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Resumo

Nesta dissertação aborda-se o design, implementação e avaliação de um sistema distribuído, destinado

a suportar o desenvolvimento de algoritmos avançados de navegação e controlo. Este sistema foi

desenvolvido por forma a ser instalado na arena robótica do laboratório de Automação e Robótica do

Instituto Superior Técnico. É composto por vários componentes, de onde se destacam um sistema de

localização com capacidade para detetar e seguir pontos num referencial tridimensional, uma interface

gráfica intuitiva e de utilização simples, uma frota de veículos aéreos e terrestres adaptados de forma a

permitir a modificação dos seus algoritmos de navegação e controlo.

O sistema de localização passou por vários estados de desenvolvimento diferente. Culminaram

numa arquitetura composta por várias câmaras remotas equipadas com sensores de profundidade

Kinect. Foram utilizados marcadores coloridos para identificar os pontos de interesse que o sistema

deve seguir. Todos os métodos e algoritmos utilizados nas fases de deteção e seguimento são apre-

sentados ao pormenor e discutidos. Apesar da frota de veículos ser composta por dois tipos de veículos,

terrestres e aéreos, apenas o segundo tipo foi abordado no âmbito desta tese. O desenvolvimento dos

veículos terrestres foi elaborado numa outra tese de mestrado, Nuno Martins[55]. Os veículos aéreos

utilizados foram drones AR.Drone 2.0. Estes foram alterados de forma a permitirem ser comandados

por algoritmos a correr externa ou internamente. O processo de análise de todo o hardware e soft-

ware do drone encontra-se documentado, assim como o seu funcionamento, e o porquê das várias

alterações feitas ao seu sistema operativo original. São apresentados todos os aspetos relativamente

à comunicação e partilha de dados , incluindo uma descrição pormenorizada de todos os protocolos e

mensagens usados.

Finalmente, foi feita uma avaliação ao desempenho final do sistema com destaque à exactidão do

sistema de localização. Apesar de alguns problemas de performance terem sido identificados, o sistema

apresentou bons resultados, concluindo-se que pode ser utilizado para o desenvolvimento e teste de

algoritmos de navegação e controlo com confiança. Para os problemas encontrados, foram sugeridas

soluções.
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Abstract

This dissertation addresses the design, implementation, and evaluation of a distributed system con-

ceived to support the development of advanced navigation and control algorithms. It features a tracking

system capable of detecting and follow specialized markers in three-dimensional space, a simple graphi-

cal user interface to visualize real-time data and configure system parameters, and a fleet of customized

airborne and grounded vehicles. The final system was installed on the robotics arena of the Automation

and Robotics Laboratory of Instituto Superior Técnico.

The location system detects specialized markers, using classic machine vision techniques. These

techniques are applied on images and depth maps collected by several remote cameras equipped with

depth sensors. Colored markers were used to identify the points of interest to be tracked by the system.

All methods and algorithms used for detection and tracking are presented and discussed in detail. De-

spite the fact that two types of vehicles were used, grounded and airborne, only the second type was

addressed in the context of this thesis. The development of land vehicles was address in another mas-

ter’s thesis by Nuno Martins[55]. The aircraft used was the AR.Drone 2.0 drone by Parrot. The internal

operating system of these drones had to be customized to fulfill complete system integration, allowing

for third-party control and navigation algorithms to be installed and executed. The drone’s hardware

and software exploration process was documented, as well as all of the changes to its factory operating

system. All aspects, regarding communication and data sharing, are explained, including a detailed

description of all the messages and protocols used.

Finally, a performance evaluation was made, particularly focused on the localization system accuracy.

Although some performance problems were identified, the system showed good results in fulfilling its

main goal of being a platform to develop and test advanced navigation and control techniques. To the

problems encountered, solutions were also suggested and discussed.

v





Contents

1 Introduction 1

1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Localization Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Feature Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 System Overview 9

2.1 Name and Iconography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 System Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Localization System 17

3.1 Theoretical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Pinhole Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 World to Camera Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.3 Sensor Plane to Pixel Coordinates Transformation . . . . . . . . . . . . . . . . . . 21

3.1.4 Planar Homography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.5 Projection of a point onto a plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.6 Random Sample Consensus (RANSAC) . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.7 Singular Value Decomposition (SVD) . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 2D Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Marker Detection Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 3D Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Remote Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Kinect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Overlap Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Calibration Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



4 Vehicles 51

4.1 Airborne Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 AR.Drone 2.0 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.3 AR. Drone 2.0 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Communications 69

5.1 Protocol Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Remote Camera to Central Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.2 Central Server to Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Network Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Software Suite and Tooling 79

7 Performance Analysis 83

7.1 USB Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Kinect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 Sampling Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Communication Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.5 Tracking and Overlap Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Conclusion 97

9 Future Work 99

viii



List of Figures

1 ADIS iconography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Basic Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 ADIS basic architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 ADIS multi-vehicle architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 ADIS onboard algorithm architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Extended Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Pinhole camera geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Pinhole Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 �ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 Camera extrinsic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

11 Sensor to Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

13 Geometry from a projection of a point onto to a plane . . . . . . . . . . . . . . . . . . . . 24

14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

15 Wired Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

16 Distributed architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

17 HP HD 2300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

18 Logitech C615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

19 Kinect depth measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

20 Geometric construct for height calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

21 Distributed Architecture for the 3D system . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

22 Remote Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

23 Camera Controller Software Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

24 Kinect Hardware Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

25 Variation from the Kinect raw depth values with the distance . . . . . . . . . . . . . . . . . 41

26 Laboratory picture histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

27 ADIS Calibration Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

28 AR.Drone 2.0 cut-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

29 AR.Drone 2.0 bottom mounted serial port . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

30 Chroot Operation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

31 USB flash drive partition mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

32 Example of the config.ini file for the USB flash drive . . . . . . . . . . . . . . . . . . . . . 63

33 Integrated AR.Drone 2.0 startup sequence diagram . . . . . . . . . . . . . . . . . . . . . 66

34 Peer-to-peer mesh network topology diagram . . . . . . . . . . . . . . . . . . . . . . . . . 75

35 Star network topology diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

36 Example of the Device_List.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

37 Example of the Device_List.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



38 Localization system software main window . . . . . . . . . . . . . . . . . . . . . . . . . . 79

39 Add new camera window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

40 Localization Software TRACKING tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

41 Tool for creating Drone Simulink projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

42 Setup for the localization system tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

43 USB location data test at 0 meters high . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

44 Kinect location data test at 0 meters from the ground . . . . . . . . . . . . . . . . . . . . . 88

45 Kinect location data test at 1 meters from the ground . . . . . . . . . . . . . . . . . . . . . 89

46 Kinect location data test at 1.5 meters from the ground . . . . . . . . . . . . . . . . . . . . 90

47 Kinect location data test at 2 meters from the ground . . . . . . . . . . . . . . . . . . . . . 91

48 Frames per second test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

49 Frames per second test with bad connection results . . . . . . . . . . . . . . . . . . . . . 93

50 Tracking Algorithm Performance Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

x



List of Algorithms

1 Random Sample Consensus algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Marker Detection Algorithm with RGB color space . . . . . . . . . . . . . . . . . . . . . . 31

3 Marker Detection Algorithm HSV Color Space . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Overlap Zone Correction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Motion Based Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Marker Detection Algorithm with RGB color space . . . . . . . . . . . . . . . . . . . . . . 49

List of Tables

1 List of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Changes and additions to the libfreenect driver . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Calibration Pattern Location Tests Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Nmap relevant results summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 File “config.ini” information and settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xi



Nomenclature

2D Two-dimensional

3D Three-dimensional

ACK Acknowledgement

ADC Analog to Digital Converter

ADIS Arquitectura Distribuída para Implementação Sensoria

API Application Programming Interfaces

bash Unix shell

CAMShift Continuously Adaptive Mean Shift

DC Direct Current

DOF Degrees of Freedom

DSP Digital Signal Processor

EOM End of Message

ESSID Extended Service Set Identification

FAT32 File Allocation Table 32 bit

FPS Frames per Second

FTP File Transfer Protocol

GB Giga-Bytes

GHz Giga-Hertz

GLONASS Global Navigation Satellite System

GPS Global Positioning System

HD High Definition

HOG Histogram of Oriented Gradients)

HSV Hue, Saturation and Value color space

HTML HyperText Markup Language

I/O Input/Output

IDE Integrated Development Environment

xii



IMU Inertial Measuring Unit

IP Internet Protocol

LAN Local Area Network

LED Light-emitting Diode

mAh Milliampere hour

MCU Microcontroller Unit

MHz Mega Hertz

MIPs Microprocessor without interlocked pipeline stages

mm millimeters

PC Personal Computer

QVGA Quarter Video Graphics Array

RAM Random Access Memory

RANSAC Random Sample Consensus

RGB Red, Green and Blue color space

rootfs Root File System

RS-232 Standard for serial communication and transmission of data

SDK Software Development Kit

SIFT Scale-invariant feature transform

SSD Solid-state Drive

SSH Secure Shell

SURF Speeded-Up Robust Features

TCP Transmission Control Protocol

TTL Transistor–Transistor Logic

UART Universal Asynchronous Receiver-Transmitter

UDP User Datagram Protocol

UEFI Unified Extensible Firmware Interface

USB Universal Serial Bus

V Volts

xiii



Wi-Fi Family of radio technologies for wireless local area networking based around IEEE 802.11

standards

WPA-EAP Wi-Fi Protected Access - Extensible Authentication Protocol

WPA2 Wi-Fi Protected Access 2

xiv





1 Introduction

There is no doubt that scientific and technological advances have transformed our world and shaped

our lives and the impact of technology in our world is undeniable.

Mobility has always been one of the areas of technology that changed our life the most. The inven-

tion of the automobile and its mass production ended an era where animal strength was the heart of the

transportation industry and started a revolution where everyone could travel with no effort and transport

goods efficiently. After the automobile, the new revolution on mobility was the airplane. It connected

countries and reduced distances, making trips that used to last months to last just a few hours. Cur-

rently, the next step in mobility technology could be autonomous driving and navigation. Most vehicles

still require at least one human driver, which represents not just an annoyance to the driver, but also a se-

curity risk. A complete autonomous vehicle could not only improve security and reduce crashes but also

increase efficiency and speed in transportation. Autonomous or self-driving vehicles can also be used

in many industrial applications like herbicide spraying, harvest cropping, automated package delivery,

private security or even in fields where human lives are at risk like firefighting or military applications.

This kind of vehicles relies on multiple types of navigation and control algorithms to cruise, maintain

stability and to make decisions. These algorithms need to be able to execute tasks like sense and avoid

obstacles, optimize routes according to multiple factors such as energy efficiency or traffic, cooperate

with other vehicles to share information like position and trajectory planning, prioritize tasks and actions

to avoid imminent risks or to guarantee driving comfort, among others.

This thesis is not focused on navigation and control algorithms but rather on creating tools and in-

frastructure to support their development, laboratory implementation, and testing. When the goal is

real-world use of navigation and control techniques, implementation, validation, and refinement beyond

simulation are essential to go further than the initial theoretical construct. A controlled laboratory envi-

ronment becomes then the natural next step in the development process. However, this requires spe-

cialized equipment or infrastructure capable of accommodating multiple controller types to be deployed

and its behavior measured. With this in mind, the emphasis of this thesis is to create a development

platform, for laboratory implementation and testing of advanced control algorithms aimed at grounded

and airborne vehicles.

1.1 State of the Art

Typically a system to implement and test control and navigation algorithms has a certain degree of

complexity and it’s composed by multiple subsystems that fulfill different functions. The approach used

to analyze the current technologies was to divide the State of the Art exploration into the following topics:

Vehicles, Indoor Localization Systems, and relevant software techniques.
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1.1.1 Vehicles

These last five years a considerable growth of hobbyist communities around embedded electronics and

the commoditization of low cost, low power ARM-based processors, led to the appearance of many

development platforms geared towards robotics and moving vehicles. These platforms commonly follow

one of two approaches, they either come as a single development board format with a set of input and

output interfaces that can be connected to sensors and actuators, or they come as fully assembled

vehicles.

A wide range of options for development boards is available on the market, designed to be imple-

mented in all kinds of applications and environments. Using processing power and functionality as

differentiators, the simplest tier of boards are hobbyist grade 8-bit/16-bit micro-controller boards. These

type of boards come in different shapes and sizes equipped with a wide range of microcontrollers. These

are simple general purpose boards, ideal for less demanding tasks that require low power consumption.

Usually with simple I/O interfaces, composed mainly by Digital I/O pins, to connect to digital interfaces

like DC motor speed controllers, and Analogue I/O pins connected to ADC’s to be used with analog

interfaces, like analog speed sensors, these boards provide a reasonable amount of features at a lower

cost. A multitude of models from many suppliers exist but one of the most popular for simple applica-

tions are the Arduino boards. These boards come mostly equipped with different micro-controllers from

the AVR family, like the ATmega328P in the Arduino Uno, and are programmed using their own Arduino

Software (IDE). Due to their popularity, there is a generous amount of resources available to support

development in the shape of documentation and libraries. Also, many add-on modules exist to expand

the board capabilities. These can be connected to multiple sensors and fitted with motors and wheels

to create cheap moving robots and even add Wi-Fi connectivity.

The tier above the 8-bit/16-bit micro-controller is the 32-bit micro-controller boards. These although

similar to the 8-bit boards, they come equipped with more powerful hardware and interfaces. The in-

crease in computational power allows for more demanding tasks to be executed, albeit at the expense

of higher power consumption. In this tier, licensed ARM designs like the ARM Cortex-M in the STM32

family of microcontrollers from STMicroelectronics, are very popular.

Even more capable options in terms of processing power are available. Single board computers such

as the Raspberry Pi 3 Model B+ with its quad-core 64-bit ARMv8 based SoC, 1GB of LPDDR2 SDRAM

and even Wi-Fi dual-band support can accommodate fairly powerful jobs while also being affordable.

Control algorithms coupled with image processing techniques to steer simple moving platforms can be

easily implemented taking advantage of the integrated CSI camera port and the 40-pin GPIO header.

Unlike the previous micro-controller boards, these single board computers support the installations of

a Linux based operating system. This comes with many advantages, due to the fact that the Linux

kernel provides access to robust TCP/IP and Ethernet networking stacks for connectivity and wireless

communication, and USB protocol support for easy peripheral integration. However running above Linux,

where a scheduler handles load balancing, and not executing bare-metal applications, means that extra

care is needed when time critical operations are required.

The highest tier of development boards for vehicles is aimed at the automotive industry. One example
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of this is the NVIDIA DRIVE AGX platform. Built upon the NVIDIA Xavier architecture and TensorCore

GPUs, the two available boards, the Xavier and the Pegasus, deliver high levels of computational power

geared towards AI applications. They also provide standard automotive interfaces to fuse data from

sensors like cameras, radar, and lidar. However, despite being considerably more powerful than the

previously analyzed solutions, these boards are also much more expensive.

Although microcontrollers and single board computers are flexible platforms for development, they

share the common disadvantage of not being off-the-shelf solutions for implementing control and nav-

igation algorithms in a laboratory environment. They require the extra development cost of building a

moving platform and sensor hub for them to interact with. As an off-the-shelf alternative that avoids

this cost, radio-controlled drones represent an interesting alternative both in terms of implementation

freedom and challenges.

The term drone most commonly describes flying vehicles with small dimensions and multiple vertical

oriented rotors, capable of vertical takeoff and landing. Quadcopters are the most common type of

drones available on the market. Most of these vehicles follow the same basic formulaic approach to their

design. An onboard, low power, flight controller, interfaces with a set of brushless motors, to control rotor

speed. Stable flight is achieved orchestrating the multiple propeller speeds according to data acquired

from an onboard sensor hub. Inertial measuring units are mandatory for aircraft attitude detection. Other

common sensors are high-definition cameras, altimeters, and GPS/GLONASS transceivers.

1.1.2 Localization Systems

When building a system to test control and navigation algorithms, the ability to locate a vehicle in space

is essential. Localization systems using time-of-flight of communications with satellites, like GPS, are

the most common solution. Unfortunately, GPS based systems do not work well in indoor environments,

because microwave signals are easily scattered or absorbed by walls and roofs. Indoor localization

solutions for the common public are not widely available yet. Some rough estimations can be done by

analyzing the Wi-Fi signal strength of known hotspots, however, this method is not accurate enough

to be used by a navigation controller to steer a moving vehicle. Wi-Fi signals work at 2.4 and 5 GHz

frequencies making them highly susceptible to attenuation and distortion from nearby obstacles. This

cripples the signal strength to distance relation and makes it highly environment dependent. Other

radio-based solutions exist[2][3][4] or even acoustic[5]. Other popular localization methods are based

on stereo camera techniques. This kind of solutions is commonly known as motion capture systems.

The automation and robotics laboratory of the Mechanical Engineering Department of IST is equipped

with one of these systems produced by Qualisys. This system is capable of producing measurements

with extreme accuracy and precision. It uses custom cameras capable of reaching very high frame

rates, 300 to 1 100 frames per second (depending on the resolution), with very low latency, around

4ms, to detect specialized markers that reflect infrared light. Then using stereoscopic vision techniques,

it calculates the position of multiple markers in space. For these systems to work multiple cameras

need to capture the same marker simultaneously. The biggest downside to these multi-camera motion

capture systems is their purchasing and maintenance costs. Making them not suited to be used by

3



large groups of students or multiple researches, because damage can be done due to inexperience or

careless handling, resulting in large repair costs.

1.1.3 Feature Detection

Feature detection techniques are used to extract characteristics of interest of an image. These charac-

teristics depend on the final application of the algorithm. Commonly they are corners, edges or blobs.

These characteristics are usually the starting point for image processing algorithms.

SIFT (Scale-invariant feature transform) Introduced in 2004 by David Lowe[6], SIFT is an image

descriptor with applications in areas such as 3D mapping, gesture recognition, and object recognition. It

generates a set of unique features that can be used to recognize unique shapes in images, independent

of scale, rotation, illumination, and viewpoint. To generate these feature sets, SIFT explores multiple

scale representation of an image by constructing what is called a scale space. A collection of multiple

representations of the original image with progressively smaller sizes and intensities of Gaussian Blur

applied. From the scale, space key points are evidenced using the second order derivative a Difference

of Gaussian images (DoG) and identified as the maxima or minima in the DoG images. Low contrast

key points are removed as well as edges. To achieve invariance to image rotation, an orientation is

assigned to each key-point based on their neighborhood. The final set of key-points can than be stored

in an object database and used as a “fingerprint” to identify the original object in the different images.

SURF (Speeded-Up Robust Features) SURF is an improved version of SWIFT introduced in 2006

by Bay, H., Tuytelaars, T. and Van Gool [7]. To build a scale-space, SWIFT approximates the Laplacian

of Gaussians with a Difference of Gaussians. SURF goes further and approximates LoG with Box Filer.

Convolution with box filter can be calculated with integral images in parallel for different scales, speeding

up the scale-space creation. For scale and location relies on the determinant of the Hessian matrix. The

final feature description of SURF is based on the sum of the Haar wavelet response around the point of

interest which can be computed with the aid of the integral images.

HOG (Histogram of Oriented Gradients) Popularized in 2005 by Navneet Dalal and Bill Triggs [8],

Histogram of Oriented Gradients assumes that the object appearance and shape can be described by

the distribution of intensity gradients or edge directions. The descriptor is a concatenation of histograms

compiled by dividing the image into small cells, and for the pixels within each cell, calculate a histogram

of gradient directions. The histogram from each cell can be contrast-normalized against a measure of

intensity across a larger region of the image, called block. This improves accuracy and invariance to

changes in illumination and shadowing.

The HOG descriptor main application is human detection in images because as Dalal and Triggs dis-

covered, coarse spatial sampling, fine orientation sampling, and strong local photometric normalization

permits the individual body movement of pedestrians to be ignored so long as they maintain a roughly
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upright position. HOG is also invariant to photometric and geometric transformations, except for object

orientation.

1.1.4 Object Tracking

CAMShift (Continuously Adaptive Mean Shift) CAMShift [9] is an improved version of Mean Shift.

