Fx

SR

CSR

Figure 3: Longitudinal tire force, Fx, as a function of the slip ratio, SR.

2.2.2 Tyre Lateral Dynamics

Analogous to the longitudinal force generation mechanism, the tyre to create lateral force

needs to deform, in this case, laterally. It causes a misalignment, between the tyre path of

7



motion and the tire symmetry plane, which is known as the slip angle, α. The tyre lateral

force, Fy is defined as

Fy = Cα(SR, γ, α, ww, T, Fz)α (4)

with Cα as the cornering stiffness, which is, as in equation 2, dependent on diverse factors. For

the lateral case, factors as the camber, tyre normal load and temperature are important, due

to its dynamic behaviour in cornering. Cornering stiffness, because of its nonlinearity(fig. 4),

is usually considered as the derivative of the lateral force, Fy at the origin, i.e. when α tends

to zero, equation 5. This operation is basically linearizing the cornering stiffness function at

the origin.

Cα =

∣∣∣∣limα→0

∂Fy
α

∣∣∣∣ (5)

Figure 4: Lateral tire force, Fy, as a function of the slip angle, α [1].

2.3 Full Car Planar model

To obtain the full car model one must apply rigid body mechanics, arriving at a model

with longitudinal, lateral and yaw degrees of freedom. The important geometric modelling

quantities are represented in plain view in figure 1.

If one performs the sum of longitudinal and lateral forces at the center of gravity, CoG,

according to figure 5 and accounting with the equilibrium moment about the z axis and

assuming equal steering angle, δ at both front wheels, one arrives at

8



CoG
r

Fxfo

Fyfo

Fxfi

Fyfi

Fxro

Fyro

Fxri

Fyri

V

β

δ

δ

vfo

αfo
βf o

vfi

αfi
βf i

vfro

αro

vfro

αri

Figure 5: Representation of longitudinal and lateral forces acting on each wheel

mv̇x = mwzvy + Fxfocosδ + Fxficosδ + Fxro + Fxri − Fyfosinδ − Fyfisinδ

mv̇y = −mwzvx + Fyfocosδ + Fyficosδ + Fyro + Fyri + Fxfosinδ + Fxfisinδ

Iz ṙ = a1 [cosδ (Fyfo + Fyfi) + sinδ (Fxfo + Fxfi)] + wf (Fyfisinδ − Fxficosδ)

− wrFxri + wf (Fxfocosδ − Fyfosinδ) + wrFxro − a2 (Fyro + Fyri)

(6)

Equations 6, with Iz as the body inertia concerning the z axis, describe a complete vehicle

planar dynamics model, equations 4 and 2 may be used to replace Fx and Fy. To further

advance on such computations, one must be able to determine each wheel slip angle, α. A

closer inspection of figure 2, concludes that

α = δ − βi (7)

from which one infers that is crucial to compute the wheel global sideslip, βi, with the

subscript i indicating each wheel, which can be defined as

9



βf,ri,o = tan−1

(
vyi
vxi

)
(8)

with vxf,ri,o and vyf,ri,o each wheel longitudinal and lateral velocities, respectively. To compute

both quantities one may resort to rigid body mechanics laws arriving at

vi = V + r × rivxivyi
0

 =

vxvy
0

+

00
r

×

xiyi
0

 =

vx − yir

vy + xir

0

 (9)

Substituting equation 9 on equation 8 , and recognizing xi as the front or rear track and

yi as the distance of the front or rear axle to the CoG one arrives at

βf = tan−1

(
vy + a1r

vx ± wfr

)
≈ vy + a1r

vx ± wfr
(10a)

βr = tan−1

(
vy − a2r

vx ± wrr

)
≈ vy − a2r

vx ± wrr
(10b)

The assumption on equations 10a and 10b is of small angles, i.e. small absolute value

of the lateral velocity in comparison with the longitudinal component, hence a linearization

on this angle is accomplished. If one replaces the previous 10a and 10b on equation 7 the

following linearized slip angles are obtained

αf = δ − vy + a1r

vx ± wfr
(11a)

αr =
vy − a2r

vx ± wrr
(11b)

Additionally, considering, as well, small angles for the steering angles, sinδ ≈ 0 and

cosδ ≈ 1. Thus, substituting equations 2 and 4 on equation 6 it may be rewritten as

mv̇x = mrvy + CSRfo
SRfo + CSRfi

SRfi + CSRro
SRro + CSRri

SRri

mv̇y = −mrvx + Cαfo
αfo + Cαfi

αfi + Cαro
αro ++Cαri

αri

Iz ṙ = a1

(
Cαfo

αfo + Cαfi
αfi

)
− wfCSRfi

SRfi − wrCSRri
SRri + wfCSRfo

SRfo

+ wrCSRro
SRro − a2

(
Cαro

αro + Cαri
αri
)

(12)
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Equation 12 is the final full planar model, also regarded as the two track model, which takes

into account both longitudinal and lateral forces contributions for the moments around z.

Although this model can be further developed to take into acount instantaneous or transient

mass transfer it will not be considered in this work.

2.4 Bicycle Model

The bicycle model is a simpler solution than the full car model, in the way that it condenses

in two wheels, one for each axle, the behaviour of four wheels. Therefore, both front wheels

cornering stiffness are taken as a single quantity, Cαf
, and the same is done for the real axle,

Cαr . Regarding the longitudinal force, the same is done, and an important consequence is that

the contribution of the longitudinal force for the moment taken about the z axis is neglected.

This approximation was done to avoid modelling an electric or mechanical differential, which

allows an higher rotation of the outer wheels due to travelling on a higher radius. Moreover,

Ackermann geometry concerns [34] are also neglected, as before, hence each wheel steering

angle is equal. Additionally, the bicycle model is a well known model for control, since it is

easily described as a state-space model, accounting for tyre and rigid body dynamics, which

results in more reliable control actions. As the full car model, load transfer could be added to

this model, however that was not the choice, once again to simplify the problem. Nonetheless,

such assumption results in a conservative solution, since the bicycle model underestimates

the cornering and accelerating capabilities of the vehicle [35]. It occurs, due to the fact that

load transfer increase the vertical load on the outer wheels and, consequently, its cornering

stiffness. Moreover, the outer wheel, typically, has a higher slip angle which multiplies with

the greater cornering stiffness, resulting in greater lateral force produced by the axle. A

schematic of this model is represented in figure 6. The model equations are a special case of

equations 12, in which Cα and CSR values are doubled.

mv̇x = mrvy + CSRf
SRf + CSRrSRr

mv̇y = −mrvx + Cαf
αf + Cαrαr

Iz ṙ = a1Cαf
αf − a2Cαrαr

(13)

11
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Figure 6: Representation of the longitudinal model including slip angles, αf,r, vehicle sideslip, β and the
loads on each wheel, Fxf

,Fyf
,Fxr and Fyr .

The slip angles, αf and αr, are now defined as

αf = δ − vy + a1r

vx
(14a)

αr =
vy − a2r

vx
(14b)

And substituting equations 14a and 14b on equation 13, and rearranging it on a matrix

form, one finally obtains the state space lateral dynamics system of equation 15.

 v̇y

ṙ

 =

 −Cαf
+Cαr

mvx

−a1Cαf
+a2Cαr

mvx
− vx

−a1Cαf
−a2Cαr

Izvx
−a21Cαf

+a22Cαr

Izvx


 vy

r

+


Cαf

m

a1Cαf

Iz

 δ (15)
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3 Trajectory Optimization

In this chapter a track parametrization is proposed along with a simple introduction to the

path interpolation technique adopted. The second part of this chapter is the optimal path

planning method resorting to genetic algorithm.

3.1 Track Parametrization

A reference trajectory for a minimum time trajectory in a circuit must be constrained between

an outer and an inner limit. Hence, the track was modelled as a inner, rinner, and outer,

router, boarders, described in Cartesian coordinates, r = (x, y)T ∈ ℜ2, figure 7. Furthermore,

the difference between outside and inner limits is defined as the track width, wt. If one

considers σ, with (σ ∈ [0, 1]), the position of the reference trajectory orthogonal to the inner

boarder, rinner, until the outer boarder, router. The next equation fully defines a trajectory

in a cartesian plane.

r(s) = rinner(s) + σ(s)wt (16)

with s as the distance travelled, defined as

s(t) =

∫ t

0

√
v2x(t) + v2y(t)dt (17)

If, the distance between two consecutive points is small enough equation 17 may be ap-

proximated to

s(t) =

√
[x(t)− x(t− 1)]2 + [y(t)− y(t− 1)]2 + s(t− 1) (18)

To compute the yaw angle, ψ, it is assumed that the car axis is tangent to the trajectory,

thus

ψ(t) = tan−1x(t)− x(t− 1)

y(t)− y(t− 1)
(19)

The curvature radius relates the yaw angle and the distance travelled between two con-

secutive points, if one assumes small angles

13



R(s) =

(
|x′y′′ + x′′y′|
(x′2 + y′2)

3
2

)−1

≈ ds

dψ
(20)

with x′ and y′ as dx
ds

and dy
ds

and x′′ and y′′ dx2
d2s

and dy2

d2s
, i.e. ′ is the operator representing the

derivative of a vector in relation to the distance s.