Mean Shift works by moving a small window iteratively until the encapsulates the area with maximum

pixel density. This iterative process detects the centroid of the encapsulated points and moves the

window towards this centroid until they both align. CAMShift adds to the aforementioned principal by

rescaling and reorienting the window after aligning its center and the points centroids. This improves the

tracking performance when objects approach or distance them self’s from the image plane.

Kanade–Lucas This method assumes that all pixels in the vicinity of a point of interest have sim-

ilar motion [10]. Taking a small three by three patch around a point of interest produces nine over-

determined equations of motion to solve. Typically Kanade-Lucas solves these equations with least

square fit method, resulting in an optical flow vector (motion vector) per point of interest, that can be

used to track each point through time. Because the image is divided into small patches big jumps

from frame to frame become impossible to track. Kanade-Lukas deals with this problem with a pyramid

approach. By reducing the resolution of the image consecutively, small motions disappear and large

motions become small motions that can be tracked.

Kalman Filter and Hungarian Algorithm This method uses Kalman filters [56]as estimators of future

positions and the Hungarian Algorithm[54] to assign these positions to tracked points. Each point has his

own Kalman Filter that, each frame, will estimate its location using a state-transition model. This state-

transition model is a mathematical representation of the point’s motion. Then the Hungarian Algorithm

is used to assign the estimated positions to observable points. This assignment allows tracking points

from frame to frame because each Kalman is supervising on point and one point only.

1.2 Contributions

These thesis contributions came from all the challenges faced during the development process, and

from the finalized system as well. In regards to the localization system, the following was created:

• an algorithm to detect specialized markers through three-dimensional space using a low-cost

Kinect sensor;

• a simple calibration process using both Singular Value Decomposition and the RANSAC algo-

rithm to calculate the adequate homographic transformations and floor positioning in relation to

the Kinect and the inertial plane;

• a remote processing unit was created capable of handling all of the processing requirements to

drive the Kinect;
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• a custom software to handle all of the remote cameras tasks and communications, equipped with

a text-based interface for debugging purposes;

• a custom software tool with a graphical user interface to manage all of the cameras, and process

all of the acquired location data, with real-time preview of said data, video feed, depth information,

and image processing results.

In regards to the vehicles, the following was created:

• a detailed description of how the AR.Drone 2.0 from Parrot works and the processes used to

discover it;

• how to create an alternative Linux based root file system compatible with the AR.Drone 2.0.

The final system also provides a way to perform research about navigation and control algorithms applied

to grounded and aerial vehicles. It enables many other scientific projects to be made, for example, while

this thesis was being developed many groups of Mechanical Engineering students already used the

system for experimental projects. These were made within the Optimum Control class. Some groups

developed algorithms based on optimum control theory to keep a drone in a stable hovering state, while

others were focused on optimizing a car’s trajectory to take as little time as possible. As of the time of

writing, there are multiple theses undergoing, that fully utilize the finalized system and both grounded

and airborne vehicles.

1.3 Thesis Outline

This thesis is divided into nine chapters:

• Chapter 1 is an introductory section where a short summary of this thesis is made and a state of

the art is presented.

• Chapter 2 starts by presenting a general overview of the complete system. The basic system

operation is described, as well as all of its possible architectures and necessary components.

• Chapter 3 address the localization system. It starts by presenting all of the major theoretical

concepts applied and then explains all of the functional underpinnings and processes utilized for

this system.

• Chapter 4 details all of the information regarding the vehicle fleet. The drone’s characteristics are

listed along with a detailed exposition on how and why the drones were modified.

• Chapter 5 documents the network topology and all of the necessary communication protocols.

• Chapter 6 explores important details about software and tools created

• Chapter 7 is a presentation and analysis of the tests made to the overall systems performance

with special emphasis on the localization system.
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• Chapter 8 is a conclusion about all the work done and the results of this thesis.

• Chapter 9 describes possible future work that can be done to improve the final result of this thesis.
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2 System Overview

2.1 Name and Iconography

The name of the system appeared of the need to create an identifiable image for the final product

of this thesis. Not just because a name and an identifiable image adds value to the final system but

also because it is intended to be used by a lot of people. The name chosen was ADIS, and it is an

acronym of this thesis title in Portuguese, Arquitectura Distribuída para Implementação Sensorial, and

it is pronounced ‘adi:ss. To go along with the name, an icon was created inspired by the letter A.

(a) ADIS Icon (b) ADIS splash screen

Figure 1: ADIS iconography

2.2 Basic Operation

The ADIS system is made to provide a wide framework and set of tools, for development and testing of

navigation algorithms. To achieve this, some basic requirements were set in the beginning, to ensure

that the user has at his disposal everything he needs for its development work. The basic requirements

were:

• Access to reliable location data

• Access to telemetry vehicle data

• Easy to use tooling and interface

The first requirement dictates the need to know the controlled vehicle location in space. The location

coordinates need to be measured in a user-defined inertial frame. This requirement is a must for a

system of this nature since navigating a vehicle through space is a prime objective for any navigation

controller. Defining if a 2D or a 3D inertial frame is used is also important. A 3D inertial frame implies

a more complex system, both in terms of the necessary hardware and in terms of mathematical models

to use. This requirement affected greatly the ADIS system final form and complexity.

The second requirement addresses the need to know the orientation and controlled vehicle’s inertial

state. To ensure that a route or path is navigated correctly, the navigation system must control the

attitude and inertial dynamics of the vehicle. For gathering this telemetry data, each vehicle must be

equipped with a wide range of onboard motion sensors. Multiple options and sensor sets were available,
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depending which vehicles were selected to be integrated into the ADIS system, however, when it came

to the grounded vehicles capabilities and characteristics, most of the work was done and integrated by

another colleague that resulted in his master thesis[55].

Finally, the third requirement is related to the ease of use of the final system. Since the ultimate goal

of the ADIS system is to be used for academic development, it is imperative that it provides a simple

and user-friendly workflow. It must grant the adequate abstraction layers to its theoretical and functional

principals, as well as, accessible programming languages and structure. It is equally important that the

resulting system is robust and reliable, to provide a cohesive experience.

Taking these requirements as guidelines, the finalized system can be divided into three different

components:

• Localization System

• Vehicle Integration Layer

• Communication Layer

These components work together, like in figure 2.
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Figure 2: Basic Operation Diagram

The localization system is responsible for acquiring location data. This is accomplished using image

processing and tracking algorithms to identify and track specialized markers in the inertial frame defined

by the user. These markers identify relevant points to the experiment, like landmarks or vehicle position.

Since the tracking algorithm ensures that any marker has the same identification number at any given

time, it is possible to follow these relevant points during the experiment. Meanwhile, the vehicles are

entirely controlled by the user. To connect every component to each other, there is a communication

layer that handles all traded messages and defines every message format.
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2.3 System Architectures

The ADIS system has a defined architecture that allows its components to work together. However, it

also allows some flexibility in its architecture, providing the user with a choice on how and where his

controller will be integrated. The most basic configuration is described in figure 3.
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(b) Controller and ADIS software in separate

1 - ADIS Software Suite
2 - User Controller

Figure 3: ADIS basic architectures

The architecture shown has two main components, a desktop, and a camera. This configuration and

many others are thoroughly explained in section 3. These architectures diagrams do not represent the

real network topology used, they represent how every component is connected to the others within the

network. More about this matter in subsection 5.2.

In figure 3a, the localization system and the user custom controller are running on the same machine.

The localization system sends the location data directly to the controller without any external connec-

tion. Finally, the controller interprets the received data and controls the drone accordingly. All control

commands are sent wirelessly from the computer to the drone through a local Wi-Fi network. The drone

is also sending to the same network its telemetry data to be read by the controller. This simple network

architecture has the advantage that only two wireless connections per drone are required, making it

the simplest configuration for a new user to work with. However, running the ADIS localization system

and the user’s controller on the same machine means that these two processes are competing for the

same resources. Adding more and more vehicles or cameras to the system will increase greatly the

resource requirements of the overall system, resources which are provided by only one computer. This

limits greatly the system’s scalability. In order to overcome this scalability problem, the architecture in

figure 3b was developed.
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In figure 3b, the ADIS localization software is still running in the same computer as before, but

now the user controller is running in a separate machine. The localization system sends the location

data through the Wi-Fi network to the second computer which controls the drone. The telemetry from

the drone is sent back to the second computer. This kind of configuration adds some complexity but

overcomes some scalability problems from the last architecture, mainly problems related to the growing

number of vehicles. By adding a separate machine to control the vehicles, some processing power is

unloaded from the computer that runs the ADIS localization software to the new computer. This adds

resources to the overall system, allowing it to accommodate more vehicles and more cameras.
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Figure 4: ADIS multi-vehicle architectures

As shown in figure 4, this architecture can be expanded to accommodate more computers running

their own control algorithms to control even more drones. Figure 4a shows how one computer is able

to control multiple vehicles, by running more than one controller at the same time. Each controller

communicates to its corresponding drone and uses the location data sent by the localization system. It

is important to note that these controllers must run within the same process (see section 5). There is also

a possibility to run these multiple controllers alongside the localization software in the main computer,

but it is not recommended due to the possible lack of resources, which could lead to the program crashes

and controller unresponsiveness. Figure 4b, describes how even more computers can be integrated into

the system. Each computer runs one control algorithm and steers his corresponding drone. The location

data is sent to multiple connections around the network. This is done by setting the ADIS localization

software to broadcast it’s location data over the Wi-Fi network, allowing all of the connected computers

to receive this data. This is the default configuration of the ADIS localization system.
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Up until this point, all controllers ran in an external machine. This kind of algorithm controls the

drone in a similar manner as a human controller would, by sending directional commands to it. These

commands are then interpreted by a stability controller running inside an onboard flight controller. This

controller guarantees drone stability when flying. The user’s external controllers are not able to bypass

this onboard control process, so, it is not possible to write external controllers that can, for example,

address directly the thrust levels for each individual rotors. Fortunately, as described in section 4.1 it

is possible to write and compile algorithms that run directly inside the drone’s onboard processing unit.

When using the onboard computer it is also possible to visualize the drone’s attitude data, as well as

send start and stop commands. This is done through an available data visualization interface. Figure 5

describes two different architectures using this technique.
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Figure 5: ADIS onboard algorithm architectures

Using the main computer for hosting both the localization software and the data visualization inter-

face, like in figure 5a, it is possible to observe the drone behavior and the location data in one machine.

In this case, the drone handles the receiving and processing tasks of the location data as well as run-

ning the user custom control algorithm that directly controls its attitude and behavior. Once again, like in

figure 3a, there are scalability issues, however, the resources required to run the figure 5a configuration

are much lower, since the processing load is distributed between the computer and the drone.

Like in previous configurations it is possible to add external machines to alleviate the main computer.

Just like figure 5b demonstrates, hosting the data visualization interface into another computer frees

the main computer to deal only with localization-related tasks. Once again, the localization data is sent

directly to the drone, and not to an external computer. This last approach improves upon the scalability
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factor greatly, distributing the processing load between a wider set of devices than the other architectures

presented until now.

The ADIS system provides a fair amount of flexibility to its user, however, it is still possible to join

some of the configurations presented previously to get a more complex, yet, more capable system. One

example of this is shown in figure 6.
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Figure 6: Extended Architecture

This extended configuration is composed of multiple external computers controlling the vehicles in

various different ways. In this case, the architectures from figures 3b, 4a and 5b, are coupled together.

This is targeted for more complex test scenarios and development environments, allowing themes like

formation flight, dynamic obstacle avoidance, and cooperative vehicle control to be explored.

2.4 Components

In table 1 the full list of components used in the ADIS system is presented, with a small description.
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Name Description Quantity

Windows 10 64-bit Desktop The main server for the Localization system 1
Logitech C615 Camera used for the 2D tracking 2

Xbox 360 Kinect Camera and depth sensor used for 3D tracking 1
ASRock Q1900M Motherboard with integrated CPU for the Remote Camera Processing Unit 1

MAXPOWER FSFX400MP Power supply for the Remote Camera Processing Unit 1
SSD 2.5P ADATA SP550 120GB Storage for the Remote Camera Processing Unit 1

Bi-Sonic SP501512H 50x50X15 mm 12V Fan for the Remote Camera Processing Unit 2
TP-Link TL-WN722N Wireless Wi-Fi card for the Remote Camera Processing Unit 1
Parrot AR Drone 2 Wi-Fi controlled commercial drone 3
8 GB Flash Drive Additional storage for the drone 3

LaTrax SST Remote Control car 5

Table 1: List of Components
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3 Localization System

It is essential to any navigation algorithm to have access to location data relative to the vehicle it controls.

This makes the localization system one of the core parts of the ADIS architecture. It is responsible for

acquiring reliable location data and provide access to it whenever needed.

In order to be used for development and testing of navigation algorithms, some requirements were

taken into account while creating the localization system. The system must have a big enough coverage

area that allows an aerial or grounded vehicle to move freely. If the controlled vehicle is out of sight of

the localization system, its location is unknown, therefore, the navigation algorithm is unaware of the

vehicle location, unless it uses other sensors to estimate its position. Second, the localization system

must follow and track objects through the entire experiment duration. This is essential because when

more than one point is being detected, it is necessary to be able to distinguish which point corresponds

to each vehicle or landmark reliably. When working with more than one vehicle like doing formation

maneuvers, or landing on a moving target, the detected points must be associated correctly, otherwise,

the whole experiment can fail, because the controller algorithm is suddenly trying to maneuver with

wrong position inputs. Finally, the location system must have a sampling rate that is both fast enough

and stable. The sample rate determines how fast a controller is going to be able to observe the vehicle

behavior if the sampling rate is too low, the ADIS system is not going to be able to handle inherently fast-

moving vehicles, like drones. The sample rate must also be stable because fluctuations on the sampling

time can affect discrete controllers responses, that are projected with a specific sampling time.

The ADIS localization system characteristics are going to be explained next, however, it is impor-

tant to note that depending on the experiment goal, the localization system can have slightly different

architectures. This feature was not planned in the initial system design, which aimed to build a local-

ization system only capable of tracking objects in two dimensions. But during the development work,

arose the necessity for the ADIS system to be used by students for academic assignments. At that

time the three-dimensional tracking feature was not fully developed, so the students based their work on

the two-dimensional version. In order not to lose their work due to changes in the localization system,

backward compatibility was ensured across the entire software suite, which led to multiple architectures

being supported too. These multiple architectures also support multiple hardware configurations.

3.1 Theoretical Overview

In optical localization technologies, one of the main tasks is to associate pixel coordinates, measured

from a digital sensor, to real-world coordinates from a visible scene. This association should be de-

scribed by a well defined mathematical model, which allows a computerized system to interpret the real
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world and understanding its surroundings.

Pixel Coordinates Sensor Coordinates Camera Coordinates World Coordinates
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The pinhole model is one of these models that handle the conversion between Sensor coordinates and

Camera coordinates and comes from one of the oldest photography techniques, the pinhole camera.

They do not have a lens and are built from an opaque box with a small side drilled hole. Light enters the

dark box through this hole and projects an inverted image into the opposite wall.

3.1.1 Pinhole Model

The pinhole model describes how the three-dimensional coordinates of a point in space, are mathemat-

ically related to its projection onto the image plane of an ideal camera. The image plane corresponds to

the plane in the world from which the scene is viewed, and in the case of a digital camera, it’s the plane

of the photosensitive sensor.

c
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Figure 7: Pinhole camera geometry

Figure 8 shows the pinhole camera geometry. Point C marks the hole of the camera: here the

light enters the opaque box, the blue surface corresponds to the captured image, and the yellow plane

to the wall where the captured image is projected in reverse. This image can be permanently saved,

using specialized photosensitive materials. The distance between the side hole and the opposite wall,

represented by f , is called focal length.

Applying this model to the modern counterpart of the pinhole camera, the digital camera, can be done
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with some reservations. Pinhole cameras do not have lenses like the digital cameras do, and these

lenses introduce some distortions that are not taken into to account by the pinhole model. Because

lenses are not perfect, some geometric distortions caused by deformations in the lenses structure are

introduced. This means that this model validity depends on the lens quality, and it’s reduced the further

away from the center of the lens the point of interest is. The pinhole model also does not predict errors

introduced by blurring effects of unfocused objects.

Nonetheless, the pinhole model can be used to obtain useful mathematical relations. Looking again

at figure 7, it is possible to simplify this model assuming that the captured image is not inverted. This

simplification is done automatically in most digital cameras. The plane that provides a noninverted image

is the plane that is at the same distance from the point C as the yellow plane but in the exterior of the

camera box. This plane is represented by the green surface.
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(b) Defining a triangle �ABC

Figure 8: Pinhole Geometry

In figure 8a the yellow plane was removed and a point of interest A added in its place, along with two

three dimensional orthogonal coordinate axes. One with its origin at point C, and pointing to the viewing

direction of the camera. Line CB is called the optical axis. The other axis has its origin at point B, where

the optical axis intercepts the arbitrary blue plane. Where the optical axis intercepts the green plane,

point D, was also added a two-dimensional orthogonal coordinate axis. Using points A, B, and C it is

possible to define the triangle �ABC, contoured red in figure 8b. Figure 9 shows a top perspective of

this triangle. From the resulting triangle, two similar triangles can be found,

�ABC ∼ �CDE

which leads to
AB

CB
=

ED

DC
⇔ AB = CB × ED

DC
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Figure 9: �ABC

using the reference orthogonal axes and the focal length

X =
Z × u

f
Y =

Z × v

f
(1)

To represent this as a matrix transformation, the concept of “homogeneous coordinates” must be intro-

duced.

Homogeneous Coordinates This concept allows representing a two-dimensional point as three-dimensional

point by using a “fictitious” coordinate. By convention, from a point in homogeneous coordinates (x′, y′, z′)

is always possible to recover (x, y) using:

x =
x′

z′
y =

y′

z′
(2)

These coordinates are called homogeneous because the overall scaling of the coordinates is not impor-

tant. In other words:

(x′, y′, z′) = (k.x′, k.y′, k.z′) , ∀k �= 0

because

x =
x′

z′
=

kx′

kz′
y =

y′

z′
=

ky′

kz′

This means that a representation of a Cartesian point (x, y) is not unique but independent of scaling.

So, the pinhole model as a matrix equation using homogeneous coordinates is given by:




x′

y′

z′



=


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f 0 0 0

0 f 0 0

0 0 1 0
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




X

Y

Z

1




(3)

3.1.2 World to Camera Transformation

Figure 10 has a representation of the Camera frame located at point C, the Inertial frame with its origin

in point B, and point A. AB and AC represent the same point but seen from different frames.

The transformation from the inertial frame to the camera frame is given by a translation, T , of the
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Figure 10: Camera extrinsic geometry

origin of the inertial frame, B, accompanied by a rotation R.

Ac = RAB + T

The parameters T and R are called extrinsic parameters. Using homogeneous coordinates, this trans-

formation is given by


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X

Y

Z

1



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
 R T

0 0 0 1





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V

W

1




which leads to
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Y

Z

1



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r21 r22 r23 ty

r31 r32 r33 tz
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U

V

W

1




(4)

3.1.3 Sensor Plane to Pixel Coordinates Transformation

This transformation describes the coordinate transform between an image projected on to the photo-

sensitive sensor, and the digital pixel array captured by it. This transformation is needed because the

sensor captures light with a finite set of photosensitive cells. These cells return a discretized projected

image in the shape of an array of colored pixels. Each one of the pixel arrays is identified with a pair of

indexes that do not correspond to the Cartesian coordinates measured in the sensor frame. As seen in

figure 11, it’s necessary to correct the origins offsets.

u = x+Ox v = y +Oy
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Figure 11: Sensor to Pixels

It is also necessary to convert from the metric units of the sensor plane to pixel units from the pixel array.