Y

X

router

rinner

r (s)

σ(s)wt

ṡ

y

x

ψ

Figure 7: Track modelling and vehicle representation along a given path

Resorting to rigid body laws, a transformation from the fixed reference frame coordinates

to the body reference frame coordinates, i.e. the reference frame that moves along with the

body, is obtained by

 vx
vy
0

 =

 cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1


 vX
vY
0

 (21)

3.2 Path Interpolation using B-Splines

If one desires to reach a minimum time trajectory or even a sub-optimal, it is important

to accurately interpolate the trajectory control points into a polynomial. The issue is that

second or third order polynomials are constructed resorting to 3 or 4 control points, respec-

tively. The solution is to use piecewise polynomials. A special case of piecewise polynomials is

the spline, which is defined as a piecewise polynomial parametric curve in a two-dimensional

plane Q(t) ∈ ℜ2. Furthermore, when generating paths it is important to look over parametric

and geometric continuity. Parametric continuity in Cn is said to exist when the n-th deriva-

tive dn!(t)
dtn

is continuous. Geometric continuity is broader criteria that states that the both
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left-hand limit and right-hand limit may not be equal, but must have the same direction,

i.e. have to be scalar multiplies of each other [36]. Additionally, it is desirable, to drivability

purposes, that the heading is a continuous function on C0, for clear reasons, and C1 to force

the heading to change continuously, i.e the yaw rate, r. Continuity in curvature is also desir-

able, since in the absence of such characteristics would require infinitely high accelerations

to drive or steer the vehicle along the path. The choice for B-splines, can be explained by

the C2 continuity and also for the absence of any manual stitching as Bézier Curves, for ex-

ample. The disadvantage of this method is the less obvious correlations between the control

points and the curve shape. Nevertheless, since one is interpolating, the control points for

the trajectory have to match the points belonging to the interpolant curve, thus the spline

control points are adjusted in order to achieve such result.

A cubic B-spline on t, with control points (Pi, ..., Pi+3),may be defined as

Si(t) = TMBSG
i
BS =

[
t3 t2 t 1

] 1
6


−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0



Pi

Pi+1

Pi+2

Pi+3

 (22)

The basis splines vector is

BBS


BBS,0

BBS,1

BBS,2

BBS,3


t

=
1

6


−t3 + 3t2 − 3t+ 1

−t3 − 6t2 + 4

−3t3 + 3t2 − 3t+ 1

t3


t

(23)

Equation 23 confirms the sufficient condition of convex hull p roperty [37], which states

that
∑3

i=0BBS,i = 1, with BBS,i ∈ [0, 1] , i = 0, ..., 3.

Equation 22 may be rewritten in the polynomial form as

Si(t) =
1

6
(−Pi + 3Pi+1 − 3Pi+2 + Pi+3)t

3 +
1

6
(3Pi − 6Pi+1 + 3Pi+2)t

2+

+
1

6
(−3Pi + 3Pi+2)t+

1

6
(Pi + 4Pi+1 + Pi+2)

(24)

3.3 Genetic Algorithm

Genetic algorithms (GA), first introduced by Holland [38], are evolutionary based algorithms,

inspired by natural systems survival and adaptation mechanisms. GA starts by randomly
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creating a population and from generation, i.e. iteration, to generation it scores the individ-

uals of the current generation, called parents. After the score, GA relies on simple concepts,

such as crossover, mutution and elites, which are the key concepts of diversity, adaptation

and survival of the bests fitted individuals within a population. In a minimization problem,

the lowest fitted individuals in each generation are called the elites and they automatically

pass to the next generation, according with a used-defined variable denominated %elite, the

remain of the population of the current generation are the parents of the next generation.

The parents suffer crossover and mutations, according with %crossover and %mutation.

Crossover represent a fine resolution change to the next individual, this is accomplished by

selecting a pair of parents and combining a randomly selected vector entry of both parents.

At each generation, after the fitness score, a probability is assigned to each parent, reward-

ing lower fitness individuals. High probability indivuduals have higher probability of being

picked for crossover. The population remaing will suffer mutations. Mutation selects a par-

ent and randomly change the vector values originating a children. Opposed to crossovers,

mutations represent abrupt changes that cause the diversity and high amount of stochastic

behaviour that lack in deterministic algorithms. elites are fundamental in GA, since it guar-

antees that the best fitted individuals with the best characteristics, i.e. genes, pass to the

next generation. A generic GA pseudo-code is summarized in algorithm 1.

Algorithm 1 GA pseudo-code
Creation of initial population x

2: Computes the initial population fitness fx
repeatfor the population of each generation

4: Selects the Elite individual, xelite based on fx
%crossover of the remaining population, x− xelite, suffers crossover

6: %mutation of the remaining population, x− xelite, suffers mutation
Save descendency as the current generation

8: until Stopping criteria condition satisfied
Save the best solution and its fitness fx

3.4 Optimal path planning using minimum time criteria

The method here presented results from the decoupling of the minimum time optimization

in a three stage optimization. The first stage is the determination of the limit speed for a

given path. The limit speed is computed resorting not only to the maximum velocity the

vehicle can achieve, but also the limit velocity imposed, during cornering, by the tyres lateral
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friction. The second optimization stage is the velocity profile optimization that minimizes

time, subject to dynamic and velocity limits constraints. The last stage is the refinement

of the present solution. In this work, what is called the solution refinement is the use of an

initial population, on a genetic algorithm, with k − best trajectories, i.e. the k on a larger

population resulting in lower times, in a optimization with a minimum time objective. To

find this initial population another optimization is performed with the goal of minimizing

the trajectory curvature by changing the position of a given number of trajectory control

points. This method, although using other type of heuristics instead of genetic algorithms,

was first developed for manipulator robots [12, 39] and later applied for mobile robots motion

planning on uneven terrain [13, 40].

3.4.1 Determination of the limit velocities for a given path

The limit velocities considered in this work are the maximum velocity the vehicle can

achieve,vx,max, or any other desired, and the maximum velocity the vehicle can achieve dur-

ing cornering without deviating from the desired path, which is derived from the centripetal

acceleration, ay.

vx,cornering(s) =
√
aymaxR(s) (25)

Equation 25 is obtained from the centripetal acceleration, aymax = vx(s)2

R
, with R(s) as the

radius as a function of the distance, s. Therefore, the velocity constrained by the acceleration

is function of s. The maximum lateral acceleration must be identified through experiments

or user defined, due to absence of tyre curves. The radius is computed as

R(s) =
dψ

ds
(26)

An alternative to define this dynamic constraint would be to define a friction coefficient,

µ, and bound the maximum acceleration as

F = Fy + Fx ≤ µFz (27)

This could be done for every every wheel or for the car itself. Nonetheless, such method

would also require knowledge of tyre behaviour curves.
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Another alternative method, would be to resort to equations 3 and 5 to compute Fx and

Fy, however such methods are dependent on vx and on the slip angle, α, which would turn

the method under-determined. Moreover, it would also require full knowledge of the tyre

curves.

To conclude, to obtain the admissible velocity as a function of the distance, i.e. as a

function of each point in the path, one simply has to compute the minimum of both limit

velocities at each point,

g(x, ẋ) = vxlimit
= min

∀s∈S
[vx,max, vx,cornering] (28)

with s as a given point of the interpolant curve S.

3.4.2 Solution of the minimum time velocity profile for a given path

The initial assumption is that the longitudinal velocity, vx, which is influenced by the before

mentioned factors, governs the optimal velocity profile. One is assuming that since the lateral

dynamics influences the admissible velocity at a given position on the prescribed path, the

vehicle is capable of following any trajectory as long as its longitudinal velocity verifies the

next condition

f(x, ẋ) ≤ g(x, ẋ) (29)

with f(x, ẋ) as the equation governing the longitudinal dynamics, hence longitudinal velocity

and acceleration.

The optimization problem to be solved is

min
u∈ℜn

tf =

∫ sf

s0

ds

ṡ

subject to f(x, ẋ) ≤ g(x, ẋ)

− 1 ≤ u ≤ 1

(30)

With u as the control input that governs the longitudinal velocity,ṡ and s0 and sf as the

initial and final points of the function s.
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Figure 8: An example, for the path of figure 9 , showing the minimum time, or very similar, trajectory
construction

This problem is solved resorting to algorithms presented in [39, 12], the solution, figure 8

for a given path, figure 8, follows the next steps, which was adapted(point 2.) to our problem

to simplify implementation.

1. Forward integration accelerating, from the initial state (x0,ẋ0), of f(x, ẋ) until the max-

imum admissible velocity curve is reached, point a.

2. From point a go back to a lower value of s but still on the curve of point 1 and switch to

decceleration. At this point only two things can occur: Either the trajectory intersect

the limit velocity curve at b′ or it will intersect the x − axis in a given point, which

has to be greater than sf . (By going back in the curve of point 1, instead of following

the original algorithm, which draws a vertical line from a until a defined velocity, the

chance of the intersection of the curve with the xaxis can never be lower than sf .) The

goal here is to find the switching point that produces a decceleration curve that only

intersects once the admissible velocity curve, point b. This process is done iteratively.

3. From the intersection point b, one most once again accelerate. A similar procedure
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of point 2 must be followed, but progressing in s, until there is only one intersection

between the generated curve and the limit curve. (If one finds a singularity a different

approach must be taken)

4. Repeat points 1.,2. and 3. until s = sf . This point follows the assumption that in

any track a braking point is proceeded by an accelerating point and followed another

accelerating point.

The aforementioned algorithm may be summarized in algorithm 2.

Algorithm 2 Minimum time vx algorithm over a fixed path
Initialize dynamic equations
Compute the maximum attainable velocity function g(x, ẋ)

3: while sk ≤ sf do
Forward integration of f(x, ẋ) with u = 1
if f(x, ẋ) ≥ g(x, ẋ) then

6: Compute k
k = k − 1
while true do

9: Forward integration of f(x, ẋ) with u = −1
if length(f(x, ẋ) = g(x, ẋ)) > 1 then

k = k − 1
12: else

Break
end if

15: end while
end if

end while

The solution for equation 30 is said to be bang-bang [12], meaning that the input u may

take either the maximum value, 1, or the minimum value, -1, thus representing maximum

acceleration or minimum acceleration. Such model only delivers the optimal, or near optimal,

solution in special cases. When during a trajectory manipulator robot reaches a singularity

this method will not present good results, in [41] was presented a solution to overcome

manipulators singularities, but this solution applicability to a mobile robot must be further

investigated.

The solution followed in this work was to evaluate the velocity limit values in an interval,

computing its mean and then relating its value with the input u, as in equation 31. This may

not be reckoned as an optimal but rather a practical solution, since it will must certainly

create sub-optimal, but feasible and reasonable, longitudinal velocity profiles.
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ū = mean

 s(e)∑
s(d)

ṡ

 (31)

Figure 9 is an example of the result of the interpolation over the control points. The

longitudinal velocity and the velocity limits associated with this path are show in fig. 8.
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Figure 9: Representation of a given path, including the path control points and the interpolant curve
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3.4.3 Minimum time trajectory solution

This is the third step of the optimization problem, which regards the time minimization for

a given track. At this stage of the optimization, one is capable of not only computing the

limit velocities for a given path but also the optimal, or sub-optimal, longitudinal velocity

profile. To minimize time, one must change the position of the path control points and repeat

the procedures of sections 3.4.1 and 3.4.2 to compute the resulting time until convergence is

reached. Although, conceptually, this approach would deliver good results, such conclusion

was not reached. The reason is that the change of the path control points is not obvious and,

additionally, the function has plenty local minima. To avoid such problems, the approach

followed was to use a priori knowledge, i.e. the minimum time trajectory on a race track

is similar to the trajectory that minimizes the curvature, which is the inverse of equation

20. So to minimize time, two minimizations were performed, one to minimize curvature and

another to minimize time. The k best results of the curvature minimization are used as the

genetic algorithm initial population, thus resulting in a diverse population with individuals

representing reasonable fit with characteristics near the minimum curvature solution, which

is known to be related with the minimum time solutions.

The curvature minimization may be formulated as

min
xc

sf∑
i=s0

κi =

sf∑
i=s0

1

Ri

subject to 0 < σ < 1

(32)

with xc as the position of the path control points in the track, κ as the curvature, and σ as

the position in the track as in equation 16.

After obtaining the results of the minimization in equation 32, the time associated with

the best at each generation/iteration is presented in figure 32, for several runs of the software.

A thorough analysis of figure 10 reveals an unexpected result regarding the time, which is it

increase with the reduction of the curvature. Furthermore, the stochastic/chaotic behaviour

related with the lower values of curvature is also interesting and demonstrate the difficulty

of minimizing time. This aspect also reveals sudden great changes that are associated with

slightly different paths or trajectories. The trajectory of figure 11 appears to be very good,

using a good line on the track, as it should be.
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Figure 10: Each iteration best trajectory of the minimization of equation 32 and its associated time at the
track, figure 11

The time minimization may be formulated as

min
xc

tf =

∫ sf

s0

ds

ṡ

subject to 0 < σ < 1

f(x, ẋ) ≤ g(x, ẋ)

(33)

The optimization of equation 33 relies on changing the position of n control points, within

the track limits, equation 16, to find the path and respective velocity profile that minimizes

time, tf . The pseudo-code of this algorithm can be inspected in algorithm 3.
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Figure 11: Representation of the track and illustration of a minimum curvature path result

Algorithm 3 Minimum time algorithm
Initialize lateral, longitudinal dynamics state space equations
Start

∑
κbest as ∞

3: Minimize
∑

κ, according to equation 32
for each individual, xc, do

Interpolate with B-Splines
6: Compute

∑
κ

if
∑

κ <
∑

κbest then
Set

∑
κbest =

∑
κ

9: Save xc in a new entry of GA Initial Population
end if

end for
12: Start tfbest as ∞

Minimize tf , equation 33, using GA Initial Population
for each individual, xc, do

15: Interpolate with B-Splines
Compute vxlimit

Compute vxoptimal
and s, using procedure of section 3.4.2. Set ṡ = vxoptimal

18: Compute tf =
∫ sf
s0

ds
ṡ

if tf < tfbest then
Set tfbest = tf

21: end if
end for
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4 Optimal control trajectory optimization

In this chapter a new set of coordinates is created, transforming the time dependent system in

a space dependent system. The previously mentioned dynamics, transverse and longitudinal,

in addition to the new set of coordinates enables the use of an optimal control formulation

to solve the minimum time problem. This section is divided in three subsections: Dynamics

reformulation, minimum time tracking over a fixed path and, finally, time optimal trajectory

planning.

4.1 Minimum time path tracking

The minimum time path tracking problem concerns with the velocity profile optimization

along a given path. This is an important problem that has been addressed mainly for robotic

manipulators [18, 39, 13].

4.1.1 Reformulated dynamics

The bicycle model previously derived, equations 13, was modeled in the state-space form,

equation 15. Notwithstanding, the same model can be derived by means of the Euler-

Lagrange approach, using q = (x, y, ψ) as generalized coordinates.

d

dt

∂LT

∂q̇
− ∂LT

∂q
= u (34)

with u as the generalized forces and L(q, q̇) = T (q, q̇)−V (q), in which T and V as the kinetic

the potential energies, respectively. Exploiting such set of equations results in

Mq̈ + C(q̇) + F(q̇) = u (35)

where M is the mass matrix, R3x3, C is the matrix accounting for centripetal and resistive

forces, i.e. drag, R3x1 and F is a matrix with the tyre friction related coefficients, R3x1.
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M =

m 0 0

0 m 0

0 0 Iz


C(q̇) =

−mẏψ̇ −Kẋ2

mẋψ̇

0


F(q̇) =

 0

Cαf
( ẏ
ẋ
+ a1

ψ̇
ẋ
) + Cαr(

ẏ
ẋ
− a2

ψ̇
ẋ
)

a1Cαf
( ẏ
ẋ
+ a1

ψ̇
ẋ
)− a2Cαr(

ẏ
ẋ
− a2

ψ̇
ẋ
)


u =

4.6875m 0

0 Cαf

0 a1Cαf

[up
δ

]

(36)

where up is the pedal position, −1 ≤ up(t) ≤ 1 and K represents a resistive force coefficient,

resultant from drag and rolling resistance.

Over a fixed path in the car joint space coordinates, q(s), is function of a scalar s rep-

resenting the distance, which is time-dependent, s(t). In this work was considered that the

distance is normalized, i.e. 0 ≤ s(t) ≤ 1, with the time starting at t = 0 and ending at

t = T . One has to impose the constraint that ṡ ≥ 0. From here on, the time dependent

characteristic of the path s will be omitted when possible. Resorting to the chain rule one

can rewrite the time dependent generalized coordinates as a function of the path variable s

q̇ =
dq

ds

ds

dt
= q′ṡ (37)

q̈ =
dq

ds

d2s

dt2
+

d

ds

(
dq

ds

)
= q′s̈+ q′′ṡ2 (38)

Using equations 37 and 38 one can rewrite equation 35 as

u(s) = m(s)s̈+ c(s)ṡ+ f(s) (39)

in which m(s) , c(s) and f(s) are defined as

26



m(s) = Mq′(s)

c(s) = Mq′′(s) + C(q′(s))q′(s)

f(s) = F(q′(s))

(40)

At this point the car motion dynamics was transformed to be space dependent instead of

time dependent, aspect that will be further explored and allow an optimal control formulation

for the minimum time trajectory problem.

4.1.2 Problem Formulation

Making use of the dynamics governing equations previously derived one can write the general

minimum time problem as

min
T,s,u(·)

T (41)

subject to u(t) = m(s(t))s̈(t) + c(s(t))ṡ2(t) + f(ṡ(t)) (42)

s(0) = 0 (43)

s(T ) = 1 (44)

ṡ(0) = ṡ0 (45)

ṡ(T ) = ṡT (46)

ṡ(t) ≥ 0 (47)

ṡ(t) ≥ 0 (48)

u(s(t)) ≤ u(t) ≤ ū(s(t)) (49)

for t ∈ [0, T ] (50)

in which u and ū represent the input lower and upper bounds, respectively.