For this, a scaling is used factor that corresponds to the size of each cell of the sensor.

u =
x

sx
+Ox v =

y

sy
+Oy

Now using homogeneous coordinates in a matrix representation:
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(5)

3.1.4 Planar Homography

Finally, using the equations 3, 4 and 5 :
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(6)

Considering point A in an inertial frame, as shown in figure 12. The coordinates of the point A are

(q,p,0)

Z

X Y

y

x

z

B

C

A
(q,p,

Figure 12
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(q, p, 0). Converting them to homogeneous coordinates yields (q, p, 0, 1). Using these coordinates in the

equation 6, allows the following simplifications.
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These simplifications convert a three-dimensional to two-dimensional projection into a two-dimensional

to two-dimensional projection and originate matrix H, called the homography matrix. This matrix con-

verts points from the inertial plane to the camera sensor plane in pixels. The homography matrix, as

presented by Hartley and Zisserman [1], is an invertible mapping from points in P2 (that is homogeneous

3- vectors) to points in P2 that maps lines to lines. In other words, is an invertible mapping h from P2 to

itself such that three points x1 , x2 and x3 lie on the same line if and only if h(x1), h(x2) and h(x3) do.

The fact that H has an inverse is useful because it is possible to map points from the inertial plane to

the pixel array from the sensor plane but also from the pixel array to the inertial plane, like so:
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q

1


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u′

v′

1




(7)

With this mapping is possible to use a correctly calibrated camera to measure points from a plane in an

inertial frame from the real world.

3.1.5 Projection of a point onto a plane

The projection of a point onto a plane, as in figure 13, can be found by first considering the plane defined

by a point P0 = (x0, y0, z0) and a normal vector �n = (a, b, c). Then the strategy is to find the R, so that

the dot product between vectors
−→
RP and

−−→
RQ is equal to zero, in other words, form a right angle between
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Figure 13: Geometry from a projection of a point onto to a plane

them. So for R, to become normal to the plane:

R = (x+ ka , y + kb , z + kc)

making

−→
RP = [−x+ ka+ x0 , −y + kb+ y0 , −z + kc+ z0]

−−→
RQ = [−x+ ka+ x , −y + kb+ y , −z + kc+ z] = [ka , kb , kc]

applying the dot product

0 =
−→
RP.

−−→
RQ

= [−x+ ka+ x0 , −y + kb+ y0 , −z + kc+ z0] . [ka , kb , kc]

= k(a2 + b2 + c2) + x0a+ y0b+ z0c− xa− yb− zc

isolating the missing variable k,

k =
−xa− yb− zc+ x0a+ y0b+ z0c

a2 + b2 + c2
(8)

which completely defines the projection point R. This concept is used in section 3.3.1.

3.1.6 Random Sample Consensus (RANSAC)

The RANSAC algorithm is an estimation algorithm introduced by Fischler and Bolles[18], as a technique

to estimate parameters of a certain model using a data set with a large number of outliers, and is used

in section 3.3.1. An outlier is a data point that does not fit the “true” model specified by the ”true” set

of estimated parameters, because it is not within some error threshold which defines the maximum

deviation associated to the effect of noise. It is an iterative algorithm that will search randomly for the

best solution that fits the given data set.
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Algorithm 1 Random Sample Consensus algorithm
Require: data_set, maximum_iterations, decision, threshold

while iteration < maximum_iterations do
Select randomly n_values from data_set
Estimate the model using the n_values

for every point from data_set not in n_values do
if point fits model with an error < threshold then

Add point to n_values
end if

end for

if the number of n_values is > than decision then
Measure how well model fits by calculating a model_error
if model_error < best_model_error then

best_model = model
best_n_values = n_values
best_model_error = model_error

end if
end if

Increment iteration
end while

3.1.7 Singular Value Decomposition (SVD)

The singular value decomposition (SVD) is a factorization of a real or complex matrix, with many ap-

plications in technological areas like in signal processing and statistics. Formally the singular value

decomposition theorem states that:

Theorem. Any matrix A ∈ Rm×n, can be decomposed into two orthogonal matrices U ∈ Rm×m ,

V ∈ Rn×n and a diagonal matrix
∑

∈ Rm×n, i.e.,

Σ =




σ1 0 · · · 0

. . .

σr

0

. . .

0 · · · 0




for m ≤ n

with diagonal entries

σ1 ≥ . . . ≥ σr > σr+1 = . . . = σmin{m,n} = 0

such that

A = UΣV T

The diagonal entries σi, of Σ are called singular values of A. The columns of V are called right

singular vectors and the columns of U are called left singular vectors.
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This technique has many applications, one of them is the ability to solve plane fitting problems as

described in “Solving Problems in Scientific Computing using Matlab and Maple”, by W. Gander and J.

Hrebicek[53].

3.2 2D Localization

As referred before, initially the localization system was only capable to track two-dimensional coordi-

nates. Although a three-dimensional version was explored later, this first version is still relevant, because

it maintains compatibility with already developed work and it offers some advantages due to differences

in hardware.

3.2.1 Basic Operation

The 2D implementation of the localization system uses image processing to detect and track specialized

markers, placed on points of interest defined by the user. To detect these markers, digital cameras are

used, in tandem with specialized image processing algorithms.

The basic operation concept of the localization system is fairly simple. As seen before in figure 2, the

localization system workflow can be divided into five phases. First, it detects specialized markers using

digital cameras and image processing techniques. Then associates each detected marker with others

detected in previous frames. If no match is found, assumes that a new marker appeared. After that,

transforms the pixel coordinates of each marker to inertial frame coordinates using equation 7. Finally

assembles and sends the message to the navigation controller.

With this procedure is possible to detect and locate vehicles only in one plane. Equation 7, is only

useful to transform points from one plane to another and does not take into account that the vehicle

might not be moving on the plane. This denies the possibility to integrate any kind of flying vehicle to the

system because it is assumed that every detected marker is placed on the inertial plane. If the airborne

vehicle is able to measure its height, it’s possible to correct the equation 7 and calculate the correct

location coordinates of the vehicle.

x2x1 x3 x

z

h

H

a

Figure 14
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Because the drone as height h, the localization system perceives its location as x1 instead of x2.




x1 − x2 = a

tan θ = a
h

tan θ = x1−x3

H

⇔



x2 = x1 − a

a = (x1−x3)h
H

⇔ x2 = x1 −
(x1 − x3)h

H

the same is valid for the y axis, leading to:

x2 = x1 −
(x1 − x3)h

H
y2 = y1 −

(y1 − y3)h

H
(9)

With equation 9, using the camera height and position, along with the drone’s height, is possible to

correct the coordinates given by the localization system. The problem with this solution is that it requires

the localization system to establish a connection with each drone to access its height. This is not a good

solution because the localization system would need to manage which connection corresponds to which

marker, adding more processing overhead to the system and increasing the overall complexity with more

connections. To avoid these, this workaround needs to be implemented by the user in the controller’s

side. Because the user already has a connection established to access the onboard sensors data, the

navigation algorithm would use the drone’s height directly and correct the location coordinates. To do

this the user still needs the camera height and location in the inertial frame. Implementing an automated

way to calculate these values is possible, but since a complete 3D localization system was developed,

(described in section 3.3) if this method is used, the camera height and location in the inertial frame

would have to be measured manually.

3.2.2 Architecture

For the 2D localization system, two possible architectures were implemented. These architectures were

developed with two different goals in mind and represent multiple stages of development of the ADIS

system. The first developed architecture is presented in figure 15.
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Figure 15: Wired Architecture
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Each camera is connected directly to the computer via a USB connection. This requires the use of

USB extensions with embedded signal repeaters, to avoid signal losses due to their length since each

camera is fixed to the ceiling of the laboratory. Every camera sends the captured frames directly to a

computer to be correctly processed with no additional hardware in between. This allowed to test and

develop software tools and image processing algorithms without complicated setups or development en-

vironments. Unfortunately, this architecture also has setbacks that led to other more complex solutions.

The biggest problem is that all of the necessary processing work is unloaded in one single machine.

This greatly limits the image processing algorithm implemented, because it needs to be fast enough to

be executed once for each connected camera during the time that the quickest camera takes to capture

a frame. If the desired frame rate is 30 frames per second then all of the processing work for all cameras

needs to execute in less than 33 milliseconds. If the image processing algorithm is not fast enough,

the sampling time of the localization system may be too slow to control rapid moving robots. This limits

the amount of area that can be covered because the more cameras are added, the more information

the main computer needs to process per second. This unavoidably results in scalability problems. A

solution to this problem is, for example, lower the camera’s resolution. But this will make it harder for the

image processing algorithms to detect markers because of their necessarily small size. This results in

the need to implement more complex algorithms that take more time and processing power to execute,

which doesn’t solve the problem.

To find a solution, it was necessary to implement a way to increase the available processing power.

Improving computer components was not a viable option due to the high costs of high-end computer

parts. So a different architecture, that unloads the processing work from the main computer, elsewhere

was necessary, effectively increasing the overall processing power available. With this in mind, the

following architecture was developed.
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Figure 16: Distributed architecture

Instead of connecting every camera to the main computer, now the camera is part of a module com-

posed of the camera itself and a dedicated processing unit. This processing unit gathers the image

information captured by the camera, processes it, and sends it to the main computer. The connection

between the main computer and the camera module is wireless through a Wi-Fi connection, removing
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the need to use the previously required USB extensions. Despite this, the dedicated processing units

need to be powered externally through mains power. This processing load is effectively distributed be-

tween each camera processing unit and the main computer. First, the camera processing unit acquires

the frame captured by the camera and detects every visible marker. Then, it sends this information back

to the main computer to track markers through time, which sends the results to their final destination,

like a navigation algorithm running in another computer. This method alleviates the processing costs of

adding extra cameras to the main computer, in exchange for added complexity to the localization system.

The processing unit is also responsible for handling all communications to the main computer, not

only regarding marker detection but also regarding system setup and organization. This means that

they need to communicate with the main computer to organize the network in a sensible manner. The

main computer is still the system’s hub, from which the final location data is obtained. When a user

uses this type of system topology, gets access to the location data the same way as using the previous

architecture, but the main computer also controls the remote cameras using a custom made protocol,

described in section 5.

3.2.3 Marker Detection Process

The cameras used are common web-cameras available in most retail stores. The way that the marker

detection process works went through an evolution process that started by exploring if the cameras

worked only with infrared light. Working in the infrared spectrum provides multiple advantages. Because

infrared cameras only capture the infrared light intensity, they return monochrome (black and white)

pictures, which are easier to process. Also, because in a normal indoor situation infrared light is not

as abundant as visible light, working with infrared wavelengths avoids many sources of noise, reducing

the amount image processing necessary. However, this method requires specialized cameras that only

detect infrared light, that is not easily available. To avoid using expensive equipment, which would go

against this thesis objective of building a low-cost system, regular web-cams were modified to only detect

infrared light.

Regular digital web-cameras can be converted to infrared only cameras by removing the infrared filter

from the lens assembly and adding a crossed polarizer filter to block visible light. To do this, multiple HP

HD 2300 webcams, figure 17, were modified as previously described.

Unfortunately, this method proved not to be ideal, because the web-cameras were not sensitive

enough to capture reliably infrared light reflected by passive markers, or emitted by active markers.

The alternative was to use regular web-cameras and color segmentation algorithms instead of infrared

cameras.

The specific web-camera model used was the Logitech C615. This camera was chosen due to being

equipped with glass lenses. Good quality lenses are important because they are less prone to having

deformities due to bad manufacturing which, as said in section 3.1.1, the pinhole-model does not take

into account. This web-camera is capable of capturing images with a maximum rated resolution[11]

of 1080p (1920x1080 pixels), although with a low frame rate around 10 frames per second. In order to

keep a stable frame rate of 30 frames per second, the maximum sampling rate for this model, the camera
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Figure 17: HP HD 2300 Figure 18: Logitech C615

must capture images at 720p (1280x720 pixels) resolution. These cameras connect to a computer via

USB 2.0 interface. They also come equipped with auto-focus and auto-exposure features.

For the image processing algorithm that detects the markers, image color segmentation was used.

All algorithms were implemented either using Matlab or Python plus OpenCV (more information in sec-

tions 3.4 and 6). Color segmentation is a process that separates the individual color channels of an

image into individual monochrome pixel matrices. Each element of each pixel matrix has a correspond-

ing value. This corresponds to the color intensity of the channel color that the pixel had in the original

image. For example, digital cameras can return images with colors coded using an 8-bit RGB color

space. In this color space, every color is the sum of three color values, red, green and blue. Separating

the color channels from the original image results in three matrices, one for each channel. Any element

of these matrices is a value with a depth of 28 bit = 256, meaning that is between 0 and 255. To actually

identify the markers thresholding was used. If a marker is a red circle, after separating the three RGB

color channels, the blue and green channels will not show the marker, but the red channel will have

a bright spot where the marker is located. So to identify the marker, every pixel in the red channel is

compared against a limit value, a threshold value, and converted to a boolean. If it is higher than the

threshold limit is set to 1, otherwise, it is set to 0. This creates a binary matrix, where, if the threshold

value is set correctly the marker is visible as a set of “1’s” grouped together.

Unfortunately, this approach has problems because every red colored object inside the frame will be

visible and will originate false positives. Furthermore, every bright white object like light reflections on

the floor will originate false positives as well. Because of the white color on the RGB color space being

represented by the triplet (255, 255, 255) it is present on every channel. This color segmentation method

is also vulnerable to changes in lighting across the frame. For example, if the marker goes to a less

illuminated area inside the frame, its color would appear to be darker than before. This means that the

values for the marker area, in the red channel will be lower. If these values drop below the threshold

level the marker is invisible to the segmentation algorithm.

To deal with other red objects in the frame, a basic background subtraction technique was added.

Background subtraction methods remove the background of captured frames, to extract only the fore-

ground. There are numerous background subtraction techniques, ranging from temporal median filters

to more complex techniques like Gaussian Mixtures and others. For this system, it was used a very sim-

ple technique that only works because the cameras are stationary during the length of the experiment,
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and the laboratory is illuminated using constant artificial light. Making the background approximately

constant throughout the day. To remove the background from the original image, the mean background

image is generated before the experiment starts and is subtracted to every captured frame. Meaning

that every vehicle needs to be removed from the camera’s view before the mean background image for

each camera is created.

To avoid false positive detections where white colored objects appear in the frame is possible to

threshold the green and blue color channels as well. For example, if after applying the threshold to

the red channel, any pixel marked with a “1” as a high value on the green channel, lets say “210”, this

color can be a shade of yellow, or if it has a high value in the blue channel, it can be a shade of grey.

Unfortunately, this process is computational heavy, since for every pixel it is necessary to check multiple

color channels. To avoid this, another approach was used. It consists of subtracting to the red channel

of the current frame a black and white image of the current frame. This eliminates the white spots in the

frame because the black and white frame is generated by calculating a mean between every channel

of the RGB image for each frame. For example, a red pixel RGB representation is given by the triplet

(220, 10, 10), has a mean value of 80. Subtracting this value to the red channel gives 220 − 80 = 140.

On the other hand, a white pixel represented by the triplet (255, 255, 255) has a mean value of 255,

subtracting that to the red channel value 255− 255 = 0, which eliminates the white spots on the image.

The final version of the image processing algorithm 2, implemented in the architecture from figure 15 is:

Algorithm 2 Marker Detection Algorithm with RGB color space
Require: Background for each camera

for each camera do
Generate Black_White_Red_Background from Background
Extract Red_Background from Background
Tracking_Red_Backgound ← Black_White_Red_Background−Red_Background

end for

while running do
for each camera do

Get Frame from camera
Generate Black_White_Frame from Frame
Extract Red_Frame from Frame
Thresh_Frame ← (Red_Frame−Black_White_Frame )− Tracking_Red_Background
Binary_Frame ← threshold(Thresh_Frame )
Centroids ← blob_analisys(Binary_Frame )

end for
end while

This algorithm was also sped up using Regions Of Interest (ROI). Every cycle that the algorithm

runs, the full set of pixels that compose the captured image is processed, even though, the markers

occupy small areas. Using a tracking algorithm, described later in section 3.7, it is possible to predict

an estimation of the current position of the marker. This creates a binary mask, that shrinks the area

of pixels to process into smaller areas around each estimated position, while still including the desired

marker. This technique greatly decreases the number of pixels processed in each iteration, ultimately
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increasing execution speed. Obviously, it’s necessary, from time to time, to process the full image to

detect new markers that may have appeared in the camera’s field of view. This process occurs once

every 30 frames, meaning that once per second new markers can be detected.

The last mentioned problem requires a more drastic change to the marker detection algorithm. When

using an RGB color space, color is defined by adding three basic colors together in different quantities.

The more of each color is added the brighter the final color becomes. This means that there is no way

to define how bright a color is, without the need to look at all three color channels. To identify a color

independently of how bright or how dark that color is, a different color space representation called HSV

is used. HSV stands for Hue, Saturation, and Value. Hue is the channel that stores the actual color

information. Typically it ranges from 0° to 360°. Saturation is the value that describes how intense the

color is. And the Value channel describes how bright the color is. This color space expresses color

information independently of brightness and saturation, meaning that a color is the same independently

of lighting conditions. This a more precise color detection algorithm. The main disadvantage of using

HSV color representation comes from the fact that digital cameras output images using RGB color

representation, that needs to be converted to HSV at runtime. This requires a per pixel conversion

using[13], that cannot run fast enough in a single machine with multiple cameras while maintaining

an acceptable sampling rate for the localization system. For this reason, the HSV approach is only

implemented when using a distributed architecture described in figure 16 with remote cameras.

Using an HSV color representation, where the color information is defined by one single channel,

creates more robust and simple color detection algorithms. After thresholding, the hue, saturation, and

value channels a binary image where the marker is visible as a set of “1’s” grouped together appears.

This algorithm does not require techniques like background subtraction, or any correction for bright white

spots, because it effectively detects only the desired color in the captured image.

Algorithm 3 Marker Detection Algorithm HSV Color Space

while running do
for each camera do

Get Frame from camera
Convert HSV _Frame from Frame
Binary_Frame ← threshold(HSV _Frame )
Centroids ← blob_analisys(Binary_Frame )

end for
end while

The blob_analysis function used in the algorithms 2 and 3, returns the coordinates of the cen-

troids in pixels, from every marker detected. This function was implemented using the Matlab function

blod_analysis [15] from the “Image Processing Toolbox”. This function is coded in a pcode file, which is

an encrypted file format to protect the source code inside. However, for the purpose of this thesis, an

alternative algorithm is presented.

The algorithm must execute two different tasks. Identify and label every blob of “1’s” from the binary

image, and calculate the centroid for each labeled blob. Analyzing the available documentation for the

“Image Processing Toolbox” [14], the labeling task can be achieved using one of the algorithms for

32



connected component labeling from Computer and Robot Vision[16] or Algorithms in C[17]. Then it

calculates the centroid of each labeled blob using:

x =
1

n

n∑
k=1

xk y =
1

n

n∑
k=1

yk

3.3 3D Localization

For grounded vehicles, it is not as important to be able to measure height as it is for aerial vehicles.

When locating a flying vehicle in three-dimensional space, it is paramount to be able to measure height

values. To measure height directly, the most common method consists in equipping the flying vehicle

with an altimeter. However, when the goal is to measure height with an external system, options ranging

from stereo vision techniques with multiple cameras to the use of dedicated hardware depth sensors

exist. For the ADIS system, a depth from structured light sensor, the Kinect 360, was chosen, since it

requires less complex algorithms and hardware already available in the laboratory.

3.3.1 Basic Operation

The depth sensor used is a Kinect 360. This sensor shipped with the Xbox 360 gaming console and

comes equipped with two cameras. One that captures normal RGB video, and another infrared camera

that captures depth information. The equipped depth sensor, captures the distance from the camera

plane, to the object, represented by the letter d in figure 19, and not the distance from the camera to the

object. The joint operation of these two cameras allows expanding some theoretical concepts applied in

the two-dimensional version of the system, to create a three-dimensional version.

d

Z

X

Y

Figure 19: Kinect depth measurements

The basic operation of the 3D localization system is still divided into five different phases. The

marker detection phase is the same as the one described in algorithm 3, using the HSV color space

to detect specialized markers. Tracking phase, message assembly and sending process continue to be

the same as in the two-dimensional versions. The changes are in the conversion from pixel coordinates

to real-world coordinates because extra depth information needs to be taken into account. The planar

homography model given by equation 7, is not enough to compute the height of an airborne vehicle,
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because it does not take into account the existence of depth.

Like any other sensor, the depth measurements taken with the Kinect have noise. When pointing it to

the floor, the captured depth information has errors that deform, ever so slightly, the planar surface. To

correct this, it’s assumed that the floor is a perfect plane,and that it can be described by the equation 10.