A closer inspection at equations 41 to 50 do not reveal any information about the locally

and/or globally solutions of the problem, since the convexity of the objective function is not

obvious, despite the constraints being linear. To conclude on such matter, one might recall to

[22] and [14], in which the formulations are quite similar, with the difference that in the latter

the problem is of minimizing energy and in the former is of minimizing time. In both cases,
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the formulation is of an optimal control problem stating linear system dynamics, differential

states (s, ṡ)T and control input s̈. This set of statements are the necessary conditions to

define a problem as convex, leading to the important conclusion that any local optimal is

also global optimal. To accomplish the aforementioned convex problem one must start by

doing a change of the integration variable of equation 41 from time, t, to space, s,

T =

∫ T

0

1dt =

∫ s(T )

s(0)

ds

ṡ
=

∫ 1

0

ds

ṡ
(51)

Second, two new optimization variables are introduced

a(s) = s̈ (52)

f(s) = ṡ2 (53)

To ensure relation between a(s) and f(s) an additional constraint is added

f(s) = 2a(s) (54)

which comes from

ḟ(s) = f ′ṡ (55)

and

ḟ(s) =
d(ṡ2)

dt
= 2s̈ṡ = 2a(s)ṡ (56)

After doing this set of transformations and recognizing a(s) and f(s) as optimization

variables, the problem described by equations 41 to 50 is rewritten as
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min
a(·),f(·),u(·)

∫ 1

0

ds√
f(s)

(57)

subject to u(t) = m(s)a(s) + c(s)f(s) + f(s) (58)

f(0) = ṡ20 (59)

f(1) = ṡ2T (60)

f ′(s) = 2a(s) (61)

f(s) ≥ 0 (62)

u(s(t)) ≤ u(t) ≤ ū(s(t)) (63)

for s ∈ [0, 1] (64)

It is easy to prove that problem 57-64 is convex, due to the constraints linearity and

convexity of its function, since a power function is convex [42]. This problem, in this form,

can be considered in differential algebraic form (DAE), with pseudo-time s, control input

a(s), differential state b(s), algebraic states u(s), linear system dynamics 61, linear state

dependent contraints 58, 62 and 64, as well as initial and final conditions [22].

Furthermore, a great advantage of such an humble formulation is the simplicity of adding

extra relevant objective function terms, that ensure a weighting to the main objective of

minimizing time.

There are several options for additional constraints, such as thermal energy, the integral of

the absolute value of the inputs rate of change, velocity constraints, acceleration constraints,

rate of torque change, slip angle constraints, among much more. In this work, it will only be

considered the thermal energy, the integral of the absolute value of the inputs rate of change

and slip angle constraints.

The thermal energy is defined as

∫ 1

0

u2i (s)dt =

∫ 1

0

u2i (s)

ṡ
ds =

∫ 1

0

u2i (s)√
f(s)

ds (65)

The integral of the absolute value of the inputs rate of change is defined as
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∫ T

0

|u̇i(s)|dt =
∫ 1

0

|u′i(s)ṡ|
ṡ

ds =

∫ 1

0

|u′i(s)|ds (66)

By adding this pair of equations, 65 and 66, to the objective function, the effect is,

respectively, not only a penalty on the input signal energy, which results in lower absolute

values, but also a penalty on inputs rate of change, which creates input signals with smoother

transitions. In this way one is not restricting energy or rate of changes but penalizing its

occurrence, fact that helps the solver convergence. Moreover, both equations 65 and 66

convexity proof is quite easy and is shown in [42], thus the final objective function is convex.

An additional constraint may be added to limit the slip angle, αf,r, since the cornering

stiffness was linearized, higher slip angles will devise greater lateral forces. By imposing such

limit, one is deviating the tyre from working near or above the saturation limit. The slip

angle is merely a function of δ and generalized coordinates derivatives, q̇.

α ≤ αf,r ≤ ᾱ⇔ α ≤ g(q̇, δ) ≤ ᾱ (67)

where g(q̇, δ) is the function describing the slip angle and α and ᾱ are the slip angle lower

and upper limits, respectively.

Gathering the supplementary objective functions, equations 65 and 66, and constraints,

equation 67, and adding to the general problem 57-64, outcomes a richer formulation of the

problem
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min
a(·),f(·),u(·)

∫ 1

0

1√
f(s)

+
γ1√
f(s)

(
n∑
i=1

u2i (s)

ū2i

)
+ γ2

(
n∑
i=1

|u′i(s)|
|ūi|

)
ds (68)

subject to u(s) = m(s)a(s) + c(s)f(s) + f(s) (69)

f(0) = ṡ20 (70)

f(1) = ṡ2T (71)

f ′(s) = 2a(s) (72)

f(s) ≥ 0 (73)

α(s) ≤ g(q̇(s), δ(s)) ≤ ᾱ(s) (74)

u(s(t)) ≤ u(t) ≤ ū(s(t)) (75)

for s ∈ [0, 1] (76)

The problem formulated in 68-76 represents the generalized and richer optimal control

formulation considered in this work. As mentioned before the additional objective functions

preserve convexity and the added constraint is linear. Furthermore, ūi is the maximum

value in an interval, most frequently it is the upper torque bound. γ1 and γ2 are constants

that define the desired weight on the penalties, equations 65 and 66. By increasing γ1, the

input signal tends to loose energy, deviating from higher values. By increasing γ2 one tends

to obtain smoother signals, i.e. with less abrupt changes, even though some of them are

necessary. It is worth mentioning that such extra functions result in non-optimal solutions

when compared with the ones obtained with 57-64.

4.1.3 Numerical Solution

To solve the generalized optimal control problem there are three well recognized methods.

Dynamic programming methods [18, 15, 43], which are by nature a decision-based method

instead of a gradient based, falling, however, in a group of methods that require a very careful

implementation due to the sequential way this method solve the problem. Furthermore,

dynamic programming is O(n), requiring, therefore, considerable computation time. The

second method falls under the category of indirect methods, which are characterized by the

several sub-steps necessary to solve the problem [13, 12]. At last, most recently, methods
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such as the direct method, motivated by the work developed by [19, 20] and others, allowed

the solution of the optimal control using quadratic and/or convex optimization methods.

This set of solutions is also called direct transcription. The previously extensive problem

formulation was fundamental to achieve a convex optimal control problem, thus enabling the

use of mature solvers, such as SeDuMi [44] or CVX [45], as suggested by [22].

In this work the approach was to use direct transcription, which is the reformulation, in

the form of a large sparse optimization problem, of the optimal control problem 68-76. To

get to such result, one first discretize the path s, with s ∈ [0, 1], which results in K+1 points,

as in equation 77.

s0 = 0 ≤ sk ≤ sKfor k = 0, ..., k (77)

Then, the acceleration, a(s), velocity, f(s), and inputs, ui, are also discretized, with the

functions evaluated on each of the path points, or, in some cases, at the middle points. The

number of grid points used and the manner one evaluates the functions, either at the point

or at middle points, define the direct transcription method used.

The approach chosen was to, as mentioned before, set the accelerations, a(s), as the

optimal control input and, therefore, to assume such function as piecewise constant, figure

12. By doing this, naturally, it is implied that the velocity, f(s) is piecewise linear, figure 13,

and the inputs, ui are piecewise nonlinear, figure 14. So, following such transcription, it is

useful to define fk to the grid points sk and one can define the continuous velocity function,

due to the assumption of piecewise linear, as

f(s) = fk +
fk+1 − fk

sk+1 − sk
(s− sk) for s ∈ [sk, sk+1] (78)

From here on, it is assumed that f(sk) = fk and, by ease of implementation, ak and uki

are evaluated at the middle points, particularly at sk+
1
2 , as can be inspected in figures 12 to

14. Hence, ak = a(sk+
1
2 ) and uki = ui(s

k+ 1
2 ).

With such discretization assumptions in mind one can perform additional operations on the

objective function integral first two terms, equation 68, which will simplify implementation

and algorithm efficiency
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a(s)

s0 s

a0

s1

a1

s2

a2

s3

a3

s4 (· · ·)

aK−2

sK−2 sK−1

aK−1

sK

Figure 12: Acceleration, a(s), represented as a piecewise constant function for s ∈ [0, 1]

f(s)

s0 s

f0

f1

s1

f2

s2

f3

s3

f4

s4 (· · ·)

fK−2

fK−1

sK−2 sK−1

fK

sK

Figure 13: Velocity, f(s), represented as a piecewise linear function for s ∈ [0, 1]

∫ 1

0

ds√
f(s)

+
γ1√
f(s)

(
n∑
i=1

u2i (s)

ū2i

)
+ γ2

(
n∑
i=1

|u′i(s)|
|ūi|

)
=

=
K−1∑
k=0

∫ sk+1

sk

[
1√
f(s)

+
γ1√
f(s)

(
n∑
i=1

u2i (s)

ū2i

)]
ds =

≈
K−1∑
k=0

[
1 + γ1

(
n∑
i=1

(
uki
)2

u2i

)]∫ sk+1

sk

ds√
f(s)

(79)
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ui(s)

s0 s

u0
i

u1
i

s1

u2
i

s2 s3

u3
i

s4 (· · ·)

uK−2
i

uK−1
i

sK−2 sK−1 sK

Figure 14: Inputs, ui(s), represented as piecewise nonlinear functions for s ∈ [0, 1]

To deal with the eventual singularities on the integral of the last term of equation 79,

namely when f(s) = 0, one treat the term 1√
f(s)

separately using equation 78, which results

in

K−1∑
k=0

[
1 + γ1

(
n∑
i=1

(
uki
)2

u2i

)]
2∆sk√

fkk +
√
fkk + 1

(80)

with ∆sk = sk+1 − sk. To conclude the discrete reformulation of the objective one still has

to deal the third term of equation 68, which may be rewritten as

γ2

∫ 1

0

|u′i(s)|
|ūi|

ds ≈ γ2

K−1∑
k=0

|∆uki |
|ūi|

(81)

with ∆uki = uk+1
i − uki . The final optimal control problem in the discretized form obtained

with the direct transcription is
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min
ak,fk,uk

K−1∑
k=0

2∆sk
(
1 + γ1

∑n
i=1

(uki )
2

ū2i

)
√
fk +

√
fk+1

+ γ2

K−1∑
k=0

(
n∑
i=1

|∆uki |
|ūi|

)
(82)

subject to uk = m(sk+
1
2 )ak + c(sk+

1
2 )f(s) + f(sk+

1
2 ) (83)

f(0) = ṡ20 (84)

f(K) = ṡ2T (85)

(fk+1 − fk) = 2ak∆k (86)

fk ≥ 0 (87)

α(sk+
1
2 ) ≤ g(q̇(sk+

1
2 ), δk) ≤ ᾱ(sk+

1
2 ) (88)

u(sk+
1
2 ) ≤ uk ≤ ū(sk+

1
2 ) (89)

for s ∈ [0, 1] (90)

Once again it is easy to conclude that the operations performed on the problem formu-

lations did not change the convexity of the final optimal control problem after the direct

transcription, equations 82-90. By concluding this, one is assuring that this problem can

be solved by any nonlinear optimization solver. Notwithstanding, the problem can still be

changed to allow the use of more efficient solvers previously referenced, such as SeDuMi and

CVX, which take advantage of an optimization technique called Second Order Cone Pro-

gramming (SOCP). The final stage of this section is precisely the reformulation of equations

82-90 as SOCP.

4.1.4 Second order cone programming Formulation

The second order cone program is a type of optimization in which a linear function is min-

imized over the intersection of an affine set and the product of second-order (quadratic)

cones [46]. Furthermore, SOCP are nonlinear convex problems that include not only linear

but also quadratic programs as particular cases. One of the main advantages of SOCP are

the several primal-dual interior-point methods that have been developed over the last two

decades, which allow the solution of difficult problems in a very fast and efficient fashion. A

wide band of applications of optimal control problems have been successfully solved using
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SOCP, power electronics [47], switching problems [48], smart buildings climate control [49]

and, finally, optimal path tracking for manipulator robots [22].

A second order cone programming problem is of the form

minhTx (91)

subject to ∥ Aix+ bi ∥≤ cTi x+ di, i = 1, ..., N (92)

(93)

with x ∈ Rn as the optimization variable, and the problem parameters are h ∈ Rn, Ai ∈

Rni−1, bi ∈ Rni−1, ci ∈ Rn and di ∈ R. The operator ∥∥ is defined as the standard Euclidean

norm, ∥ x ∥=
(
xTx

) 1
2 .

The second order cone constraint of dimension ni is the inequation

∥ Aix+ bi ∥≤ cTi x+ di (94)

The standard cone of dimension k, which is also called Lorentz cone, is defined as

Hk =

{[
x

w

]
|x ∈ Rk−1, w ∈ R, ∥ x ∥≤ w

}
(95)

The set of points defining a second order cone constraint are given by

∥ Aix+ bi ∥≤ cTi x+ di ⇔

[
Ai

cTi

]
x+

[
ci

di

]
∈ Hni

(96)

which is convex, thus SOCP is a convex programming problem since the objective function

and the constraints both define convex sets. Several suitable SOCP objective functions and

constraints can be found in [46].

To what concerns the scope of this work, one has to reformulate the objective function and

constraints of problem 82-90, and to that end a new set of optimization variables must be

introduced. An issue when adding new optimization variables is that frequently the physical

meaning is lost, but, as mentioned before, this is done in regard of substantial increase of

computational efficiency.

To rewrite equation the previous objective function 82 as linear, one has to introduce slack
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variables dk with k = 0, ..., K − 1 and ek ∈ Rn for k = 1, ..., K − 1, in a way that equation

82 may be rewritten as

K−1∑
k=0

2∆skdk + γ2

max∑
k=1

1Tek (97)

with 1 ∈ Rn as dimension n vector with all entries equal to 1. It is now necessary to augment

the problem 82-90 with the inequalities contraints [22]

1 + γ1
∑i=1

n

(uki )
2

ū2i√
fk+1 +

√
fk

≤ dk, for k = 0, ..., K − 1 (98)

and

−ek ≤


∆uk1
|ū1|
...

∆ukn
|ūn|

 ≤ ek, for k = 0, ..., K − 1 (99)

Additionally, to obtain a SOCP, constraints 98 must be replaced by two equivalent con-

straints by introducing variables ck for k = 0, ..., K as

1 + γ1
∑i=1

n

(uki )
2

ū2i√
ck+1 +

√
ck

≤dk , for k = 0, ..., K − 1

ck ≤
√
fk , for k = 0, ..., K

(100)

Now, conditions 100 may be rewritten as two second order cone constraints

1 + γ1
∑i=1

n

(uki )
2

ū2i√
ck+1 +

√
ck

≤dk ⇔

⇔

∥∥∥∥∥∥∥∥∥∥∥∥

2

2
√
γ1

uk1
ū1...

2
√
γ1

ukn
ūn

ck+1 + ck − dk

∥∥∥∥∥∥∥∥∥∥∥∥
≤ck+1 + ck + dk

for k =0, ..., K − 1

(101)

and
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ck ≤
√
bk ⇔

∥∥∥∥∥ 2ck

bk − 1

∥∥∥∥∥ ≤ bk + 1, for k = 0, ..., K (102)

After defining the new linear objective function and the second order cone constraints one

can finally arrive at the minimum time problem formulation in the classic SOCP form 91-92

min
ak,fk,uk,ck,dk,ek

K−1∑
k=0

2∆skdk + γ2

K−1∑
k=1

1Tek (103)

subject to uk = m(sk+
1
2 )ak + c(sk+

1
2 )f(s) + f(sk+

1
2 ) (104)

f(0) = ṡ20 (105)

f(K) = ṡ2T (106)

(fk+1 − fk) = 2ak∆k (107)

α(sk+
1
2 ) ≤ g(q̇(sk+

1
2 ), δk) ≤ ᾱ(sk+

1
2 ) (108)

u(sk+
1
2 ) ≤ uk ≤ ū(sk+

1
2 ) (109)∥∥∥∥∥∥∥∥∥∥∥∥

2

2
√
γ1

uk1
ū1...

2
√
γ1

ukn
ūn

ck+1 + ck − dk

∥∥∥∥∥∥∥∥∥∥∥∥
≤ ck+1 + ck + dk, for k = 0, ..., K − 1 (110)

∥∥∥∥∥ 2ck

bk − 1

∥∥∥∥∥ ≤ bk + 1 and fk ≥ 0, for k = 0, ..., K (111)

− ek ≤


∆uk1
|ū1|
...

∆ukn
|ūn|

 ≤ ek, for k = 1, ..., K − 1 (112)

for s ∈ [0, 1] (113)

The formulation as a SOCP may not be as simple as 82-90, due to the introduction of

auxiliary variables ak,ck, dk and ek, yet it allows the use of much efficient solvers, for further

details see [22]. Using this formulation, after obtaining a solution, one uses the variable bk

to compute the minimum time over the fixed path
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t(s) =

∫ 1

0

1√
b(s)

ds (114)

4.2 Minimum Time Trajectory

In the previous sections one was concerned in determining the inputs that lead to the mini-

mum time velocity profile. By other words, for a prescribed path, a formulation that success-

fully minimize time was explained, computed and tested. Next, the problem of computing

the path and vehicle inputs that result in minimum time trajectory is addressed. First, the

definition of trajectory shall be explained. Trajectory differs from path in the way that not

only that the waypoints in space are prescribed but also the velocity. This is the reason why

in previous section one was minimizing time for path tracking and in this section one is fully

addressing trajectory optimization.

Trajectory optimization is a complex and difficult problem. For many years, inside the

scientific community, one could not find efficient and successful implementations. On the

other hand, commercial software such as ADAMS [50], Milliken [51], OptimumDynamics [52],

among others, have such kind of software implemented for years. It is worth mentioning, that

within the afore mentioned software one can not have access to the problem formulation or

methods used, which highly limit a thorough investigation. Mainly for the last two decades,

with the increase of computational power, which motivated research for new optimization

methods, some new formulations for minimum lap time appeared.