Ax+By + Cz +D = 0 (10)

Thus, before any other calculation, the floor planar equation must be estimated. To do this, the Ran-

dom Sample Consensus algorithm also known as RANSAC is used as described in section 3.1.6. The

RANSAC algorithm outputs a good estimation for the parameters A, B, C, and D, that serves as a

reference for any other calculations made relative to the ground plane. The floor planar equation is de-

termined using a reference frame with the origin located in the center of the Kinect and not in the inertial

frame.

With a good estimation of the floor position, it is possible to add depth information to the location

coordinates according to the following:
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Figure 20: Geometric construct for height calculation

Analyzing the geometric construct from figure 20, we can use the two similar red triangles to calculate

the height of the drone relative to the ground. Naming the smaller triangle �1 and the bigger triangle

�2, yields:

�1 ∼ �2

which leads to
H

ZH
=

h

Zh
⇔ h =

Zh ×H

ZH
⇔ h =

(b− c)×H

ZH
(11)

Equation 11, determines the height of the drone without the need to use an onboard altimeter as sug-

gested before. It remains the problem that, due to its height, the drone is detected as a marker located
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in a point further away than it actually is. Earlier in this thesis, it was presented a way to correct these

incorrect marker coordinates, using quantities measured prior to the experiment for each camera. This

is not a viable implementation, because every time the position of any camera in the system changes,

new measurements are required. To avoid this, an automated method was developed.

Leveraging the geometric properties evidenced in figure 11 and the depth information from the Kinect,

three-dimensional coordinates of the marker on top of the drone can be obtained using the pinhole model

equations 3.1.1. These coordinates are represented in the camera frame and not in the inertial frame.

To convert them to the inertial frame, equation 4 could be used, nonetheless, this would break backward

compatibility with the two-dimensional system. The 2D implementation uses one homography matrix per

camera to transform points from the sensor plane to the ground plane. To use this already implemented

algorithm, it is necessary to calculate the pixel coordinates that the point defined by the marker would

have if it was sitting on the ground. In other words, the projection of the point onto the estimated ground

plane. Looking at figure 20, the abscissa of this projected point is represented by x2. This is given by

the mathematical method described in section 3.1.5, using the parameters A, B, and C generated with

the RANSAC algorithm. Assuming the arbitrary point in the ground plane P0, as P0 = (0, 0, z0), where z

is given by the estimated ground plane definition,

0 =A× 0 +B × 0 + C × z0 +D

z0 =− D

C

and the normal vector �n is given by �n = [A,B,C]. So if the detected marker point is Q = (x, y, z), the

projected point onto the ground plane is

R = (x+ kA, y + kB, z + kC)

with

k =
−xA− yB − zC − D

CC

A2 +B2 + C2

After this correction, the point R is converted back to pixel coordinates that can be converted into inertial

frame coordinates with homography matrices used by the 2D version of the localization system.

To summarize, the 3D localization process starts by generating an estimated mathematical expres-

sion to represent the ground plane in the camera frame, followed by detecting the specialized markers

with algorithm 3. Next, uses the pinhole model with the depth information, to convert 2D pixel coordi-

nates into 3D coordinates in the camera reference frame, which allows it to get the relative height from

the estimated ground plane. Finally, the detected point projection is calculated as previously explained,

and using the pinhole model along with the conversion from section 3.1.3, the correct coordinates in pix-

els are calculated. These last coordinates are then converted to real world ones using the equation 7.

The process described is straightforward and provides the ability to integrate with previous work done

for the 2D version of the localization system.
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3.3.2 Architecture

All efforts described in section 3.2.2 aimed to create a simple, scalable, and efficient system. These

efforts are still valid for the 3D implementation. However, the existence of two different architectures

came from the necessity to maintain backward compatibility with previous assignments done by stu-

dents using iterations of the localization system. But, since they only used the 2D version, there is no

backward compatibility to maintain a 3D version of the system. So, the architecture selected to imple-

ment the algorithms and methods discussed in the last section is based on the one shown in figure 16,

where a distributed topology is used along with remote processing units for each camera with wireless

connections to the main computer. This decision provides more processing power available for each

Kinect, facilitating the development and integration work. However, as discussed in section 3.4, this led

to extra changes regarding software drivers for the Kinect. Nonetheless, in figure 21 is represented the

final architecture for the 3D localization system.
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Figure 21: Distributed Architecture for the 3D system

3.4 Remote Cameras

The necessity to dilute and decentralize the processing requirements of the localization system led to

the development of a distributed architecture composed by multiple remotely controlled cameras, each

equipped with its own processing unit. Excluding the Kinect, the cameras are the same as the ones used

in a non distributed architecture. Because of this, the challenges of creating a distributed architecture

for the ADIS system were mostly related to the integration of the dedicated processing units and Kinect

sensors.

3.4.1 Processing Unit

Each camera has its own dedicated processing unit, responsible for handling all image processing tasks

necessary for marker detection. It also handles all of the outgoing and incoming communications with

the rest of the architecture components. Every processing unit must be equipped with hardware capable
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of connecting to the ADIS network, to control the connected camera or Kinect and process the captured

data. It is also loaded with the appropriate software to manage all referred tasks.

Hardware

Hardware wise, the processing unit had different configurations during the development process.

These changes were dictated either by software incompatibilities or by hardware availability.

The first iteration of the processing unit was developed using the popular Raspberry Pi 3. This is a

widely available, inexpensive single board computer, which offers a compelling set of features. Equipped

with an onboard Wi-Fi chip, 1 GB of RAM and with a Broadcom BCM2837 Arm v7 quad-core processor

running at 1,2 GHz, it is a development platform easy to customize and with sufficient processing power

to handle the required image processing tasks. Its small size (85x56mm), makes it an ideal option

for the processing unit for each remote camera. Unfortunately, when connected to the Kinect sensor,

some incompatibilities were found regarding the USB connection with the Raspberry Pi, that sporadically

failed. After some debugging work, it was discovered that the Kinect connection was stable as long as

the USB bus was already under load at the time of the Kinect initialization, using, for example, a USB

Wi-Fi dongle. To avoid future problems due to this bug, the Raspberry Pi option was rejected.

Has a replacement, considering budget, availability and time constraints for this thesis execution, it

was used a small form factor, consumer-oriented, computer motherboard with an embedded processor.

The specific model was an ASRock Q1900M equipped with an Intel J1900 quadcore processor running

at 2.42 GHz. It’s a Micro-ATX motherboard with dimensions of 185x225x60 mm. Because this is not a

fully equipped solution like a single board computer, it was also necessary to add a 2GB stick of ram, a

120 GB SSD for storage, a power supply, and a Wi-Fi network card. The acquired hardware was fitted

into a custom made acrylic case, along with two 4 mm fans to provide sufficient airflow for cooling. The

final result can be seen in the figure 22.

(a) Remote Camera front view (b) Remote Camera back view

Figure 22: Remote Camera

This alternative has a much larger footprint than a Raspberry Pi, however, it’s still acceptable for a
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remote processing unit. It also has the added advantage that due to the power supply being integrated

inside the custom acrylic case, the Kinect can be powered directly from it, eliminating the need to use

another external power supply. The processor embedded in this solution is also more powerful than the

Raspberry Pi[23]. The J1900 is also based on an x86 architecture and not on ARM architecture, this

provides, for the moment, broader compatibility with other 3D sensing instruments that may be integrated

in the future.

Software

The operating system for each camera is based on the Linux distribution, Debian. Debian is a free and

open source operating system, which provides a platform with the necessary customization to be fully

integrated into a system like the ADIS system. It is also a widely supported distribution with extensive

documentation and community support. A minimal installation of the version 8.0 Jessie, was used and

the processing unit was configured with the following characteristics:

• Boot automatically when plugged to a power socket

• Connect automatically to the ADIS system Wi-Fi network

• Automatically login as root and run the camera controller software with elevated privileges

The automatic boot is activated in the UEFI setup utility included with the motherboard. The automatic

Wi-Fi connection was done according to the official Debian Wiki[25], by editing the network interfaces

configuration options. To automatic login as root, systemd’s capability bundled with the operating system

was used. systemd [26] is a suite of building blocks for Linux systems. It provides a system and service

manager that runs as the first awaken process at boot that starts the rest of the system. It controls and

manages a set of units that can be services, mount points, devices, and sockets. To login automatically

as root, a special service was created, which runs when the system starts up. To run the camera

controller software a starting command is added to the rc.local file for the root user. This rc.local file is

used by the system administrators to run special commands after all the normal system services are

running. This file is ideal to run the camera controller software after the boot and login processes are

complete.

The camera controller software runs on top of the aforementioned operating system and it is respon-

sible for:

• Treating the captured information from cameras and Kinect sensors using the image processing

algorithms and transformations previously mentioned

• Controlling the behavior of the camera in the overall system, answering to multiple commands,

enabling its remote control and integration

• Sending back all retrieved information to the central computer for further processing.

To implement the image processing algorithms it was used the OpenCV library. As stated on the official

website, “OpenCV (Open Source Computer Vision Library) is an open source computer vision and
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machine learning software library“[24] and, as of now, is the de facto standard for image processing

applications in academic environments. The version used was version 2.4.13. OpenCV is written mainly

in C++, but it possesses bindings for Python, Java and MatLab/Octave. The selected language for the

main camera controller process was Python. To help with debugging and usability a command line

interface was created. This interface uses the curses library. This library provides the ability to screen-

Figure 23: Camera Controller Software Interface

paint a terminal window and create command-line based interfaces. The created interface is composed

of three different regions delimited by rectangles. The two smallest regions sit at the left of the screen and

on top of each other. The top one displays real-time system information. It is refreshed every 2 seconds

and provides details regarding the number of frames per second that are processed and the number of

markers detected when running the marker detection algorithm (algorithm 3). It also displays the current

temperature for each CPU core, the overall CPU load and the used bandwidth for the Wi-Fi connection.

The bottom region displays basic program information like the program’s name and version, the current

file name and main camera library being used. This library is an integral part of the camera controller

software. It contains all functions used to interact and control the Kinect and the cameras. The third and

biggest region displays a log recording all events that occur at run-time. This region adds a new line

with relevant information every time a new event is logged. When no free lines are available, the region

automatically scrolls up and adds the most recent line on the bottom. The displayed information ranges

from the received commands, success messages, warning messages, errors and current process being

executed. Every message is color coded. Success messages are green, warning messages are yellow

and errors are red. Other information is presented with the default white color. It is possible to present

messages with a solid color background for other desired purposes. This interface can be accessed by

connecting a monitor directly to the remote camera or, when there is no physical access to the camera,

remotely using an SSH connection. SSH stands for Secure Shell and it is a cryptographic network

protocol to control devices remotely over a network.

Although the communication protocol used to communicate between the remote cameras and the
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central computer is described under section 5.1, some relevant functionalities should be mentioned.

Every remote camera is fitted with the capability to stream the captured image feed to any connected

device. This functionality is not suited for sending the image feed elsewhere for processing and vehicle

control. because the feed is slightly delayed compared to reality. However, this image feed is ideal to

monitor what is being captured by the camera and how it is processed. To achieve this functionality

the camera acts as a server, that upon request from a client, starts capturing data and streaming it.

To implement this functionality a framework called Flask was used. Flask is a framework geared to-

wards building web applications. With Flask, a minimalistic web-server is running in the remote camera

listening for user requests. When a user connects to the correct IP address and port, this web-server

responds with an HTML web-page containing the video feed. When the HTML video container is clicked,

the feed cycles through a series of visualization modes. If a Kinect is connected, the video modes are

the normal video captured by the camera, a real-time colored depth map from the depth sensor, and

a binary image that shows what the image processing algorithm is detecting. If a web camera is con-

nected, every visualization mode is available except the colored depth map. This method allows the

video feed to be visible from any device that has web browser capabilities, for example, a smartphone.

Besides allowing to see what is captured by the camera in the localization system software interface, it

is also vital when installing or moving a camera, to guarantee the correct alignment and coverage.

3.4.2 Kinect

Kinect is a product line, trademarked by Microsoft, of motion sensing devices launched in November

2010[19] along with the Xbox 360, made from licensed technologies from a company called PrimeSense.

It’s a peripheral for interacting with Xbox games, using the human body instead of a game controller.

However, this sensor started to be used for more than just interacting with games. Due to its ability

to sense and process spatial data, it quickly became an inexpensive way to add three-dimensional

awareness to robotic related projects.

For the ADIS system was used the first version of this sensor called Kinect V1.

Kinect Basic Operation

Official information regarding the Kinect functionality is not publicly available. Nonetheless, it is pos-

sible to infer the basic principles by analyzing its hardware components and existing patents from

PrimeSense[20][21][22].

As seen in figure 24, the Kinect main components are a regular RGB camera, an infrared sensor,

and an infra-red projector. To compute the depth from a scene, the Kinect uses three different computer

vision techniques. First, uses a technique called structured light. This technique projects a known

pattern onto the scene, which is deformed by the various objects, in view. By analyzing the deformations

in the known pattern, depth information can be inferred. The second and third techniques are called

depth from focus and depth from stereo. Depth from focus uses the principle that the more out of focus

an object is, the further away it is. The Kinect uses a special “astigmatic” lens with different focal lengths

for the x and y axes. This type of lens transforms the circles from the projected pattern into ellipsis,
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Figure 24: Kinect Hardware Scheme

which are oriented in different directions depending on how far away they are. Depth from stereo uses

the parallax effect, that says that when looking at the scene from different angles, the objects closer

to the camera are shifted to the side more than objects far away. So, depth is measured by analyzing

the perceived shift from the circles of the projected pattern. The second and third techniques are used

to improve the accuracy from the depth determined using the structured light. It is important to note

that to measure depth, the Kinect uses the built-in infrared projector in tandem with the infrared sensor,

and not the regular RGB camera. The measured depth also is not given directly in metric units, but

rather raw values with 11 bits of precision, meaning values ranging from 0 to 211 = 2048. When it is not

possible to acquire depth information because the object is to close, the raw value is 0. On the contrary,

when the object is too far away the raw value is 2048. To check how these values vary with the object

distance, a flat surface was placed in front of the Kinect at different distances. The results are shown

in the graph from figure 25. These results can be fitted using a mathematical equation. By consulting
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Figure 25: Variation from the Kinect raw depth values with the distance

available documentation regarding the Kinect operation[30] (this documentation refers to the driver used

41



for the Kinect system integration explored later), there are two already estimated expression

depth =
1

(−0.00307× raw depth+ 3.33)
(12)

or

depth = 0.1236× tan

(
180

π
(
raw depth

2842.5
+ 1.1863)

)
(13)

Equation 12 is represented with a blue line in figure 19 and the equation 13 in green. Both fit the acquired

measurements, even though the second equation provides more accurate results at longer distances.

With these two expressions, it’s possible to covert the raw depth information provided by the Kinect to

metric units. This, along with the methodologies described in section 3.3, make possible to use a Kinect

as a 3D localization sensor.

Kinect Driver Integration

As mentioned before, every remote camera runs an operating system based on Linux. To operate

the Kinect, a Linux compatible device driver is required. Because the Kinect is made by Microsoft,

officially only a Windows SDK exists, however, there are other unofficial drivers available which are Linux

compatible. The OpenKinect[27] community aims to develop a set of free and open-source libraries

that make the use of the Kinect hardware with Windows, Linux, and Mac possible. They develop and

supply an open-source driver for the Kinect V1 hardware called libfreenect[28]. This drive also includes

wrappers for multiple program languages including Python. The driver itself is written in C and the python

wrapper uses Cython which is a “superset of the Python language that supports calling C functions”[29].

This driver allows to control the tilt motor, the LED indicator, read from the included accelerometers and

microphone array, and capture RGB and depth images. Relevant to this thesis is the ability to control the

LED indicator and capture RGB and depth images. Tilt motor control would be interesting to remotely

align the Kinect, unfortunately, the tilt motor only actuates if the Kinect is in a horizontal upright position.

This driver can gather data from the Kinect sensors, either synchronously or asynchronously. When

using asynchronous functions, the driver executes a certain routine every time newly captured informa-

tion is available. During testing, this method caused two problems. First, even though the depth sensor

and the camera are rated to work at 30 frames per second, the callback routine that runs every time new

information is available was being called around 500 times per second. Secondly, there were also some

sporadic tearing problems in the depth map information which resulted in the detected markers having

no height information. Most likely, this last problem was not the driver’s fault, but rather a python’s multi-

threading bug, because the tearing only appeared when separated threads were used to gather the

captured RGB images and depth maps. To avoid these problems a synchronous approach was used.

The synchronous functions that come implemented, work by creating a separate C thread that handles

all of the captured information and saves it into dedicated buffers. Then, when the image processing al-

gorithm runs the command to get the image and depth map, the driver accesses these dedicated buffers

and returns the stored data.

This driver also comes with a “registration mode” that maps the depth information to the image
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captured by the Kinect. Because the integrated RGB camera and the depth sensor are not in the same

place, but rather side by side, the information is captured in slightly different points of view. So, there

is not a direct relation between pixels from the RGB images captured and the depth maps, without any

manipulation. Setting the libfreenect driver depth as “REGISTERED” deforms the depth map, matching

every pixel from it to the corresponding pixel in the RGB image. The “REGISTERED” mode also handles

the conversion from raw depth values to usable metric values expressed in millimeters.

For all the functionality the driver already provides, it needed to be customized to fulfill every function

required to use the Kinect in the ADIS 3D localization system. There were some functions added to

the main driver source code and some changes were also made to the Python wrapper. A list of these

changes can be seen in table 3.

Changes
Location Function Name Description

python wrapper write_cmos_register exposed the ability to write directly to the Kinect
CMOS sensor registers

python wrapper set_ir_brightness exposed the ability set the infrared projector
intensity

python wrapper set_flag exposed the ability to set numerous internal
flags defined by the driver

python wrapper camera_to_world exposed the ability to convert the detected pixel
coordinates to coordinates in the camera frame

python
wrapper/driver
source code

world_to_camera adds the ability to convert from camera frame
coordinates back to pixel coordinates

python
wrapper/driver
source code

sync_camera_to_world
added the ability to convert the detected pixel

coordinates to coordinates in the camera frame
when using the synchronous driver API

python
wrapper/driver
source code

sync_write_cmos_register added the ability to write to the CMOS sensor
registers when using the synchronous driver API

python
wrapper/driver
source code

sync_set_led added the ability to control the information LED
when using the synchronous driver API

python
wrapper/driver
source code

sync_set_flag
added the ability to set numerous internal flags

defined by the driver when using the
synchronous driver API

python
wrapper/driver
source code

sync_set_ir_brightness added the ability to set the infrared projector
intensity when using the synchronous driver API

python
wrapper/driver
source code

sync_world_to_camera
added the ability to convert the camera frame
coordinates back to pixel coordinates when

using the synchronous driver API
Table 3: Changes and additions to the libfreenect driver
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3.5 Markers

The markers used are simple colored circles with five centimeters in diameter. The material used for the

markers must be as non-reflective as possible. Reflections from lights in the ceiling can turn the marker

completely white. This changes the perceived color of the marker, turning him invisible to the marker

detection algorithm. Many materials were tested ranging from 3D printed plastic to synthetic fabrics. The

best results were obtained with markers made out of paperboard. To make the marker detectable and

avoid false positives, its color must be unique in the frame captured by the camera. To find this color,

the histogram in figure 26 was made, from a picture taken with the RGB camera and the Kinect, in the

laboratory where the system was installed.
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(a) Histogram from picture taken with the Logitech C615 camera
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(b) Histogram from picture taken with the Kinect

Figure 26: Laboratory picture histogram

In these histograms, the rarest colors are the ones with a hue between 270° and 360°. These hues

represent violet, pink and red. Markers with these three colors were tested to see how well they were

detected by the RGB camera and the Kinect. Using simple visual inspection of the images captured by

each camera for the three colors, the color pink with a hue around 300°, was selected for the markers.