4.2.1 Reformulated Dynamics

The dynamics shall be reformulated to account with path change. But first must be explained

how the track parametrization was done. For sake of simplicity, it is assumed that the vehicle

moves along the track centerline, from the initial point s0 until the final point sf . To allow the

car deviate from this path, a vector n⃗(s), orthogonal to the body x− axis, is defined at each

point s as n(s) = [sin(ψ0(s)),−cos(ψ0(s))]. Furthermore, the car transversal car position

may vary from −bmax until bmax along the direction n⃗(s), figure 15. Thus, the transversal car

position is defined as b(s) ∈ [−bmax(s),−bmax(s)]. Moreover, defining r0(s) = (x0(s), y0(s))

one arrives at
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r(s) = r0(s) + b(s)n(s) ⇔

[
x(s)

y(s)

]
=

[
x0(s)

y0(s)

]
+ b(s)

[
sin(ψ0(s))

−cos(ψ0(s))

]
(115)

Y

X

r0 (s)

n⃗(s)

bmax

ṡ

y0

x0

ψ0(s)

Figure 15: Representation of the track parametrization adopted

Once again one is assuming a normalized path vector, s(0) = 0 ≤ s(t) ≤ s(T ) = 1, with T

as the final time. As in the previous method, the chain rule was applied in order to change

time dependency to spatial dependency

vx = ẋ = x′ṡ ax = ẍ = x′s̈+ x′′ṡ2

vy = ẏ = y′ṡ ay = ÿ = y′s̈+ y′′ṡ2
(116)

Computing now the first and second derivative of x and y, in equation 116, with respect

to s

x′(s) = x′0(s) + b′(s)sin(ψ0(s)) + b(s)ψ′
0cos(ψ0(s))

y′(s) = y′0(s)− b′(s)cos(ψ0(s)) + b(s)ψ′
0sin(ψ0(s))

x′′(s) = x′′0(s) + b′′(s)sin(ψ0(s)) + 2b′(s)ψ′
0(s)cos(ψ0(s)) + bψ′′

0(s)cos(ψ0(s))− bψ′2
0 (s)sin(ψ0(s))

y′′(s) = y′′0(s)− b′′(s)cos(ψ0(s)) + 2b′(s)ψ′
0(s)sin(ψ0(s)) + bψ′′

0(s)sin(ψ0(s)) + bψ′2
0 (s)cos(ψ0(s))

(117)
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To increase readability of the afore further equations, one adds the following notation for

the vector n⃗(s) and its first and second derivatives taken for s

nx(s) = sin(ψ0(s))

ny(s) = −cos(ψ0(s))

n′
x(s) = ψ′

0(s)cos(ψ0(s))

n′
y(s) = ψ′

0(s)sin(ψ0(s))

n′′
x(s) = ψ′′

0(s)sin(ψ0(s))− ψ′2
0 (s)sin(ψ0(s))

n′′
y(s) = ψ′′

0(s)sin(ψ0(s)) + ψ′2
0 (s)cos(ψ0(s))

(118)

Combining equations 117 and 118 one arrives at

x′(s) = x′0(s) + b′(s)nx(s) + b(s)n′
x(s)

y′(s) = y′0(s) + b′(s)ny(s) + b(s)n′
y(s)

x′′(s) = x′′0(s) + b′′(s)nx(s) + 2b′(s)n′
x(s) + b(s)n′′

x(s)

y′′(s) = y′′0(s) + b′′(s)ny(s) + 2b′(s)n′
y(s) + b(s)n′′

y(s)

(119)

Substituting equations 119 on equations 116, one obtains

vx(s) = [x′0(s) + b′(s)nx(s) + b(s)n′
x(s)] ṡ

vy(s) =
[
y′0(s) + b′(s)ny(s) + b(s)n′

y(s)
]
ṡ

ax(s) = [x′0(s) + b′(s)nx(s) + b(s)n′
x(s)] s̈+ [x′′0(s) + b′′(s)nx(s) + 2b′(s)n′

x(s) + b(s)n′′
x(s)] ṡ

2

ay(s) =
[
x′0(s) + b′(s)ny(s) + b(s)n′

y(s)
]
s̈+

[
y′′0(s) + b′′(s)ny(s) + 2b′(s)n′

y(s) + b(s)n′′
y(s)

]
ṡ2

(120)

The only quantity yet to define is the yaw, ψ, which would be computed as

ψ(s) = tan−1

(
y0(s) + b(s)ny(s)

x0(s) + b(s)nx(s)

)
≈ ψ0(s)

ψ′(s) = ψ′
0(s)

ψ′′(s) = ψ′′
0(s)

(121)

Basically, this approximation is a linearization, which remains valid when the track width,

bmax is small. Such approximation is quite useful, since it avoids highly non-linear terms,
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potentially harm for implementation. At this point, one is capable of rewriting equations 36,

39 and 40, which are represented in equation 157 in Appendix A. To facilitate readibility,

such equation can be regarded as

Mq̈(s) = m1(s, b(s), b
′(s))s̈+m2(s, b(s), b

′(s), b′′(s))ṡ2

C(q̇) = c(s, b(s), b′)

F(q̇) = f(s, b(s), b′)

(122)

To conclude this section, the modified vehicle governing dynamics can be condensed in

R(s)
[
m1(s, b(s), b

′(s))s̈+m2(s, b(s), b
′(s), b′′(s))ṡ2 + f(s, b(s), b′(s))

]
+c(s, b(s), b′(s)) = u(s)

(123)

where R(s) is defined as

cos(ψ0(s)) −sin(ψ0(s)) 0

sin(ψ0(s)) cos(ψ0(s)) 0

0 0 1

 and represents the rotation from

the fixed reference axis coordinates to body coordinates. The component c(s, b(s), b′(s)) is

excluded from this operation, since it is already defined in body coordinates.

4.2.2 Problem Formulation

Resorting equation 123 and defining c(s) = b′(s) and d(s) = b′′(s), one can formulated the

minimum time trajectory problem, following the previously adopted notation, as an optimal

control problem:
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min
a(·),f(·),b(·),c(·),d(·),u(·)

∫ 1

0

1√
f(s)

+
γ1√
f(s)

(
n∑
i=1

u2i (s)

ū2i

)
+ γ2

(
n∑
i=1

|u′i(s)|
|ūi|

)
ds (124)

subject to u(s) = R(s) [m1(s, b(s), b
′(s))a(s) +m2(s, b(s), b

′(s), b′′(s))f(s) + f(s, b(s), b′(s))] +

+ c(s, b(s), b′(s)) (125)

f(0) = ṡ20 (126)

f(1) = ṡ2T (127)

b(0) = b0 (128)

b(1) = bT (129)

f ′(s) = 2a(s) (130)

b′(s) = c(s) (131)

c′(s) = d(s) (132)

f(s) ≥ 0 (133)

− bmax ≤ b(s) ≤ bmax (134)

α(s) ≤ g(q̇(s), δ(s)) ≤ ᾱ(s) (135)

u(s(t)) ≤ u(t) ≤ ū(s(t)) (136)

for s ∈ [0, 1] (137)

in which b0 and bT represent, respectively, the vehicle starting and finishing transversal

deviation from the reference trajectory. As before, ṡ20 and ṡ2T represent the initial and final

velocities of the vehicle, respectively.

The problem defined by equations 124-137 as many similarities with problem 68-76, and

can be, as well, regarded as an optimal control problem in differential algebraic form (DAE),

with pseudo time s, three differential states b, c and f , an algebraic state variable u and two

input variables a and d. The definition of a convex has already been explored in this work.

Nonetheless, it is worth recalling that the constraints must be linear, which is not verified

in equation 124, which is deduced from equation 157 in Appendix A. Hence the constraints

are nonlinear, thus raising the problem complexity. The complexity is enhanced, since the

direction of search is not obtained directly, as in a linear function.
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A short description of how nonlinear constraints issues are solved shall be given. If one

considers a general non-convex problem

min
t∈Rnt

L(t)

subject to G(t) = 0, t ∈ Ω

(138)

with L : Rnt → R convex, Ω ⊂ Rnt nonempty closed convex and G : Rnt → Rm nonlinear

and smooth.

The most common way to overcome nonlinear constraints is to linearize the constraints

about a given operation point, t0, equation 139, and then iterate.

tp+1 = tp + εp∆t
p (139)

with εp > 0, which is usually computed using the line search method. This approach is

the foundation of Sequential Convex class of problems. Equation 139 computes the search

direction ∆pi by solving a convex subproblem, obtained by means of a linearization of the

nonlinear constraints G(t) = 0. This step of linearizing, through equation 139, preserves the

objective function and constraints convexity. The convex subproblem to solve is

min
∆t

L(tp +∆t)

subject to JG(tp)G((tp +∆t) = 0, tp +∆t ∈ Ω
(140)

in which JG(tp) =
(
∂G(tp)i
∂tj

)
i,j

is the Jacobian of the nonlinear constraints function at tp.

The nonlinearity of the constraints forbids the use of SOCP methods in its natural state.

In [27], SOCP was used in a very similar problem, but the exact formulation afore mentioned

was used to linearize the problem at every single iteration. In [35], a Newton operator

method was used, which is inherently a descent method, and an exploration strategy was

added to diverge the solution from local minimums. In [26] the problem was solved using the

Pontryagin’s method and was converted into an unconstrained optimization solver. In [25],

multi-objective optmization was used to compute minimum lap times for a Formula 1 car with

variable parameters, employing direct transcription and nonlinear programming algorithm

IPOPT [53]. The approach followed in this work was to use MATLAB fmincon function,

which applies interior-point techniques, to solve this nonlinear problem. This function uses
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Sequential Quadratic Programming (SQP) or Linear Programming (LP) to solve the convex

subproblem [54].

4.2.3 Numerical Solution

As in section 4.1.3, a direct transcription method is applied to the optimal control problem.

The acceleration, a(·), is parametrized as a piecewise constant function, 12, the squared

velocity, f(·), is consequently a piecewise constant function, 13, and the inputs, ui(·) result

to be piecewise nonlinear functions. Analogously, the optimal control in DAE form input d(·)

is parametrized as a piecewise constant function, figure 16, the first spatial derivative of b(s),

c(·), is piecewise linear, figure 17, and thereupon the path transversal position b(·) is piecewise

quadratic, figure 18. Therefore, to d is evaluated at the middle points, dk = d(sk+
1
2 ), c is

evaluated at the end points and in the middle function, its values is ck+
1
2 = ck+ck+1

2
and,

finally b also has its transcribed values at the end points but can be computed at middle

points by bk+
1
2 = bk + ck∆sk

2
+

dk∆s2k
8

.
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sK−2 sK−1
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Figure 16: Second spatial derivative of b(s), d(s), represented as a piecewise constant function for s ∈ [0, 1]

One can easily infer that due to the discretization the relations between d, c and b are
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Figure 17: First spatial derivative of b(s), c(s), represented as a piecewise linear function for s ∈ [0, 1]
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Figure 18: Car transversal position in the track, b(s), represented as piecewise quadratic functions for s ∈ [0, 1]

bk+1 − bk = ∆skc
k +

1

2
∆s2kd

k

ck+1 − ck = ∆skd
k

(141)

It is important to mention that the evaluation of R(s), x0(s),y0(s), ψ0(s) and equations 118
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is done in middle points and its computation is performed in pre-processing, which relieves

optimization computational cost. To get to the final optimization problem in discrete form,

to avoid contents repetition of section 4.1, it was chosen to just show the problem in its final

form. Most steps were already explained in detail and it is only required to do not difficult

mathematical derivation. Hence, the optimal control problem of finding the trajectory that

minimizes time, can be regarded as

min
ak,fk,bk,ck,dk,uk

K−1∑
k=0

2∆sk
(
1 + γ1

∑n
i=1

(uki )
2

ū2i

)
√
fk +

√
fk+1

+ γ2

K−1∑
k=0

(
n∑
i=1

|∆uki |
|ūi|

)
(142)

subject to uk = Rk
[
m1(s

k, bk+
1
2 , ck+

1
2 )ak +m2(s

k, bk+
1
2 , ck+

1
2 , dk)fk+

1
2 + fk(sk, bk+

1
2 , ck+

1
2 )
]
+

+ c(sk, bk+
1
2 , ck+

1
2 ) (143)

f 0 = ṡ20 (144)

fK = ṡ2T (145)

b0 = b0 (146)

bK = bT (147)

(fk+1 − fk) = 2ak∆k (148)

bk+1 − bk = ∆skc
k +

1

2
∆s2kd

k (149)

ck+1 − ck = ∆skd
k (150)

fk ≥ 0 (151)

− bmax ≤ bk ≤ bmax (152)

αk ≤ g(qk0 ,n
k,n′k, bk+

1
2 , ck+

1
2 , δk) ≤ ᾱk (153)

uk ≤ uk ≤ ūk (154)

for s ∈ [0, 1] (155)

The nonlinear optimization problem of 142-155 , formulated in this form, appears to be

simple and well formulated. The issue is that the problem is nonlinear and non-convex,

due to its nonlinear constraints, and, therefore, much more difficult to solve. An important

statement is that the nonlinearity comes from the variables bk, ck and dk and it is easy to
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prove that if ck and dk are zero, than the problem falls in the convex problem of 82-90. Thus,

if one considers bk, ck and dk to be small, which, actually, is reasonable assumption on a

race track, since the racing line is supposed to be smooth and bmax is usually small, the

constraints 143 may be considered slightly near linear, enabling the use, without much error,

of previously mentioned SCP and SQP methods to linearize the constraints.
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5 Results and Discussion

In this section the results of the afore mentioned methods are presented. First one shall

present the results that arise from the algorithm of section 3. These are followed by section

4.1, which correspond to the optimal control minimum time path tracking algorithm and, at

last the results of the optimal control minimum time trajectory optimization of section 4.2

are presented. The results were obtained using the car parameters of table 1.

Table 1: Car parameters

Mass, m [Kg] 0.68

Front Cornering Stiffness, Cαf
[N/rad] 8

Rear Cornering Stiffness, Cαr [N/rad] 8

Front axis distance to CoG, a1 [m] 0.08025

Rear axis distance to CoG, a2 [m] 0.084975

Inertia about z-axis, Iz [m4] 0.01

Maximum wheel steering angle, δmax [degrees] 22

Rolling resistance coefficient, K [Kgm2] 0.25

5.1 Trajectory Optimization using Genetic Algorithm

The results obtained for the trajectory optimization resorting to genetic algorithms shall be

presented in this section. In section 3, the longitudinal dynamics was represented in the

form of a function f(x, ẋ). Hence, one presents in 156 the linearized equation describing the

longitudinal dynamics that was used in this work

mẍ = 4.6875mup −Kẋ0ẋ (156)

with ẋ0 = 1 as the linearization point. It is important to mention that all the results presented

here were obtained using the same GA optimzation parameters, which are presented in table

2.

One must emphasize that the optimization parameters were not optimized. Nonetheless,

the criteria was to have low amount of elites in order to allow diversed trajectories caused by

the mutations and fine tuning as a consequence of the crossovers. Naturally, the percentage

of crossovers is much higher to force many solutions with little changes, hence resulting in
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Table 2: GA optimization parameters

Number of optimization control point 20

Population Size 200

Population elite [%] 10

Population crossover [%] 75

Population mutation [%] 15

Stopping criteria ∆t<0,001s

better, although with high chance of sub-optimal solutions. The number of control points was

chosen, merely to decrease the computational effort, it is expected that with higher number

of control points the solution would be better. Even though, this number was chosen to have

at least 4 points in each curve, which are the necessary to define the third order polynomial

chosed for the parametrization. Furthermore, the population size was chosen to be large

enough to reach good trajectories, although it would produce better results if it was bigger,

but once again is a compromise to obtain results in useful time.

Some results of this method can be found in figures 19, 20 and 21. The first point to

mention is that the three solutions would be exactly or approximately the same it they

were optimal and has been proved that if the GA runs for long enough with a population

large enough such assumption is true. Secondly, one would like to mention that the three

trajectories correspond to good trajectories for this track. Trajectories of figures 19 and 21

open the first turn in order to increase the radius and hence increase the velocity, however

in the former the apex is done the beginning of the turn and in the latter and the end. It is

difficult to say which one is better, due to the influence of the entry in the exit and vice-versa.

Although, a professional driver would say that the exit should control the entry, since a good

exit is key because one starts accelerating first. It is also interesting that in both trajectories,

if the first turn apex is done at the entry, the apex of the second turn would occur at the

exit of the second turn and the opposite also occurs. The exception is the trajectory of figure

20 that has two apex in turn 1 ans does the turn 2 in a similar fashion that the trajectory

of figure 21. The time difference involved between each solution is quite small, about 0.03s

which corresponds to approximately 0.5% of the total time.

Another important point to mention is that the use of an initial population containing

the 200 best paths resulting from the minimum curvature optimization greatly decreased
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the simulation time and the final solution time. A representation of the pedal input, up, of

the trajectory of figure 19 is in figure 23 and its corresponding longitudinal velocity is in

figure 22. The bang-bang behaviour of the velocity is obvious with an exception at about

s = 5m. Finally, sub-optimal solutions would occur due to the path discretization, B-splines

interpolation and size of the initial population.
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Figure 19: Result of the minimum time optimization, obtaining tf = 5.1741s
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Figure 20: Result of the minimum time optimization, obtaining tf = 5.2075s
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Figure 21: Result of the minimum time optimization, obtaining tf = 5.233s
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Figure 22: Longitudinal velocity corresponding to the trajectory of tf = 5.1741s
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Figure 23: Pedal Position corresponding to the trajectory of tf = 5.1741s
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5.2 Optimal Control Minimum time path tracking

The optimal control minimum time formulation over a given path was modelled to not only

include the lateral dynamics in the computation of the optimal ṡ, but also to overcome the

bang-bang nature of the section 3.4.2 algorithm. Moreover, the problem was formulated in

a way that one guarantees, due to the objective function convexity, that the solution is the

global minimum. Therefore, in this section the results shall be presented as a comparison

between the two algorithms. For the track used in section 5.1, the comparison of both meth-

ods can be inspected in figure 24. The inputs associated with this solution are represented

in figure 25. For this result, the track was equally divided in 200 points and γ2 = 1e−2.
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Figure 24: Comparison of the optimal control longitudinal velocity profile, dashed-dotted line, with a solution
of section 3.4.2, dotted line and its corresponding limit velocity, solid line.

Regarding figure 24 it is clear that the optimal control method delivered a better result

during the cornering, s ∈ [4, 8]. This is the result of accounting with the lateral dynamics

within the problem formulation. The difference in the transient behaviour of both functions

arise due to the nonlinear effect caused by the longitudinal vehicle resistance, which in this

formulation is proportional do ẋ2 instead of being linearized as in equation 156. The fact that

ṡ, in the optimal control case, finishes in 0 is the consequence of a constraint inherent to the
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formulation, which is the prescription of the final state. The lap times of both methods will

not be compared, since it would not be fair. Nonetheless, the computational effort of both

methods is low, with the optimal control tooking about 3.5 seconds and the method of section

3.4.2 about 1 second. Despite the latter’s code is not optimized, one must recognized that

the former represents a more complete problem formulated as convex, which was adapted to

be efficiently used with SOCP solvers.

To demonstrate the impact of adding additional penalties to the objective function, in this

case γ2, in figure 26 one finds the resulting inputs using γ2 = 0. In some applications, the

jitter may wear and damage components and also deviate the robot from the desired path.