3.6 Overlap Zones

The ADIS system is capable of using multiple cameras to cover an area larger than it would be possible

to cover using only one camera. In order to do this without blind spots, either the cameras are perfectly

aligned with each other or overlap zones occur, where more than one camera covers the same area. In

these overlap zones, one marker is the field of view of multiple cameras, meaning that is perceived as
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more than one point. This would be easy to correct if the localization system was perfectly aligned, and

one marker spawned multiple detections with exactly the same coordinates in the user-defined inertial

frame. However, the system has inherent errors that make different cameras detect the same marker

in slightly different positions. To solve this problem, it is possible to analyze the shape “drawn” by the

markers instead of its location, assuming that the perceived shape does not completely change with the

camera point of view.

The Procrustes analysis was used to interpret the shape “drawn” by multiple points. The Procrustes

analysis determines a linear transformation (translation, reflection, rotation, and scaling) that best con-

forms a given set of points into another. The methodology used is described in algorithm 4.

Algorithm 4 Overlap Zone Correction Algorithm
Require: Overlap Zones, Detected Pointsw

for every Overlap Zones do
if any Detected Points is in Overlap Zones then

Points Inside ← Detected Points that are inside Overlap Zones
if the Points Inside were captured by diferent camera then

Points Inside Camera 1 ← every point from Points Inside captured by the first camera
for every Camera that captured points excluding the frist one do

Points Inside Camera ← every point from Points Inside captured by Camera
Transformed Points ← used procrustes to transform Points Inside Camera into

Points Inside Camera 1
if the distance(Transformed Points, Points Inside Camera 1)<Limit then

Clear from Detected Points the Points Inside Camera
Replace from Detected Points the Points Inside Camera 1 by the mean between

Points Inside Camera 1 and Points Inside Camera
end if

end for
end if

end if
end for

Algorithm 4 identifies the repeated detected markers using one camera as reference, eliminates

these extra points and replaces the remaining correct points by the mean between the remaining point

and the extra removed point. To decide if the points are actually repeated pairs, the distance between

them needs to be below a certain limit (variable Limit in algorithm 4). This limit was determined by

trial and error, doing multiple experiments and choosing a sane value that makes the algorithm work

as intended. Replacing the repeated point pairs by arithmetic means is done mainly to aid the tracking

algorithm described in section 3.7. Because the cameras are not optically perfect, when a marker goes

from one camera point of view to another, it suffers a small translation in its inertial frame coordinates.

When using markers placed too close from each other, an abrupt change in position can be challenging

for the tracking algorithm to follow. Using a mean smooths this translation, allowing the transition from

one camera to another to be less abrupt.
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3.7 Tracking Algorithm

The sole purpose of this algorithm is to interpret the detected marker coordinates and associate these

coordinates to a fixed identity through time. Discussing different approaches for tracking algorithms and

evaluate their advantages and disadvantages, is outside of the scope of this thesis.

The chosen tracking technique is motion-based tracking using Kalman filters [56]. The implemented

algorithm is heavily based on the “Motion-Based Multiple Object Tracking” example contained in the

Computer Vision System Toolbox[52] for MatLab from MathWorks. The basic algorithm for this tracker

is as follows:

Algorithm 5 Motion Based Tracking Algorithm

Tracks ← IniatlizeTracks()

while running do
Frame ← Get_Frame()
Points ← Detect_Markers(Frame)

Tracks ← Predict_New_Locations_Of_Tracks(Tracks)
Matched, Unmatched_Tracks, Unmatched_Points ← Match_Points_To_Tracks(Points, Tracks)
Tracks ← Update_Matched_Tracks(Tracks)
Tracks ← Update_UnMatched_Tracks(Tracks)
Tracks ← Delete_Lost_Tracks(Tracks)
Tracks ← Create_New_Tracks(Unmatched_Points)

end while

Before the tracking loop starts, a variable called Tracks is initialized. This variable is a set of tracks

objects which contain, among other properties, an identification number, an age count, total visibility

count, and a Kalman filter. This Kalman filter object is already implemented in the computer vision

toolbox from MatLab[52].

To explore Kalman filters and their properties is also outside the scope of this thesis. Kalman filters

are self-updating algorithms, in their simplest form used on linear systems, which use a series of mea-

surements over time, containing Gaussian noise, to produce estimates of unknown variables. They start

by describing the current system state, called state space, with a posteriori state estimate matrix, x̂k−1,

and posteriori error covariance matrix, Pk−1, at time k − 1. This assumes that the current state can

be described by an n-dimensional Gaussian with mean x̂k−1 and covariance Pk−1. To predict the next

state of the system a state-transition model in the shape of a prediction matrix Fk−1 is used. This matrix

describes how the linear system should evolve between each iteration of the Kalman filter. Applying this

matrix to the current state space, to move forward in time to k, gives:

x̂k =Fkx̂k

Pk =FkPk−1F
T
k

To take into account the uncertainty caused by unknown variables not expressed by the state-transition

model, the Kalman filter adds a control matrix Bkand a control vector �uk, along with a process noise
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covariance matrix Qk.

x̂k =Fkx̂k−1 +Bk�uk (14)

Pk =FkPk−1F
T
k +Qk (15)

The equations 14 and 15 are called the prediction step of a Kalman Filter. This step produces a fuzzy

state of the entire linear system. To add measurements from a sensor which evaluates the system at

time k, it is assumed that each measurement �zk, returns with Gaussian noise vkand covariance matrix

Rk, deformed according to the observation model matrix Hkcharacteristic of the sensor.

ẑk =Hkx̂k +vk (16)

Pk =HkPkH
T
k +Rk (17)

And that the value for the expected measurements is given by,

µ̂expected =Hkx̂k (18)

Σexpected =HkPkH
T
k (19)

The optimum estimation for the measurement at time k is given by the Gaussian mixture of the two

Gaussian blobs defined by equations 16 and 17 and equations 18 and 19, which gives the final set of

equations for the Kalman filter:

x̂′
k = x̂k +K ′(�zk −Hkx̂k) (20)

P ′
k = Pk +K ′HkPk (21)

K ′ = PkH
T
k (HkPkH

T
k +Rk)

−1 (22)

These three equations are known as the update step of the Kalman filter were x̂′
k and P ′

k are the best

estimate of the system state at time k, and the quantity K ′ is called Kalman Gain.

Summing up, Kalman filters work in a two-step process, composed by a prediction step and an

update step. In the first step, the Kalman filter produces an estimate for the next variable state, and

once the actual measurements for that state are gathered, the Kalman filter is updated by comparing

the prediction with the real measurements.

In algorithm 5, after reading the current frame and calculate the real world coordinates for each

detected marker, the tracking algorithm tries to predict the next location for each track. This task is

only executed if there are already markers being tracked. This corresponds to the prediction step of the

Kalman filter. After which, the algorithm tries to assign the detected points to an already existing track.

This assignment process involves two steps: first, the cost of assigning every detected point to each

track is computed using the distance method provided by the Kalman filter object from the Computer

Vision toolbox[52]. This cost accounts for the Euclidian distance between the detected point and the
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track predicted location. The second step solves the track to point assignment problem. The included

Matlab function assignDetectionsToTracks is used and calls the Munkres version of the Hungarian

algorithm[54] to compute an assignment - which minimizes the total cost. Next, the tracking algorithm

updates the assigned tracks. This corresponds to the update step for the Kalman filter of each track. It

uses the newly matched point to update the Kalman filter of the corresponding track calling the correct

method provided by the Kalman filter object. The Update_Unmatched_Tracks function just increases

the age of the unsigned tracks by 1. The next function call deletes tracks that are considered lost.

When they have been invisible for too many frames, or it was recently detected but has been invisible

for too many frames overall. The parameters that indicate these two states are the age parameter and

the total visibility count. Finally, the algorithm handles points that have not been deleted or assigned.

These points are considered new tracks and are added to the Tracks variable with a unique identification

number.

3.8 Calibration Process

Any measurement instrument needs to undergo a calibration process to provide accurate readings. The

ADIS localization system is not different and it has its own calibration process, that aims to be simple

to use and to provide accurate results. This calibration process has some variations depending on the

architecture being used.

The first step in the calibration process is common to all architectures. Its objective is to estimate

the planar homography matrix for each camera, and it needs to be repeated as many times as the

number of cameras in use. This step provides the system with a set of points on the ground, measured

relative to the final inertial reference frame, that is then used to estimate the planar homography matrix

for each camera. Measuring each point individually every time the system needs to be calibrated, would

be tedious and time-consuming. Thus, in order to automate this process, a black and white calibration

pattern is used, with twenty points organized in a 5x4 grid. Because the pattern dimensions are known, it
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Figure 27: ADIS Calibration Pattern

is only required for the user to provide two points. These two points indicate the position and orientation

of the calibration pattern. This is enough information to automatically generate the rest of the pattern
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points positions. With all calibrations points the system then estimates the homography matrix using

the singular value decomposition technique described in 3.1.7. The calibration pattern is located near

the middle, where the lens distortions are less effective. This decision was tested against placing points

uniformly spaced across the entire frame. For this test, all points were measured with a measuring

tape and compared to the ones given by the calibrated localization system. The final results are in

table 4. The mean error when the calibration pattern is roughly in the middle of the frame is almost two

Pattern Position Error
mean (cm) standard deviation (cm)

Centered 4,1 4,7
Scattered 5,9 7,5

Table 4: Calibration Pattern Location Tests Results

centimeters bigger than when the calibration points are placed across the entire frame. The same is true

for the standard deviation. This error increase is most likely related to lens distortions around the edges.

The estimation algorithm fits these distortions in the homography matrix, increasing the overall error. In

reality, these differences are not that pronounced when compared to the size of the vehicles in use, but

they justify the choice of a centered calibration pattern instead. A centered calibration pattern also has

the advantage of being easier to handle, than a pattern placed across the entire field of view. Although

these measurements were not taken using any camera currently in the ADIS system, but rather taken

using a Logitech QuickCam 3000, they are still valid because the cameras currently implemented (the

Logitech C615 and the Kinect) use similar technologies and lens assemblies to capture RGB images.

The full calibration algorithm is given by algorithm 6. To start the calibration process it’s necessary

Algorithm 6 Marker Detection Algorithm with RGB color space
Require: Frame_Top with both calibration patterns, Frame_Bottom with just the bottom calibration

pattern

Generate Complement_Frame_1 and Complement_Frame_2
Auxiliary_Frame ← Complement_Frame_1− Complement_Frame_2

threshold_value = 0.1
while threshold_value < 1 do

Binary_Frame ← threshold(Auxiliary_Frame)
Centroids ← blob_analisys(Binary_Frame)
if number of Centroids = 20 then

break while cycle
end if
threshold_value = threshold_value+ 0.01

end while

Order Centroids according to the calibration pattern
Ask for two points in the user inertial frame
Generate RealWorldPoints from the given pair of points
Esimate the Hommagraphy_Matrix using the Singular Values Decomposition (SVD) technique

to acquire two different images, one with both the top (figure 27a) and bottom parts of the calibration

pattern (figure 27b), and another with just the bottom part. This requires that the bottom calibration
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pattern stays in the same place between images. From each image, a complement image is generated.

A complement image, also called a negative image, is obtained by replacing every pixel by the difference

between the maximum value that the pixel can have and the current value. Considering the 8-bit RGB

color space in use, the complement pixel of px = (r, g, b) is given by (28 − r, 28 − g, 28 − b). Because the

top part of the calibration pattern has a white background with black dots, the complement image gives

a pattern with a black background and white dots. When subtracting both images, the pixels that are not

part of the pattern are removed, and the pixels that are part of the calibration pattern, show the pattern

dots in white. The two parts of the pattern ensure that the complement image without the calibration

dots always has a black rectangle where the calibrations dots are. This guarantees that the dots are

not removed by dark areas on the floor, after subtracting both images. However, due to small variations

in lighting and captured noise, the subtraction does not fully remove every pixel that isn’t a calibration

pattern dot. To remove this remaining noise, an increasingly higher threshold_value is applied to the

subtraction result. This removes more and more noise until only the calibration dots remain visible.

Then the centroids for each calibration point are identifying and matched with points in the inertial frame

defined by the user for the experiment. This task starts by ordering all centroids in a predetermined

sequence, to facilitate the matching process. Then the user inserts the coordinates of two points in

the inertial frame. Since the pattern dimensions are known, the rest of the calibrations points can be

generated with the same order as the one used to organize the previously detected centroids. The last

step is to estimate the homography matrix that transforms the centroids into the generated points in the

user-defined frame, using Singular Values Decomposition.

This calibration process creates a homography matrix for every camera that is added to the ADIS

system. This matrix can be saved for later use, removing the need to calibrate every camera when it’s

added to the system, as long as the camera does not move.
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4 Vehicles

Considering that the ADIS system aims to provide a complete platform to develop and test advanced

control and navigation algorithms, it would not be complete without a fleet of vehicles. These are based

on commercially available solutions that can easily be acquired physically in model building stores or

online via the official web-stores. Every airborne vehicle was prepared to integrate the ADIS communi-

cation network and expose interfaces for control and onboard sensor access. The integration was made

to provide access to every aspect of the integration and components for the user to explore and change,

without the fear of irreparably breaking the vehicle. The reason for this concern along with a description

of the investigative work related to the flying vehicle is presented in this chapter.

4.1 Airborne Vehicles

As far as flying vehicles are concerned, there was no shortage of options available in the current market.

Multiple incremental advances in technologies around cost and weight reduction of good kinetic sen-

sors, batteries and low energy processors, lead to a rather wide selection of remote controlled low-cost

vehicles with multiple different sets of capabilities to be available. Commonly known as “drones”, these

flying machines come in a vast range of configuration and prices, depending on their target mission and

consumers. The majority of them come in a quad-copter configuration. This configuration is ideal for

indoor environments due to its stability and capability of vertical takeoff and landing. A quad-copter is

composed of four rotors connected to four independently controlled motors. As mentioned before, the

ADIS system communication network relies on Wi-Fi technologies. To keep every system component

using similar technologies and avoid unnecessary compatibility problems, the selected vehicle should

also rely on Wi-Fi communications. This requirement narrowed the drone selection process and led to

the final decision of using an AR.Drone 2.0 from Parrot.

4.1.1 AR.Drone 2.0 Characteristics

The AR.Drone 2.0 is the second iteration of the medium range offering from Parrot. It is a Wi-Fi controlled

aircraft, equipped with auto stabilization capabilities, and a wide range of sensors. It has a range of 50

meters and a maximum speed of 11.1 meters per second. As product targets the amateur market, and

can fly both in outside and inside environments. It can capture video using two onboard cameras and

is controlled via a dedicated application running on a smartphone. The full specifications are mentioned

below.

Structure and Body

The AR.Drone 2.0 is built around a central cross made of carbon fiber arms connected by plastic

fittings. The onboard electronics and motors are fixed to this central cross, which is integrated with the

interior hull. This interior hull is made out of expanded polypropylene and it keeps the battery, the front

camera, the sonic sensor, and the USB connector in place. Clipped to it, using magnets, there is an

exterior hull. Its main function is to protect the drone. Included in the box come two different exterior
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Figure 28: AR.Drone 2.0 cut-out

hulls. One for outdoor flights that is lightweight but only protects the body of the drone. The other is

for indoor flights and it offers more protection against collisions by wrapping around the propellers, at

the expense of adding more weight compared to the outdoor hull. Both hulls are made out of expanded

polypropylene like the interior hull.

Motors and Propellers

The AR.Drone 2 is propelled by four 15 Watts three-phase brushless DC motors equipped with plastic

propellers, specially designed for this drone. Each motor operates at 28 000 rpm, that is converted to 3

000 rpm for the propeller, through a small low noise Nylatron gear assembly. Each motor is controlled

by 8-bit MIPs AVR MCU and 10-bit ADC [35, 36] to manage the rotation speed.

On start-up the drone automatically detects and tests each motor individually. When one rotor is

blocked mid flight, the drone stops all engines immediately. This prevents extended damages to the

plastic rotor, and injuries if the drone hits person.

Batteries

The AR.Drone 2.0 is powered by one 1000 mAh or 1500 mAh, 11.1 V, Lithium-Polymer battery. The

battery provides 12 minutes or 18 minutes of flight time depending on the battery version used. The

battery discharges from 12.5 V when fully charged, to 9 V.[35, 37]

The drones calculates the available battery percentage from the battery’s voltage. Mid flight the

battery life can be red directly from the drone’s telemetry stream, but it is also indicated trough the LED’s

located below every motor. When fully charged, all four LED’s are green, and turn red as the battery

discharges. When the battery hits 20%, the drone does not allow take-off. If the drone is flying and the

battery reaches a critical level, the drone automatically lands to avoid any unexpected behavior.
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onboard Electronics

Inside the AR.Drone 2.0 there is a set of sensors and embedded electronics responsible for stabiliza-

tion and control. Below the central hull, there is a motherboard equipped with:

• 1 GHz ARM Cortex A8 microprocessor (ARM v7 architecture),

• 8 GHz video DSP TMS320DMC64x,

• 1 GB of 200 MHz DDR2 RAM

• Atheros Wi-Fi 802.11 b/g/n chip

• Pressure sensor with +/- 10 Pa precision

• 30 frames per second forward facing HD camera

• 60 frames per second downward QVGA camera

• USB-A 2.0 port

• Molex 2-pin Female connector

• Reset Button

Connected to this motherboard, there is a navigation card containing all the Kinetic sensors. This card

features:

• a 3 axis gyroscope with 2000°/second precision

• a 3 axis accelerometer with +/- 50mg precision

• a 3 axis magnetometer with 6° precision

• Ultrasonic sensor

The motherboard stores and process the operating system that runs the program responsible for con-

trolling the drone. It has a dedicated DSP (digital video processor) to handle video encoding tasks, a

Wi-Fi chip for LAN connection, a pressure sensor to determine height above 3 meters of altitude and

a down facing camera for ground speed measurements. The navigation card contains all of the motion

sensors. The gyroscope, accelerometer, and magnetometer compose one IMU (inertial measuring unit)

with 9 DOF (degrees of freedom), that is used for automatic pitch, roll and yaw stabilization and assisted

tilting control. The ultrasonic sensor uses ultrasound reflections to detect the height of the drone below

3 meters of altitude, for height and vertical speed control. The USB port supports USB 2.0 protocol and

can only read USB keys with a grounded USB connector to the casing and formatted using the FAT32

file format. The battery connects to the Molex 2-pin connector to provide power.
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onboard Cameras and Video Stream

This drone comes equipped with two cameras, one is front facing and mounted on the “nose” of the

interior hull, the other is facing the ground and it is attached to the motherboard. The front-facing camera

is capable of recording in native 360p (640x360) or 720p (1280x720). The down-facing camera captures

at native 240p (320x240) and 360p or at 720p with image up-scaling.

The video stream frame rate from both cameras can be adjusted for 15 or 30 FPS, however, the

bottom camera can record at 60 FPS at 240p. Using the included 8-bit DSP the video can be encoded

using MPEG4 and H.264 video codecs. There is an option to save the recorded video directly to a flash

drive using the USB 2.0 port.

4.1.2 Basic Operation

Being a quadcopter the AR.Drone 2.0 uses four motors equipped with propellers, to fly. Each pair of

opposite motors turns in the same direction. One pair turns clockwise, while the other turns counter-

clockwise.

4.1.3 AR. Drone 2.0 Integration

The objective of the integration process was to examine, explore and eventually modify the drone to

allow its use in the ADIS system. This required extensive research and the use of appropriate scanning

tools, supported by the AR.Drone Developer Guide version 2.0 [38]. This guide describes the official

communication protocols used by the drone for remote control, data and video streaming, and remote

configuration. However, this information does not disclose how the operating system works. This lead

to an investigatory phase to explore customization options to integrate the drone with the rest of the

system.

Drone Examination

The first step taken to explore the drone was simply a visual analysis of its hardware to look for any

kind of communication interfaces that could provide a way to analyze the AR.Drone 2.0 software. The

only hardware interface found is located under the drone, soldered to the motherboard (figure 29). This

connector is a serial port that can provide access to the operating system. This serial port cannot be

connected directly to a serial port from a computer, doing so would potentially damage the motherboard

or some of its components because the drone’s serial port uses TTL voltage levels (±5V) and not

common RS-232 voltage levels (±13V is the most common for PC’s). An RS-232 to TTL converter is

required to connect a computer to the drone safely. A USB to UART (TTL level) converter can also be

used. Because none of these adapters were readily available another approach taken.

When the drone is connected to the battery, it turns on and starts a startup sequence. First, the

motors LEDs turn red and, after a few seconds, every motor vibrates slightly, one at a time. The drone

creates his own Wi-Fi hotspot and the four motor LEDs turn green. This marks the end of the startup

sequence and the drone is ready to fly. The hotspot created does not have a password and its ESSID is
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Figure 29: AR.Drone 2.0 bottom mounted serial port

called “ardrone2_xxxx”. As per the SDK[38] the drone identifies itself on the network using a specific IP

address, typically “192.168.1.1”. The SDK also reveals that communication with the drone is done using

three main services through three different ports:

• Using the UDP port 5556, the drone can be controlled and configured using a set of AT commands,

these commands are interpreted by the drone up to 30 times per second.

• Using the UDP port 5554 the drone sends to the client information regarding its status, position,

speed, orientation, etc. This information is called navdata, and it is sent 15 times per second when

running in a mode called “demo” mode, or 200 times per second when running in “debug” mode.

• The video stream is sent through UDP using the port 5555.

There is also a fourth communication channel, called control port. This connection runs using a TCP

protocol on the 5559 port. This mode is used to send critical information that cannot be lost, like retrieve

or set configuration data.

Since the network has no password any device can connect freely to the hotspot. Usually, a smart-

phone running the remote control application would connect, recognize the drone and start its remote

control. However, to examine the drone, a laptop running a Linux based operating system was con-

nected to the network and a series of tests executed.

First to be sure that the drone is located at the IP “192.168.1.1” a simple ping command was sent.

This command had an immediate response confirming the drone’s presence. To see if there were any

remote interfaces available to connect and possibly modify the drone, a scanning tool called Nmap was

used. According to its website “Nmap ("Network Mapper") is a free and open source (license) utility

for network discovery and security auditing.”. This application can scan large networks and analyze

“what hosts are available on the network, what services (application name and version) those hosts are

offering, what operating systems (and OS versions) they are running, what type of packet filters/firewalls

55



are in use, and dozens of other characteristics”. Nmap can scan large networks or be used in single

clients as well. So, pointing Nmap to the drone’s IP address revealed the results presented in table 5.

The results shown are only relevant results. More ports were detected, but are not relevant for this

analysis.

Discovered Open Ports Protocol Type Possible Service

21 TCP ftp
23 TCP telnet

5555 UDP/TCP freeciv?
(a) Port summary

Discovered
Operating System Version

Linux 2.6.x
(b) Operating System summary

Table 5: Nmap relevant results summary

Three relevant ports were discovered. Port 5555, as seen before, corresponds to the video streaming

port. The Nmap tool tried to label it as a port used for a strategy game called Freeciv. The two remaining

ports, however, reveal that the drone is running a ftp and a telnet service. This reveals a way to remotely

interact with the drone, telnet, and how to send files to the drone, ftp. Connecting to the drone is them

achieved by running telnet192.168.1.1 when connected to the drone’s hotspot.

After connecting to the drone using the telnet command, a Linux terminal session starts, as detected

by the Nmap tool. This terminal session is running as root. The Linux kernel version that the drone is

running is version 2.6.32.9. With this terminal access, the drone root file system was explored.

The AR.Drone 2.0 is running a lean Linux operating system, that provides a very basic set of tools.

Using the df command, revealed that the total system memory is 213,2 MB for this particular drone, with

157 MB free, which leads to the conclusion that the AR.Drone 2.0 model probably comes equipped with

a 254 MB internal memory.

Further exploration of the root file system led to the discovery of the two important files: the “config.ini”

and the “rcS”. The “config.ini” file is located under the “/data” directory, and it is a configuration file

containing useful information and settings regarding multiple aspects of the AR.Drone 2.0 state. This

file is organized in multiple sections, preceded by an identifying title. Table 6 is a list summarizing the

available settings and information in the “config.ini” file organized by section:

Table 6: File “config.ini” information and settings

Section Name Information/Settings Data type Data Attributes

General

total flight time number Read Only

Drone’s hardware and software versions number Read Only

Drone serial number number Read Only

Motors hardware and software number number Read Only

Drone’s name string Read and Write

NavData demo mode boolean Read and Write

Video enable boolean Read and Write
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Vision enable boolean Read and Write

Minimum Battery voltage number (in millivolts) Read and Write

GPS software and hardware versions number Read Only

Timezone number Read and Write

Battery Type number Read and Write

Network

SSID single player string Read and Write

SSID multi player string Read and Write

Wi-Fi mode number Read and Write

Owner Mac address number pattern Read and Write

Control

Accelerometer offset and gains vector Read Only

Gyroscope offset and gains vector Read Only

Magnetometer offset and radius vector Read Only

PWM reference for Gyroscope number Read Only

Maximum and Minimum Altitude number Read and Write

Outdoor Mode boolean Read and Write

Flight without shell boolean Read and Write

Indoor maximum Euler angle, upwards

velocity and yaw

number Read and Write

Outdoor maximum Euler angle, upwards

velocity and yaw

number Read and Write

Pic
Ultra-sound frequency number Read and Write

Ultra-sound version number Read and Write

Video

Camera FPS number Read Only

Camera Buffers number Read Only

Number of Trackers number Read Only

Video on USB mode boolean Read and Write

Codec FPS number Read and Write

Exposure Mode number pattern Read and Write

Saturation Mode number pattern Read and Write

White Balance Mode number pattern Read and Write

Detect

Enemy Colors number Read and Write

Enemy without shell number Read and Write

Ground stripe colors number Read and Write

Detect Type number Read and Write

Syslog Output number Read and Write
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GPS

Latitude number Read Only

Longitude number Read Only

Altitude number Read Only

Accuracy number Read Only

Flightplan Settings and information about automatic flight using GPS navigation

Custom

Application description string Read Only

Profile description string Read Only

Session description string Read Only

In Table 6, some information and settings were omitted, because they are not relevant to this thesis

scope. Comparing the available settings above with the Developer Guide[38], revealed that many of

these settings and information can be set and read via already available commands. However, some

capabilities are not implemented in the drone’s protocol, which makes the method of manually change

the “config.ini” file, the only way to access some capabilities. As shown in table 6, there is a way to

change the network settings of the AR.Drone. The network mode option is described in the Developer

Guide[38]. There is no remote command implemented to change this option, but it can be manually set

to three different values:

• “0” is the default value and configures the drone to create its own Wi-Fi hotspot

• “1” configures the drone to create or connect to a network in Ad-Hoc mode

• “2” forces the drone to connect to a network defined by the SSID described by “SSID single player”

configuration parameter

Since the ADIS system has its own Wi-Fi network, the option number “2” is the one that configures the

drone as desired. Unfortunately, during testing, the drone was only able to connect to networks that were

not password protected. This presents some problems discussed later. Reading the second file called

“rcS” contents revealed that it is an initiation file that contains the necessary commands for the drone to

boot properly. This is also corroborated by the fact that this file is located at the “/etc/init.d/” directory,

which is the directory that traditionally contains the scripts used by System V initiation tools. Inside this

file bash routines are called to initiate the Wi-Fi network setup, to initiate the motors and more. There is

one particular routine to decide which IP address the drone will have inside the network. This routine is

interesting because it can be easily changed to place the drone in a predetermined IP address.

Executing the command ps returns a snapshot of the current processes running inside the drone.

This, revealed two interesting processes called “/bin/sh /bin/program.elf.respawner.sh” and “/bin/pro-

gram.elf ”. The first process is a “respawner” process, responsible for kipping the second process alive

if, for some reason, it terminates. To observe what the second process does, first, the “respawner” pro-

cess must be terminated and then the “program.elf” process can be terminated too without respawning.

When this happens, the drone immediately stops even if it is mid-flight, falling directly to the ground,

changing the motor LEDs to red. If the “program.elf” is then initiated using the telnet terminal, and
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some text is printed to the terminal highlighting the main operations being executed. This text shows

that the second process is responsible for controlling and flying the drone. It is the main process of the

drone, that receives and executes the user commands, analyzes the onboard sensors data and keeps

the drone flying in a stable manner. Because it has direct access to the onboard sensors and it controls

directly the motors, if any other navigation algorithm wants to run inside the drone, this main process

must be killed first, to grant unrestricted access to these resources.

Besides some core discoveries that can be leveraged to integrate the drone with the ADIS system,

some flaws were also uncovered. The two main problems are:

• the lack of an easy method to repair/reflash the drone’s software in case any change to its system

goes wrong

• the drone’s Wi-Fi hotspot is not password protected and the drone cannot connect to secure Wi-Fi

networks

The first problem was a main concern during all the examination process, because if any mistakes were

made, like unknowingly adding an error to a script needed for the drone initialization process, it could

lead to a drone that would not create its own Wi-Fi hotspot or finalize the boot process, making its shell

inaccessible by telnet. The only way to fix the drone would be through its serial port. But this requires

a specialized converter and the knowledge to connect correctly to the drone’s serial port. This problem

can easily originate many “bricked” drones when the system is being used by many users, that will lack

the knowledge about the ADIS system operation to fix this issue.

The second problem is a major security concern. Although the ADIS system is not going to be

installed in a public environment, it needs to be designed to work properly in a laboratory that is attended

by a large number of people doing different tasks, many of them requiring Wi-Fi networks and internet

access. Unavoidably, an open Wi-Fi access would attract unwanted users, leading to extra traffic through

the network that could impact the ADIS system performance. To avoid this, extra security measures are

required.

Drone Implementation

The AR.Drone 2.0 examination revealed a drone with a relatively open Linux based operating system,

that has its strengths and shortcomings, but that can be fully integrated into the ADIS system. Some

issues needed to be resolved like the lack of security and the high repairability difficulty.

The first issue tackled was the lack of security. As mentioned before, the drone comes configured

to create its own open Wi-Fi hotspot, but it can be reconfigured to connect to an external network by

editing its “config.ini” file. Unfortunately, during testing, the drone was not able to connect to password

protected networks. The Wi-Fi networks tested used WPA2 security since it is the current standard

security algorithm for personal network protection. There was no need to use more secure protocols like

WPA-EAP, since it would only introduce more complexity and the added security is not necessary.

This inability to connect to secure WPA2 networks comes from the complete lack of support from the

installed operating system and not from a software error or lack of capable hardware. In a traditional

59



Linux operating system, the process to connect to a WPA2 secured network involves the creation of a

master key (passphrase), by combining the ESSID and a pre-shared key (commonly known as the Wi-Fi

password). This process involves three binaries called: wpa_cli, wpa_passphrase, and wpa_supplicant.

These three binaries are missing from the installed OS. The solution is to compile these files from

source, using the correct compiler for the AR.Dorne 2.0 processor, or use pre-compiled versions from

online repositories.

The reparability problem required a different approach to how the drone was being used. This prob-

lem resides in the fact that the drone has no easy method to repair eventual mistakes that affect its

Wi-Fi connection. This is a problem because if the user wants to develop a navigation algorithm that

runs inside the drone, and not in an external computer, it is going to need to access the drone’s internal

memory, exposing internal critical files. These files are not protected by a permission system. Most

Linux based operating systems have file system permissions set to every file, to grant or prohibit access

depending on which user is logged in. But because the telnet connection established with the drone

grants root (super-user) access to the root file system, every file is readable and writable by default. The

only interface method available if the drone’s Wi-Fi capabilities are impaired is the bottom serial port,

which is not trivial to connect and use. One solution would be to change the telnet connection properties

not to provide super-user access by default. But to avoid deep changes to the main operating system,

another solution was developed.

In a very simplistic manner, a Linux based operating system can be seen as modular and composed

of two distinct components: the applications and the kernel. The applications are all high-level processes

that execute any necessary task, while the kernel is the software responsible for low-level operations like

connecting applications to the hardware. Ideally, the integration process should keep these modules as

close to their factory form as possible, and provide a secure separation between them and the ADIS

user, while keeping critical tasks like kernel specific tasks available to custom developed algorithms.

To achieve this separation, a special mechanism was used called chroot. A chroot is an operation

that changes the root directory of the current running process and its children. Meaning that when the

chroot system call is invoked the current process and any other process that it spawns is contained

inside a virtual environment known as chroot jail. This method can effectively isolate processes while

maintaining their ability to access kernel features like controlling hardware. Figure 30 shows how the

chroot mechanism was used.

First, the drone boots normally executing its initialization sequence and start all of its normal services

and applications. When the boot process is complete the chroot command is invoked and from that point

forward, every spawned process is confined to the chroot jail, and isolated from the rest of the system,

while retaining the capability to use the drone’s hardware, since the kernel is still accessible. The chroot

jail directory, however, is not contained inside the drone’s internal memory. It is rather located in a

purposely created root file system contained inside a USB flash drive. This method completely separates

the drone’s original root file system from the ADIS system integration files and completely isolates the

user from the original operating system processes.

The use of this chroot method also keeps the necessary changes to the drone to a minimum. It

60



Kernel

Initialization Process

Running Applications

...

Original Root Directory

Chroot Jail

ADIS Specific Tasks

...

chroot

Figure 30: Chroot Operation Diagram

only requires the addition of one line to an original file and the creation of another file. The new line is

added into the “rcS” under “/etc/init.d/” to run the new file named “start_USB_OS”, located in the same

directory. This new file is a shell script that verifies if a USB flash drive is inserted into the drone’s USB

port. If this is the case, mounts the flash drive and executes an initialization file located inside. This

initialization file is where the actual chroot invocation is done. If no flash drive is detected, no action is

taken, living the drone in its original factory state.

The USB flash drive as mentioned before contains a root Linux file system that will run inside the

drone, once the chroot jail is created. For this, the USB flash drive must be prepared accordingly. It

was decided that the USB flash drive should contain two distinct partitions inside, the USER partition

that must be accessible by any operating system and the SYSTEM partition that contains the Linux root

file system.To make the USER partition accessible using any operating system, it was formatted using

the fat32 file system. This file system has a file size limited to 4GB, but it is natively supported by most

current operating systems. For the SYSTEM partition ,the ext4 file system was chosen, which is the

current default file system for Linux based distributions. To hold these partitions a “msdos” type partition

table was used. Once again, it’s a widely supported type of partition table which will guarantee good

operating system compatibility. The actual location in memory of these two partitions is illustrated in

figure 31.

The USER partition is located in memory first to avoid issues when an operating system that is not

compatible with the EXT4 file system tries to access the flash drive. The SYSTEM partition contains a

lean Linux root file system based once again in the Debian distribution. This distribution is the same used

in the remote cameras processing unit and it was chosen to keep consistency. Only the root file system

is required and not the entire distribution with all of its components since these other components are all
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Figure 31: USB flash drive partition mapping

provided by the factory operating system. The flash drive root file system must be compatible with the

drone’s hardware, meaning that it must be compiled to support the ARM v7 architecture from the onboard

CPU. The process used to create such root file system is commonly called “cross-debootstrapping”. As

mentioned in the Debian online documentation regarding this method[43] "Debootstrap can be used to

install Debian in a system without using an installation disk but can also be used to run a different Debian

flavor in a chroot environment. This way you can create a full (minimal) Debian installation which can

be used for testing purposes". The “cross-debootstrapping” is when the debootstrap method is used to

create a root file system for a machine using a machine with a different architecture. In this case, an

x86-64 computer running Linux was used to create a rootfs for an ARM v7 machine.

The debootstrap process involves four different steps:

1. Download the necessary .deb packages from a repository.

2. Unpack them into the target directory.

3. Chroot into the target directory.

4. Run the installation and configuration scripts from each package, finishing the setup.

The steps 3 and 4 mentioned above need to be executed inside the target machine because the installa-

tion and configuration scripts for each package are architecture dependent. Unfortunately, the last step

is very computationally intensive, and it is slow when running using the drone’s hardware, to the point

where the drone’s battery life ends before the fourth step has time to finish. To solve this, the third and

fourth steps were executed inside the arm64 computer but using a processor emulator to emulate the

ARM v7 architecture of the drone. The emulator used is named “QEMU”, and according to the projects

home page[44], is a “generic and open source machine emulator and virtualizer.” Running this emulator

the fourth is still a long process. However, in the end, a minimal root file system was created in the USB

flash drive that provides a completely separated environment inside the drone which the user can access

without changing the factory operating system by mistake. There are still some modifications required to

finalize the root file system. Starting by the initialization file that actually invokes chroot, when the drone

starts and a flash drive is detected. This initialization file runs the following task in order:

1. Mounts the flash drive temporary directory “/’flash drive’/tmp” in RAM.

2. Binds the original operating system relevant directories to their correspondents inside the flash

drive’s root file system
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3. Mounts the USR partition

4. Connects to the ADIS system Wi-Fi network

5. Invokes the chroot system call to the SYSTEM partition

The first step creates a directory used by the Linux operating system to store temporary files. This is

necessary for the processes running inside the chroot jail. Then it binds required directories to allow the

process spawned inside chroot jail to run correctly. The bind action executes a bind mount onto the file

system. A bind mount is an alternative view of the directory tree. Classically, a mount creates a new

view of a storage device as a directory tree. A bind mount, instead, takes an existing directory tree and

replicates it under a different point. Meaning that the existing directory is accessible through two different

points and that any change made to one point is visible in the other. The required directories are “/dev”,

“/proc”, “/sys” and “/dev/pts” , that are binded to “/’flash drive’/dev”, “/’flash drive’/proc”, “/’flash drive’/sys”

and “/’flash drive’/dev/pts”. The “/dev” directory is where special or device files are located. The “/proc”

directory is referred to as a process information pseudo-file system. It does not contain any ’real’ files

but rather runtime information for running processes like system memory, devices mounted, hardware

configuration, etc. The “/sys” in essence contains kernel related information about the system and its

components, mostly regarding attached or installed hardware. The files under the “/dev/pts” directory are

console devices, which provide command line access to the system. In the third step, the script mounts

a specific user directory that is going to be explained in detail later. The fourth step is self-explanatory:

the drone connects to the ADIS system WPA2 protected network. The network information is stored in a

file “’flash drive’/data/config.ini” that can easily be edited by the user. This file contains the network SSID

and password as well as the drone’s network IP address. This file as a simple syntax and can be edited

by the user. Bellow is a sample that shows how this configuration file looks like: This file name and

IP : 192.168.1.3
ESSID : ADIS_Wi−Fi_network
PASSWORD: th is_ is_the_password

Figure 32: Example of the config.ini file for the USB flash drive

location were based in the “config.ini” file that comes with the drone, which contains information relative

to the drone’s state and configuration parameters. The fifth and last step invokes the chroot system call.

As mentioned before, this changes the root directory for the calling process and for every process that

spawns from it. After adding this last initialization script into the SYSTEM partition with the name “init”,

another “init” file is added to the USER partition. This last initialization file is called by the chroot caller

process and it runs inside the chroot jail. It executes two different tasks:

1. Creates a new telnet server.

2. Sets the gateway IP address and DNS.

The first task creates a new telnet server, but this time it’s running inside the chroot jail. Connecting

to this telnet server opens a Linux terminal inside the chroot jail with the newly created root file sys-
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tem. Inside this terminal session, more tools are available compared to the original telnet session.

Including the package manager “Advanced Package Tool” or “apt”. This tool allows the user to install

packages directly from the Debian repositories. The “dpkg” tool also allows to install other third party

“.deb” packages not provided by the Debian repositories. Some interesting packages available are for

example the ROS meta-operating system, which consists of a set of libraries and tools that are used

for building robot applications. The second task sets the gateway IP address of the network and the

DNS. These are both the router IP address from which the drone is able to connect to the internet. After

adding this second initialization file, the Debian repositories sources list must be added to the “’chroot

jail’/etc/apt/sources.list”. The sources list indicate which Debian repositories the “Advanced Package

Tool” should access to retrieve packages and updates.

With this, the root file system is finalized. This manual process of creating the rootfs in a USB flash

drive and modify the drone to use this new rootfs can be considered too long and complex. And it needs

to be executed every time a drone’s USB flash drive needs to be repaired or a new drone is added to the

ADIS system. In order to reduce the root file system creation time, an automated process was created.