It is worth mentioning that the steering input in figures and 25 26 assumes the maximum

value of 1, due to the absence of more mature tyre model. Tires were modeled as linear,

when in fact they are not, thus with the increase of the steering angle the slip angle will also

increase, producing higher lateral force. This is not representative of the reality, once the

saturation behaviour is ignored, thus overestimating the tyre lateral force capability.
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Figure 25: Pedal input and steering inputs, up and δ, respectively, for the solution of figure 24
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Figure 26: Pedal input and steering inputs, up and δ, respectively, using gamma2 = 0
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5.3 Optimal Control Trajectory Optimization

In this section the results for the method demonstrated in section 4.2 are presented. To

make use of the more complete formulation and to surpass the naïve tyre model, a slip angle

constraint was imposed. Consequently, one is forcing the slip angle absolute value, at rear

and front wheels, to be lower or equal than 5 degrees, |α| ≤ 5. One would like to refer that

although this constraint resembles the real tyre behaviour it does not replace a more mature

model. Once again, the simulation was taken for the same track as the aforementioned

methods. The trajectory obtained, using the path divided in 75 equally spaced points, can

be found in figure 27, the longitudinal velocity, ṡ, in figure 28 and the pedal and steering

inputs in figure 29.
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Figure 27: Optimal control minimum time trajectory

The differences between the trajectory of figure 28 and 19-21 are admirable. Nonetheless,

it is not a consequence of a poorer minimum time optimal control formulation. In fact, it

is a consequence of the non-convexity of the problem. Since the constraints are non-linear,

the objective functions may have several minimum and depending on the initial point the

function may stop at different local minimum. Despite the use of the Sequential Quadratic

Programming solver of the MATLAB function fmincon, which linearizes the problem at each
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iteration to overcome the nonlinearity, this issue has not been surpassed. The hypothesis

here introduced is inline with the formulation in [27], where a constraint linearization is per-

formed, at each iteration, using SeDuMi, thus formulating a Sequential Convex Programming

algorithm. Furthermore, in [35] a Newton Projector Operator was implemented to repel the

solutions from local minimum, enhancing, therefore, the probability of reaching the global

minimum. Simulations were performed without the slip angle constraint and the vehicle

tends to get closer to the inner track limit, or even to the center line, which apparently seems

to be a local minimum solution. This behaviour may be explained by the current tyre model,

which produces lateral force proportional to the slip angle, which increases linearly with the

steering angle. Moreover, the current tyre model assumes small slip angles, condition that is

often violated.
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Figure 28: Optimal control minimum time trajectory longitudinal velocity in m/s

The results of figures 28 and 29 show severe numerical instability. To further explore this

issue, one more simulation has been performed using 75 points recurring to Interior-Point

fmincon solver, figures 30-32. Furthermore, the maximum steering angle was reduced to 11

degrees, in order to force the slip angle to deviate from greater values. The results reveal

much less jitter in the inputs, which outcomes a much smoother and more realistic velocity
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profile. This results, reveal that the tyre model not only has a high impact on the simulated

car behaviour but also on numerical stability.
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Figure 29: Optimal control minimum time trajectory longitudinal normalized inputs
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Figure 30: Optimal control minimum time trajectory using Interior-Point solver

0 0.2 0.4 0.6 0.8 1

s

0

0.5

1

1.5

2

2.5

3

3.5

ṡ
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Figure 31: Optimal control minimum time trajectory longitudinal velocity in m/s using Interior-Point solver
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Figure 32: Optimal control minimum time trajectory longitudinal normalized inputs using Interior-Point
solver
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6 Conclusions

This work presents two different approaches, a stochastic and a deterministic, to solve the

minimum time trajectory optimization and one robust and mature optimal control formula-

tion to solve the minimum time path tracking problem.

The first part of the work presented starts with a simple explanation of tyre dynamics,

particularly on the lateral and longitudinal force generation mechanism, culminating with a

simple and naïve tyre model. Tyre dynamics leads the understanding of vehicle dynamics,

which is the next topic introduced. A two track planar model was deduced from rigid body

and tyre dynamics and was than linearized to obtain the bicycle model used thereupon.

The minimum time trajectory optimization problem was first approached resorting to

Genetic Algorithms. The first step of this method was to parametrize the track. Next, b-

splines path interpolation was suggested to achieve first and second derivatives continuity,

which are fundamental to obtain smooth paths with continuous curvature. This algorithm

resorts to a change of variables from time to space to facilitate the problem formulation. It

results from the decoupling of the minimum time problem in three subproblems, which are the

determination of the longitudinal velocity limits over a fixed path, computed through vehicle

dynamics equations.The second stage is the velocity profile optimization for the prescribed

path, culminating in an optimization that controls the position of n path control points that

when interpolated originate a path. To reduce the computational effort of the algorithm

another optimization was implemented in pre-processing with the goal of minimizing the

curvature. The resultant k − best paths are the initial population of the genetic algorithm

used to solve the problem.

The following method was the optimal control minimum time path tracking, which de-

livers the optimal inputs signals over a fixed path. This formulation overcomes the lack of

dynamics in the former method. The vehicle dynamics were reformulated in order to obtain

more obvious generalized coordinates and than, once again, resorting to chain rule, the time

dependency of the dynamic variables was replaced by path dependency, namely on the vari-

able s. The problem was formulated as convex, than discretized using direct transcription

methods. Finally, it was adapted, using convex preserving operators, to be formulated as

SOCP problem, hence enabling the use of more mature solvers like SeDuMi or CVX.

At last, an optimal control minimum time trajectory optimization was proposed. The
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formulation here addressed is a development of the previous method to account with the

transversal degree freedom on the track, enabling a proper trajectory optimization formula-

tion. The track was first parametrized, followed by the dynamics reformulation, ending in the

a discrete optimization problem, recurring to direct transcription methods. The method here

presented is non-convex, therefore representing a substantial difficulty increase to achieve the

global minimum.

The results obtained with the first method revealed a good racing line, although not

periodic. Periodic and more consistent results would be obtained using a greater population

and a more conservative stopping criteria. Regarding the optimal control minimum time

path track algorithm, one can say that it was successfully implemented outcoming good

results with computational efficiency. The optimal control minimum time trajectory results,

despite the elegant problem formulation, could not produce outstanding results. One could

not surpass the non-convexity issue, which would require an alteration of the available solvers

and is beyond the objectives of this thesis.
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7 Future Work

On the light of the work presented, the future work would be a more mature tyre modelling,

such as Pacejka Magic Formula. This would certainly be a relevant improvement when com-

pared with the present model, event though one lacks tyre experimental data. An important

component that requires a thorough study is the solver to be used. The fact that the mini-

mum time optimal control trajectory optimization problem is a non-convex problem demands

a modification on the solvers available at the time. One solution would be to adapt SeDuMi

or CVX code in order to linearize the nonlinear constraints at every function evaluation. The

adaptation of MATLAB fmincon function seems unlikely, since one do not have access to the

function code. An interesting experiment would be to test and compare the computational

results with experimental data obtained, for instance, with model scale cars. SeDuMi com-

putational efficiency, though with some modifications, enables the use of the methods here

presented for Optimal Control and Model Predictive Control in real time, for example for

trajectory or path tracking optimization in an environment with moving obstacles.
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Appendices

A Reformulated Dynamics for Trajectory Optimization

Mq̈(s) = M
(
[q′0(s) + b′(s)n+ b(s)n′] s̈+ [q′′0(s) + b′′(s)n(s) + 2b′(s)n(s) + b(s)n′′(s)] ṡ2

)
C(q̇) =

−m
[
y′0(s) + b′(s)ny(s) + b(s)n′

y(s)
]
ψ′
0(s)−K[x′20 (s) + 2x′0(s)b

′(s)sin(ψ0(s)) + 2x′0(s)b
′(s)cos(ψ0(s))]

m
[
y′0(s) + b′(s)ny(s) + b(s)n′

y(s)
]
ψ′
0(s)

0

 ṡ2

F(q̇) =


0

Cαf

(
y′0(s)+b

′(s)ny(s)+b(s)n′
y(s)

x′0(s)+b
′(s)nx(s)+b(s)n′

x(s)
+ a1

ψ′
0(s)

x′0(s)+b
′(s)nx(s)+b(s)n′

x(s)

)
+ Cαr

(
y′0(s)+b

′(s)ny(s)+b(s)n′
y(s)

x′0(s)+b
′(s)nx(s)+b(s)n′

x(s)
− a2

ψ′
0(s)

x′0(s)+b
′(s)nx(s)+b(s)n′

x(s)

)
a1Cαf

(
y′0(s)+b

′(s)ny(s)+b(s)n′
y(s)

x′0(s)+b
′(s)nx(s)+b(s)n′

x(s)
+ a1

ψ′
0(s)

x′0(s)+b
′(s)nx(s)+b(s)n′

x(s)

)
− a2Cαr

(
y′0(s)+b

′(s)ny(s)+b(s)n′
y(s)

x′0(s)+b
′(s)nx(s)+b(s)n′

x(s)
− a2

ψ′
0(s)

x′0(s)+b
′(s)nx(s)+b(s)n′

x(s)

)


u =

4.6875m 0

0 Cαf

0 a1Cαf

[up
δ

]
(157)
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