The most time-consuming task is the fourth step of “cross-debootstrapping”, where the installation

and configuration scripts from each package are executed. This process can be bypassed using a raw

disk image of the root file system. This raw image is a “.img” file that contains all of the binary data

from the SYSTEM partition excluding empty space. This raw image can then be copied to the SYSTEM

partition of any flash drive. This change reduces the root file system creation process from two hours to

around three minutes, depending on the computer and flash drive performances. To further decrease the

root file system creation and drone setup time, a bash script was developed that completely automates

both of these processes. This script is capable of preparing and formatting both partitions to a pre-

selected flash drive, creating the root file system in the SYSTEM partition either by burning the raw

binary image previously created or by running the slow “cross-debootstrapping” process automatically

and also places all necessary files in their correct directories. It also has the capability to verify if a drone

has already been altered to operate in the ADIS system. All of these operations are done automatically.

Only two inputs from the user are required, one to choose from the menu which task he desires to

execute, and another to select the correct USB flash drive to format and install the file system. If the

user desires to adapt a brand new drone, he must connect to the drone’s Wi-Fi hotspot before proceeding

with the integration process.

The only disadvantage of this approach is that the “cross-debootstrapping” process used can only

be done under Linux, the script is not compatible with any other operating system. Since this problem

is not easily solvable, other native Linux functions were used to facilitate the script development, this

further decreased the compatibility with other operating systems other than Linux based ones. This

incompatibility is a problem because the ADIS localization software was developed to run on Windows.

To avoid installing other operating systems into the main computer the following workaround was used.

Once again, for consistency, a minimal Debian installation was purposefully created to run on a virtual

machine on the main computer. However, this installation has only the single purpose of running the

automated drone setup script. Leveraging once again the system resources, a specialized service was
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created to run the script when the virtual machine boots up. When the user decides to exit, the script

itself turns the virtual machine off, closing its window. Using the free VirtualBox[45] program for the

virtualization, it is possible to create a shortcut that automatically boots-up a defined virtual machine.

With this, the user clicks the shortcut icon and the script executes under a Linux environment almost

immediately.

Up until this point all necessary steps to modify and integrate the AR.Drone 2.0 were explored, as

well as, intermediate steps and solutions. Next, to clarify the final implementation process, a summary

of all relevant steps is presented.

Integration Process Out of the box, the drone creates its own Wi-Fi hotspot. When connected

to this hotspot there is available one ftp server and one telnet server. Connecting to the telnet server

provides access to the drone’s original root file system. To integrating the drone in the ADIS system,

new USB flash drive containing a new file system must be set up, and the necessary changes need

to be applied to the drone. To prepare the flash drive a specialized integration script is executed, by

double-clicking the correct shortcut. After clicking, a terminal window opens up running the script in a

virtual machine. This script provides a menu from which the user selects either to modify the drone or

to create the USB flash drive.

If create a new USB flash drive is selected, the script asks which storage device to prepare. After the

drive is selected, the script prepares the flash drive by wiping it and creating two partitions called SYS-

TEM and USER. The SYSTEM partition can only be accessed through an operating system compatible

with the ext4 file system. The new root file system raw image is burned to this partition. If the user

desires to use the “cross-debootstrapping”, the script also provides this option with all steps automated.

The USER partition is a fat32 partition that can be accessed through any computer. The script executes

some finalization steps and notifies the user that the flash drive is ready to be used in the drone with the

message “DONE!”. Throughout the script’s execution, messages are printed in the command line that

informs the user about what task is being done, and if any error occurred.

To modify the drone, the script first asks the user to connect to the drone’s Wi-Fi hotspot. After

establishing the connection, verifies if the drone is in its factory state, or not. If the drone is in its factory

state, the script will proceed to create the “start_USB_OS” file and add a line to the “rcS” file under

“/etc/init.d/”. After these changes, the drone is ready to be used with the ADIS system.

New startup sequence The modified drone has a new startup sequence, fully described in fig-

ure 33. When the drone is connected to a power source, the original initialization process is executed.

This process was already described before and when it finalizes, the drone is in its factory intended state,

with its own Wi-Fi hotspot turned on. Then the extra line added to the “rcS” executes the “start_USB_OS”

file. This file checks if the USB flash drive is plugged in. If this verification returns false, the file execu-

tion ends and the drone is left untouched in its factory state. However, if the verification returns true,

the drone mounts the flash drive to the “/mnt/” directory, binds required directories, and connects to the

ADIS Wi-Fi network with a predetermined IP address in the “config.ini” file from the new file system.
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Figure 33: Integrated AR.Drone 2.0 startup sequence diagram

After these three steps, the drone invokes the chroot system call imprisoning the following processes to

the chroot jail. The chroot jail confines all children processes to the new file system created previously

inside the USB flash drive. Finally, the drone opens a new telnet server that provides access exclusively

inside the chroot jail and sets up the gateway IP address and DNS server, allowing the drone to connect

to the internet. After these tasks complete, the AR.Drone 2.0 is ready to be used within the ADIS system.

The user knows that the startup sequence is finished when the motor LED’s color turns solid green.

Drone’s Interfaces To access the integrated drone, multiple interfaces are available. The original

interfaces are still available, meaning that the ftp server, and telnet server that connect to the original

file system with superuser rights, are up. However, when the drone is working with the new purposely

created file system, a new telnet access is available directly to the chroot jail. The user should choose to

use this last telnet server instead. With it, a Debian base system is available with all of its resources and

tools available. As mentioned before external “.deb” packages can be installed to augment the drone’s

capabilities, as well as a vast set of officially supported packages. To load files directly to the drone, like

navigation controller binaries, the USB flash drive can be plugged in directly to any computer. Because

the USER partition is formatted using fat32, compatibility with most operating systems is assured.
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Flight Controller Implementations

Although the drone’s integration is at this point complete, there is still no direct way for controlling

the drone. For this to be possible, a framework or toolset should be provided along with the rest of the

developed software.

Besides the already mentioned SDK the AR.Drone 2.0 drone has multiple API’s available, written for

multiple programming languages. Three different alternatives are going to be briefly mentioned in this

thesis. The first two are both API’s developed two work with MatLab within Simulink.

The AR Drone Simulink Development-Kit V1.1[47], is a toolbox of Simulink blocks, developed in the

context of the 2013 MathWorks Summer Research Internship project. This toolbox is compromised

by two main blocks, one that handles all communications with drone via Wi-Fi, and another block that

mimics the drone dynamics for simulation purposes. Inside the Wi-Fi control block, other blocks handle

all outgoing and incoming communications as well as all protocols for coding and decoding tasks. There

is also included a set of examples on how to use this toolbox, with simplistic controllers for hovering and

way-point tracking maneuvers. This toolbox is simple to use, although it has some limitations.

This toolbox for controlling the drone uses the protocol described by the AR.Drone Developer Guide.

This protocol communicates with the stabilization and control process running inside the drone called

“program.elf”. In other words, this toolbox sends commands which are interpreted by the “program.elf”

process, and not commands that change the propellers actuation directly. This means that any controller

developed using this toolbox is going to work around the factory implemented controller. Effectively, any

control loop will be an exterior control loop with an unknown control loop running inside. Depending on

the final objective of the controller, this can be an advantage. For example, if the objective is to build

a navigation algorithm to maneuver the drone, and not to control its stability, to have the drone attitude

already stabilized is an advantage.

The case where designing controllers that are able to actuate directly the drone’s propellers also

exist. The user might want to create his own custom stabilization algorithms and test them, to achieve

results that are not possible with the factory provided stabilization controller. To provide such function-

ality, the Simulink automatic code generation can be used. Simulink provides support for embedded

hardware and enables the creation of software solutions that can later be deployed to the specific target

hardware, allowing them to run natively. This requires a set of files and configurations that define the

final target hardware. Since the AR.Drone 2.0 is supported by Mathworks, all of the necessary files

and configurations are already provided[48]. These target files allow to automatically generate code

for the AR.Drone 2.0 directly from a Simulink model, use the “external mode” to monitor and tune the

deployed algorithms in real-time, and support for camera interfacing for onboard image processing is

also available. Basic template models and controllers are also provided that can be used as a base for

new projects.

The third and last alternative mentioned in this thesis is the PS-Drone API[49]. This is a python

based API, that provides a straight forward set of tools as well as an easy to follow set of examples

and documentation. This API is ideal for any user that does not want to rely on Simulink to develop

his project. It is free and open-source which means that it can be used and changed freely. It is not
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a solution to deploy native code like the previous one, but rather issue commands that are interpreted

by the “program.elf” process like the AR Drone Simulink Development-Kit. The main difference when

comparing it to the AR Drone Simulink Development-Kit is video support. With the PS-Drone API it

is possible to decode and use the video streamed by the drone in real-time. It uses resources from

OpenCV, which allow the implementation of advanced image processing techniques. This API, besides

video support, also provides the ability to calibrate the drone, move it, configure and decode NavData

information, and even configure the drone remotely.

It was previously mentioned that it is not possible to actuate directly the drone propellers using the

factory provided controller software. However, the PS-Drone API implements an undocumented pwm in-

struction that can changes the motor actuation directly. But because the drone receives commands only

30 times a second with its factory controller, it may not be sufficient to stabilize the drone by controlling

directly its motors rotation rate. There are also implemented commands that execute pre-choreographed

animations. These animations are defined in the drone controller and can make the drone spin, execute

small “dances” from side to side, or even do a back-flip.
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5 Communications

This chapter focuses on the network related details of the ADIS system. The ADIS system communica-

tion relies almost on its entirety in a Wi-Fi network. Every component of the system is connected to this

network and uses standard internet protocols to communicate with other components within the system.

This provides the ADIS system with flexibility, allowing to freely arrange its remote cameras, computers,

and vehicles.

5.1 Protocol Descriptions

To send information from one computer to another, the system relies on two different protocols, TCP

and UDP. These two protocols are part of the Internet Protocol Suite, will be mentioned as part of the

“Transport Layer” of the ADIS system. They allow all processes to exchange information between them.

TCP and UDP are not the only protocols used. Others are used to define how the data sent through the

“Transport Layer” is formatted.

5.1.1 Remote Camera to Central Server

The messages exchanged between the remote cameras, from chapter 3.4 to the central computer can

be classified into two types: commands and location data. Commands are the messages that describe

information regarding actions that the remote camera needs to execute, while location data contains in-

formation regarding detected trackers locations in pixels. Both types of messages use different transport

protocols and encoding formats. These encoding formats refer to the way that the information is ar-

ranged by the software before being sent through the Wi-Fi network using the “Transport Layer” defined

by TCP and UDP protocols.

Command messages are the ones that tell the remote camera how to act depending on what the

localization software needs from it. Because the success of some commands is dependent on the

execution of previously issued commands, it is undesired that some commands are lost, not reaching

the target. For example, to start streaming the video feed from a remote camera to the localization

software, it’s necessary that the remote camera isn’t running the tracking routine, so a “stop tracking”

command must be issued before a “start stream command” can be executed with success. Thus, to

guarantee that every issued command reaches its destiny, the TCP transport protocol is used. This

protocol by definition guarantees that any packet sent reaches its destination unless the connection

between the source and destination devices is broken. This delivery guarantee has the disadvantage

of slowing down communications, along with the congestion avoidance algorithms that TCP implements

that limit the number of packets sent to the network in order not to overload it. However, because the

command messages are not time critical, the TCP protocol can be used.

The messages besides being sent using the TCP protocol, are also encoded using a custom protocol

described below. It’s important to note that for every message described in the protocol below, either

command or ACK, the EOM character is the newline character, /n.
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Identification Command: This command is used to ask for the remote camera identification infor-

mation, meaning that the remote camera returns what type of device is using, either a Kinect or an RGB

camera.

Data Type
Format

Notes
Command ACK

string ID device The device can either be kinect or camera

Get Resolution Command: This command asks what the camera resolution in pixels is.

Data Type
Format

Notes
Command ACK

string GET_RESOLUTION height width

The response is composed by

the video height and width

seperated by one space

Get Parameters Command: When this command is received, the remote camera returns the cam-

era parameters related to brightness, contrast, saturation, and exposure. The parameters are the min-

imum, the maximum, the minimum step value and the current value. This command is only available

when an RGB camera is connected to the remote processing unit. If a Kinect is connected nothing is

returned.

The information is organized in sets of four values for four camera parameters separated by spaces.

The values are the minimum, maximum, smaller step and current value for each parameter in this order.

The parameters are brightness, contrast, saturation, and exposure in this order.

Data Type
Format

Notes
Command ACK

string GET_PARAMS

Bm BM Bs Bv

Cm CM Cs Cv

Sm SM Ss Sv

Em EM Es Ev

B for brighness values

C for contrast values

S for saturation values

E for exposure values

m for minimum

M for maximum

s for minimum step

v for current value

Set Parameters Command: This command sets the current value for a specific video parameter

for the remote camera. The available parameters are brightness, contrast, saturation, and exposure.

This command is not available when a Kinect is connected to the remote camera. This command

returns nothing when is received.
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Data Type
Format

Notes
Command ACK

string SET_PARAMS param value

The param parameter in the command

can be BRIGHTNESS, CONTRAST,

SATURATION and EXPOSURE.

Calibrate Camera Command: This command sets in motion the calibration sequence. Until this

command finishes the progress of the calibration process is sent as an ACK. If something goes wrong,

the ACK is a CALIBRATE_FAILED message. If the camera calibration is successful, the final ACK is

100. This command can fail if an error occurs during the calibration process, if because the video stream

is active, or even if the camera is not initiated by the start camera command.

Data Type
Format

Notes
Command ACK

string CALIBRATE
CALIBRATE_FAILED

or values between 0 and 100

This command as multiple

ACKs to indicate the progress

of the calibration process

Get Camera Height Command: This command asks for the camera height relative to the ground.

It is only available when a Kinect is connected to the remote processing unit. This command fails if

executed before running the calibration process, returning GET_HEIGHT_FAILED.

Data Type
Format

Notes
Command ACK

string GET_HEIGHT
GET_HEIGHT_FAILED

or height

height is the vertical related to

the ground measured with the

Kinect in the calibration

process.

Start Camera Command: The start camera command is used before using any task that requires

image processing. It allocates the camera device (Kinect or webcam) and initiates it for image acquisi-

tion. This command can fail in if an error occurs, if the camera is already initiated, or even if the video

stream is already running. If any of the previous conditions occur, the ACK sent is CAM_FAILED.

Data Type
Format

Notes
Command ACK

string START_CAM height width
CAM_FAILED or

CAM_OK

The height and width are

always required, but only take

effect when using a webcam.

71



Start Stream Command: The start stream command starts a real-time video stream. This com-

mand may fail if the camera is initiated by the start camera command, if a video stream as already

started or if an unexpected error occurs.

Data Type
Format

Notes
Command ACK

string START_STREAM
STREAM_FAILED

or STREAM_OK

The resolution for the video

feed is hardcoded and cannot

be changed by this command

Stop Camera Command: When this command is sent, the remote camera tries to return the image

capture device to its state before being initiated by the start camera command. This command must be

sent if, for example, the software wants to start a video stream, but the camera is initiated for image

processing tasks. This command can fail only if an unexpected error occurs or if a video stream is

running because if the camera is not initiated, the camera state is the same after its initialization, so the

command succeeds.

Data Type
Format

Notes
Command ACK

string STOP_CAM
CAM_STOPPED_FAILED

or CAM_STOPPED_OK

If this command fails, the

unexpected error may lead the

remote camera to an

unrecoverable state, which

can be fixed by hard rebooting

the remote camera

Stop Stream Command: This command stops the video stream. It fails if the camera is initiated or

if an unexpected error occurs. If this command is issued when the stream is not running, the command

succeeds.

Data Type
Format

Notes
Command ACK

string STOP_STREAM
STREAM_KILL_FAILED

or STREAM_KILLED

If this command fails, the

unexpected error may lead the

remote camera to an

unrecoverable state, which

can be fixed by hard rebooting

the remote camera

Get Image Command: The get image command, asks for an uncompressed frame captured by the

camera. This command is used to transfer an uncompressed image to an external device for posterior
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image processing. This command sends the images in chunks of twenty RGB pixels.

Data Type
Format

Notes
Command ACK

string GET_IMG
GET_IMG_FAILED or

partial_image_frame

Each partial_image_frame is

composed by the RGB values

separated by spaces for each

pixel. All of the RGB triples are

also separated by spaces.

Reboot Command: This command reboots the remote camera. It is never used by the ADIS

system, and it was added for debugging and development purposes.

Data Type
Format

Notes
Command ACK

string REBOOT This command does not have an ACK

Shutdown Command: This command shuts down the remote camera. It is never used by the

ADIS system, and it was added for debugging and development purposes.

Data Type
Format

Notes
Command ACK

string SHUTDOWN This command does not have an ACK

Start Tracking Command: This command starts the marker tracking process. This command fails

if the camera is not initiated, if a video stream is running or if an unexpected error occurs. If the command

succeeds, a stream of information containing the location information starts flowing to the localization

software.

Data Type
Format

Notes
Command ACK

string START_TRACKING port
START_TRACKING_FAILED

or location_information

The location_information format

is: xcorr ycorr z x y

The port parameter refers to the

UDP port on the client side

The location information sent to the localization server corresponds to the location data messages

previously mentioned. These messages are exchanged using the UDP protocol. This protocol, unlike

TCP, does not guarantee that the message is delivered, however, this makes the UDP communication

much faster than TCP. Because the location data must reach its destination as fast as possible, the UDP
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protocol is the best alternative to use. By not guaranteeing the message delivery, the UDP protocol can

suffer from interference and loss of information. This problem is explored in more detail in chapter 7.

The information sent depends on what video capture device is connected to the processing unit,

however, to avoid different data structures, the same codification is used either if a Kinect is connected

or an RBG camera. The xcorr and ycorr parameters refer to the x and y coordinates in pixels, corrected

for the drone height relative to the ground z, in case a Kinect is being used. If an RGB camera is

connected to the processing unit the message format is maintained, but the xcorr and ycorr parameters

are the same as the x and y coordinates. This allows using the same code in the localization software

for both devices.

5.1.2 Central Server to Clients

The messages traded between the main computer to other clients refer to the location data that the

localization software sends to an external computer running a control algorithm. This information can be

compared to the location information shared from one remote camera to the central server, in the sense

that it needs to reach its destination as fast as possible. So, UDP was used. The message sent by

the localization software contains information other than location data. It also has information regarding

tracking identification and capture time. Once again, the EOM character is the newline character, /n.

Data Type
Format

Notes
Command ACK

string TIME,ID1,X1,Y1,Z1,..,IDn,Xn,Yn,Zn| This command does not have an ACK

The message format presented above describes the way that the information is sent to a client

computer. Every message is started by a timestamp, relative to the simulation duration in minutes

measured by the server computer when the message is sent and can be used for synchronization

purposes. This time stamp is followed by all necessary information to describe the detected points. The

ID is a unique identification integer selected by the tracker algorithm that identifies the same marker

throughout the whole experiment. The X, Y and Z parameters are the coordinates of the marker in the

user-defined inertial frame. If an RGB camera is being used instead of a Kinect, the Z coordinate is

always zero.

5.2 Network Topology

When the ADIS system architectures were addressed in chapter 2.3, it was assumed that every system

component communicates directly to any other component of the system. This would form an ad-hoc

network. This type of network is decentralized and every system component has to manage its won

connections to other network entities, in a peer-to-peer mesh style topology. The diagram from figure 34

illustrates this concept. Every network node has its own connection, to any other node that it desires to

communicate with. The messages can be sent directly from the original node to the destination node or
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Figure 34: Peer-to-peer mesh network topology diagram

can be passed along the by other nodes until reaches its destination, in case the mesh network is not

fully connected. A fully connected mesh network means that any node from the network is connected to

other nodes, by one direct connection.

However, the ADIS system does not use a mesh peer-to-peer network topology, because it’s mes-

sage delivery speed is inherently dependent on all of its nodes network speeds. And they are complex

networks to manage due to the big number of connections. The diagrams in chapter 2.3, are drawn in a

simplified way to better describe how the communications inside the network are organized. To illustrate

that a drone communicates with the user’s computer, a direct connection is drawn. In reality, the ADIS

system uses a star topology, like the one from figure 35, in which every network node is connected to

a central hub with a point to point connection. In this type of centralized network, every message is

Figure 35: Star network topology diagram

sent to the central node and then routed to its final destination. This central node is commonly known

as a router. Start networks are the most common network typologies used in home internet networks.

Because every message is relayed in the router to its final destination, the networks speed depends

mainly on the router network performance. This topology also requires a low number of connections to

be managed by the router, keeping network complexity to a minimum.

75



5.3 Network Scanning

During the ADIS system development arose the necessity to build a way to scan and find known devices

connected to the Wi-Fi network. This feature is important for to reasons:

• The localization software needs to be able to find all of the connect remote cameras.

• A tool to find connected vehicles and set up Simulink template files with all of the correct network

configurations was created.

Basically, this feature serves to further automate the basic workflow of the ADIS system. The user could

be prompted with a window to insert the remote camera current IP address or to set up his Simulink

project, but this would require a manual network scan or knowledge on how to access the router interface

to identify the correct IP address between all of the other attributed addresses. To avoid this a network

scanning tool was included.

The network scan method used relies on the Address Resolution Protocol or ARP. The ARP protocol

was defined by the RFC 826[50] in 1982, and it is used to map network addresses (IP addresses) to

psychical address like a MAC address. A MAC address is a hardware identifier that is attached to a

network connected device. This address is defined by the network card manufacturer, and it is different

for any device.

Without going into to much detail the ARP protocol uses the following workflow: when a computer

named computer 1 wants to communicate with another computer named computer 2, inside a local

Ethernet network, it requires the MAC address for computer 2. For example, the computer 1 knows that

the IP address from computer 2 is 192.168.1.25, and wants to send a message. To send a message

through a local network the MAC address from computer 2 is required. The computer 1 first looks up to

cached ARP table and sees if it already has the MAC address for the IP address 192.168.1.25. If this is

the case, computer 1 can send a message to computer 2. However, if the MAC address for 192.168.1.25

is not cached, the computer 1 sends a broadcast ARP message that is accepted by all computers in

the network, asking who is the computer with the address 192.168.1.25. Upon receiving the broadcast

message, the computer 2 answers with its IP and MAC address. This answer is then stored in the ARP

cache by computer 1, which is now able to send the message to computer 2.

The example above gives some leads on how the network scan process is executed. First, a ping

command is sent across a predetermined interval of IP addresses. This triggers the process exemplified

above, that finishes with an ARP cache filled with IP addresses and the respective MAC addresses from

devices connected to the network. Then these cached MAC addresses are compared with known MAC

addresses from ADIS system components or vehicles, that were collected in advance. If any known

MAC address is found, the ARP cache provides the correspondent IP address. This simple process

allows the localization system and other software tools to find any desired device connected to the Wi-Fi

local network. However, two files are required for this process to succeed. One that stores the MAC

address of ADIS network devices, and another that indicates which IP addresses to scan.

The first file is called “Devices_List.txt”. This file is composed of three columns: one that indicates the

device name, another with the MAC address and another that indicates what type of device the device
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is. Bellow an example of how this file looks. The “Camera_wireless” and “Camera_wired” indicate if the

Camera_1 11−11−11−aa−aa−aa Camera_wireless
Camera_1 22−22−22−bb−bb−bb Camera_wired
Drone_1 33−33−33−cc−cc−cc Drone
Drone_2 44−44−44−dd−dd−dd Drone

Figure 36: Example of the Device_List.txt

remote camera is connected to the network via Wi-Fi or Ethernet cable.

The second file required is called “NetworkMap.txt”. This file contains a description of how the

ADIS system components are organized within the network. This organization is not required for the

scan process to work, but scanning the discrete intervals of the network is more time effective than

to scan the complete network. A predetermined network map was defined that describes the interval

of IP addresses that the ADIS network connected devices must have. The correct interval is selected

according to the device type. Bellow is an example of a network map file. Two columns compose this file.

Drone_setup 1−1
Main_PC 2−2
Vehichles 3−19
Remote_Cameras 20−25
Gateway 255−255

Figure 37: Example of the Device_List.txt

The first column describes what type of devices are within the IP addresses interval described in column

two. The second column does not contain the full IP addresses that describe the scan interval, but rather

the last triple of the IP address. For simplicity, it is assumed that all of the IP address starts with the

same three triples, “192.168.1”. The first interval contains only one IP address, the 192.168.1.1. This

IP address is only used when a drone needs to be repaired or configured. The IP address 192.168.1.2

is reserved for the main PC that runs the localization software. The IP addresses between 192.168.1.3

and 192.168.1.19 are reserved for any vehicle inside the ADIS system, either cars or drones. The

192.168.1.20 to 192.168.1.25 address are allocated exclusively for remote cameras. This interval is

the one that the localization software scans every time it starts. This scan is compromised of 5 IP

address instead of 255 if the whole 192.168.1.x IP address range. This decreases greatly the network

scan process, as mentioned before. The last IP address described in the file is the 192.168.1.255

that represents the network gateway node. This gateway is the local IP from which any device can

communicate to the rest of the Internet, and represents the router’s IP address.

This file can be edited to reorganize the network when needed, granted that every device must then

be reconfigured manually to obey to a new network map.
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6 Software Suite and Tooling

Up to this point, most of the tools that compose the ADIS system were already mentioned. Due to

being required to explain what the system does and how it does it, functional parts like algorithms and

mathematical relations were already addressed. Nonetheless, some features like the GUI (graphical

user interface) and basic workflow, are still lacking explanation. This chapter is entirely dedicated to

briefly introduce these features.

One of the main goals of this thesis was to provide a good set of tools to use. The first approach

to this could be to create a simple script with no interface, that handled all necessary tasks by himself

only requiring its initialization. Unfortunately, due to the high complexity of the localization system, which

requires calibration routines, real-time video feeds for camera setup procedures and more, a bare-bones

script would quickly become to complex. To overcome this, extra work was done to build a simple GUI,

that provides the necessary functionality while maintaining being easy to use.

ADIS Localization Software GUI

The localization system is the main piece of software developed. All of the system functionality, except

vehicle communications, hinges in the localization system software and is managed by it.

The graphical user interface for the localization system is encapsulated in a single window. This

window is divided into two zones. The first one is a group of two tabs and the other one is a toolbar. The

two tabs are titled “CAMERA FEED” and “TRACKING”.

Tab Group

Toolbar

Figure 38: Localization system software main window

The first tab handles previewing, in real-time, the connected camera video feeds as well as provide

tools to manage them. The number of video feeds is software limited to six. This is just a software

imposed precaution, to prevent unexpected interface behavior due to, too many video feeds being added.
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However, the software can be altered to support more video feeds. From this first tab, any compatible

camera can be controlled in real time by changing its parameters, using the toolbar. Due to driver

limitations, the Kinect image parameters are not altered consistently, so the toolbar access is limited

when a remote camera is connected to a Kinect. The video feeds can be freely resized. The plus sign in

the middle of the tab adds a new camera to the system. Clicking it opens a smaller window in which the

correct camera can be installed and added to further use. The “IMAGE CAPTURE INTERFACE” drop-

Figure 39: Add new camera window

down menu, selects the interface used to communicate with the cameras. On Windows, to use USB

connect cameras, the interface is called “winvideo” and is fully provided by Matlab. To use the remote

cameras the “Remote CAM” option must be selected. The software only allows the use of one video

interface at a time, meaning that it is impossible to use remote cameras, and USB connected cameras

at the same time. The “DEVICE ID” drop-down menu is used to select the correct camera to use. If

no camera is available, a warning message pops up when selecting the image interface in the previous

step. The “H MATRIX” button opens a new dialogue window. This window provides the option to load a

homography matrix previously created, or to create a new one with the previously mentioned calibration

process. This calibration process provides clear instructions with images indicating all necessary steps.

When every option is set correctly, the “ADD SOURCE” button is enabled, and the user can add a new

camera by clicking on it.

The second tab is composed of all the necessary elements to monitor the tracking process. The

most prominent element of this tab is the “3D Live Graph” that draws in real-time all trackers detected

by the system. This graph can be edited using the “3D Live Graph Tools”. This toolbar provides three

different functions: rotate, zoom and pan. For performance reasons, these tools are disabled while

the tracking process is running, so, any desired changes to the “3D Live Graph” must be done before

initiating the tracking process. The three indicators on the left side display useful information regarding

the tracking process. Frames per second and the number of detected markers indicators are useful

to monitor the localization system performance. The two switches are used to turn on or off the UDP

data stream to the user’s computer, or the “3D Live Graph”. This last option is useful to increase system

80



3D Live
Graph

3D Live 
Graph Tools

Information
Indicators

Switches

Action
Buttons

Figure 40: Localization Software TRACKING tab

performance in case a big number of trackers are being detected, and the frame rate drops considerably.

Finally, there are three buttons on the bottom right corner. The first one is used to adjust the calibration

of the background subtraction used for marker detection with USB connected cameras. This button is

necessary because, although the system is installed indoors, the lighting condition still change during

the day, which requires reacquisition of the camera backgrounds.

Simulink Project Creator

This tools can be described as an automated Simulink project creator. The need for this tool aids

users to configure the Simulink blocks to communicate with the drone, by creating a blank project only

with the required and pre-configure blocks to communicate with the drone.

Figure 41: Tool for creating Drone Simulink projects
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This tool has a minimal interface, as shown in figure 41. It has three columns, two of them are a

list of vehicles and another is a set of buttons. The first column shows devices available in the network,

and the third column shows the devices that the user wants to use, while the second column is a set of

buttons which allow selection actions.

At launch, the program scans the network, according to the network map file as described in sec-

tion 5.3, and displays all of the connected vehicles. Then the user can select which vehicles wants to

use for his project, by clicking the “ADD DEVICE” button. Devices can also be deselected from the

project clicking the “REMOVE DEVICE”. Finally, after clicking the “CREATE PROJECT” button the tool

creates a Simulink project with all of the necessary blocks already configured to work with each vehicle.

Every IP address is set to the right block according to the detected drone. The user can directly use this

project to build his controller without needing any further modifications. Currently, this tool only supports

the AR.Drone 2.0 and the Simulink blocks from the AR Drone Simulink Development-Kit V1.1[47].
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7 Performance Analysis

Until now, all of the system components were presented and their individual operation was explained in

detail. How they connect to each other and work in unison to achieve a cohesive system was addressed

as well. This chapter evaluates the complete system performance and a comprehensive evaluation of

its measurements. This performance analysis is mainly focused on the ADIS localization system since

it is the main component of the complete ADIS system.

To begging the performance analysis a baseline for success must be set. Every image capture

device, either the USB cameras or the Kinect works with a maximum frame rate of 30 frames per second.

As mentioned before the drone interprets commands at a rate of 30 Hz. So ideally the ADIS system

should also work at a frequency of 30 Hz. However, due to processing times, this frequency may not

always be fulfilled. So to ensure that the working frequency is always enough, a minimum sample rate of

20 Hz was set. Below this limit, the system is considered unfit to control a drone or a grounded vehicle.

The drones dimensions are approximately 38x29x12 centimeters. The smallest vehicle dimension is

then the drone height at 12 centimeters. Empirically this was defined as the maximum absolute position

error for the localization system.

Figure 42 shows the setup used to evaluate the ADIS localization system performance. The setup

1.0 m

1.5 m

2.0 m

4.0 m

0 m

Figure 42: Setup for the localization system tests

consisted of one forklift with a remote camera mounted on the tip of its forks. The forks were elevated

until the remote camera was at 4 meters from the ground. A tripod was used to hold a 5 centimeters

marker at a fixed height. A grid of 40x40cm squares was drawn on the ground occupying the entire field

of view of the camera. The intersection points of the grid were used as the locations for all of the mea-

surements during the tests. For each point, 30 consecutive measures were taken, which corresponds

approximately to 1 second of acquisition. From these 30 measurements, the mode was assumed as the

measured value. To analyze not just the system accuracy but the data quality as well, other statistical

quantities were computed, like the average and the standard deviation.

To test the USB cameras accuracy just one test was needed with the marker placed on the ground,

making its height 0 meters. On the other hand, to test the Kinect accuracy, four tests were made with

different heights, 0 meters, 1 meter, 1.5 meters, and 2 meters. Tests with a height above 2 meters
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were not made, because the area viewed by the camera starts to get significantly smaller. At 2 meters

from the ground, the measured area that the camera could see was approximately a 1.5 meters by 2

meters rectangle, roughly amounting to an area of 3 square meters. With such a small area if the control

algorithm faces some stability problems and the drone becomes unstable, the drone rapidly goes out of

the field of view of the camera. Tests at a height of 0.5 meters, were also not made because when the

drone hovers so close to the ground it suffers instability problems due to ground effects.

When the test results are presented, the grid points are ordered from top to bottom, left to right. This

is always true unless stated otherwise. So the bottom left point of the grid is point number 1, the point

immediately to the right is point number 2 and so on, until reaching the last point that will be the top right

point.

7.1 USB Camera

The measurements made with the USB camera are shown in figure 43.

Looking first to figure 43a, we can see the measured x and y coordinates for the 0 meters test. No

Z coordinate data is present because when a USB camera connected the system is only capable of

two-dimensional measurements. Visually, all measured points are close to their reference values, and

the closer the measurements get to the center of the image, the more accurate the measurements are.

This is to be expected because no steps were done to correct lens distortions that are not predicted

by the pin-hole model. These lens distortions are more pronounced in the edges of the lens and less

pronounced close to the center.

In figure 43b it’s possible to better evaluate the accuracy of the measurements. This graph contains

information regarding the absolute error of each measurement for each point. This absolute error is the

two-dimensional Euclidean distance between the reference point and the measurement, given by:

EuclidianDistance =
√
(Xmeasured −Xref )2 + (Ymeasured − Yref )2

This graph also contains two horizontal lines that correspond to the absolute error mean and the maxi-

mum absolute error. The five black vertical lines are there for visual aid, and they separate the measured

points by which reference grid row line they belong to. An analysis of this graph corroborates the last

statements. The maximum error is 8.7 centimeters which is under the baseline value for success defined

earlier of 12 centimeters. Furthermore, the average error is just 3.9 centimeters, meaning that most of

the individual points have small errors. In this graph is even more clear the effects of lens distortion. In

the middle of the vertical lines, the error dips considerable reaching errors below the 2.5 centimeters.

The graph in figure 43c has the standard deviations relative to the 30 individual measurements of x and

y coordinates acquired for each individual point. These standard deviations show how disperse these 30

measurements were. A large standard deviation reveals a system with a noisy output, that would require

extra steps, like filtering, to extract reliable information. Fortunately, the standard deviations reveal very

low noise levels. This is a direct consequence of the clear image produced by the camera. The errors in

the location measures increase evenly along the image length, meaning while a marker is being tracked,
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Figure 43: USB location data test at 0 meters high

no abrupt changes in position will occur derived from lens distortions or calibration errors. This not only

benefits the tracking algorithm performance but also guarantees that relative positions between points

are maintained across the captured area.

This test reveals that the use of a USB webcam is within the ADIS system goals.

7.2 Kinect

The procedure to test the performance of the system with a Kinect is similar to the one involving a

USB camera. The only difference is that a third coordinate must be taken into account, due to the

three-dimensional sensing capabilities of the Kinect.

The graph from figure 44a shows the acquired x and y measurements against the reference grid. This
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time it’s also necessary to take into account the graph from figure 44b, which contains measurements

relative to the height of the markers. From figure 44a, it’s clear that the measured points are close to

the reference grid points. Lens distortion is still noticeable in the edges of the image and increases

the location error locally, however, these distortions appear gradually without abrupt changes that could

confuse the tracking algorithm.

The graph from figure 44b, reveals the quality with which the Kinect detects depth. Ideally, the

measured height should always be 0 meters, predictably this is not the case. Some spikes are noticeable

along that graph which should contribute to an increase of the absolute error. Some values also seem to

be floored artificially to the 0 meters level. This is caused by the localization system which never returns

a negative height. This rule imposed by the remote camera software. As a consequence of this, when

the Kinect senses a depth with enough error to be below the ground plane, the software corrects the

measurement to zero. From figure 44c the actual accuracy of the system in this test can be objectively

assessed. The maximum absolute error is 9.7 centimeters and the average error is 4.1 centimeters.

These results are very similar to the results from the USB camera. Further analysis of the absolute error

graph, once again, show the effects of lens distortion that produces lower errors the closer to the image

center the marker is. Finally looking at the graph from figure 44d, it can be concluded that all of the

three coordinates measurements have low noise levels, although, the depth data is more dispersed than

the rest. This shows that the depth sensor has more inherent noise and inaccuracies than the camera

sensor. All of the relevant baseline criteria for success were fulfilled by this test.

The results from the test with the marker one meter above the ground are in figure 45. The measured

x and y coordinates continue to be close to the reference points, as seen in figure 45a. In this figure,

some points do not have measurements. These points are missing because they were not seen by the

Kinect. Due to the height increase, some points are out of the Kinect’s field of view and get cropped.

This will be evident on each subsequent test at higher heights. The z coordinate is the one that has

higher error values. Looking to the absolute error graph, figure 45c, both the average error and the

absolute error increased to 5.1 centimeters and 10.2 centimeters respectively. The maximum absolute

error is still below 12 centimeters. This error increase is caused by the x and y coordinate correction

based on the height of the drone. With a height of 0 meters, the Kinect behaves similarly to a USB

camera, but when the height increases, the x and y corrections, equation 9, start to have accuracy

errors introduced from the depth measurement, equation 11. These errors are not accounted for by the

calibration process. Looking at the standard deviations, the height measurements have the most noise,

however, the standard deviation reaches lower values than the 0 meters test. This is to be expected

since the closer the marker is to the Kinect the better the depth measurements are. Yet, the three

coordinates measurements have low noise levels.

The test with the marker at 1.5 meters from the ground is displayed in figure 46. This test has more

cropped points than before due to the height increase. Analyzing the figure 46a, it is evident that the

X and Y coordinates start to deviate from the reference points. The Z coordinate also displays errors,

similar to the previous test. The absolute error only has marginal improvements compared to the 1 meter

test. These improvements are due to the fact that most of the points are in the center of the lens. The
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effects of the x and y coordinate correction are still the same as the ones from the one meter above the

ground test. The average error decreased just 3 millimeters and the maximum absolute error decreased

8 millimeters. The standard deviations are also low as the last test, the standard deviations relative to

the Z coordinate are a little slightly lower than before because the Kinect is closer to the marker.

The last test, where the marker was placed with a height of two meters relative to the ground is

displayed in figure 47. Now only 23 points were measured comparing to the 54 points in the initial

test. Looking at figure 47a, the measurements are still close to the reference points. The figure 47b

shows that the height measurement contains most of the total error. This is confirmed by the absolute

error graph (figure 47c) that accompanies the fluctuations of the height measurement error. None of

the measurements falls inside the 2.5 centimeters interval, however, the average error is still low at 5.7

centimeters and the maximum error is 10.9, which is lower than the defined baseline for success of

12. This time the standard deviations for the three coordinates are very similar. Because the marker is

closer to the Kinect the measurements have less noise and are more stable.

These four tests had very good results. The measurements have very low absolute errors and noise

levels. Given that the marker is correctly detected, the localization data is reliable and can be used to

navigate or control airborne or grounded vehicles. However, during the execution of these tests, two

details were discovered. The Kinect depth sensor doesn’t work well with very dark colors. These colors

absorb the infrared pattern used by the Kinect and if the dark area is too large, there is not enough

information available to calculate depth data. For this reason, vehicles with very dark colors don’t work

well with the ADIS system and must be painted. There is an additional problem regarding the marker

surface area. Even with a diameter of 5 centimeters, depending on the distance to the Kinect, marker

might not be big enough to produce reliable depth data. Usually, this is not a problem because the

surface of the vehicle itself adds the missing area to calculate depth information. However, if the vehicle

is too small or painted with dark colors (which reduces the usable surface area), this problem may appear

and decrease the localization system performance.
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Figure 44: Kinect location data test at 0 meters from the ground
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Figure 45: Kinect location data test at 1 meters from the ground
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Figure 46: Kinect location data test at 1.5 meters from the ground
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Figure 47: Kinect location data test at 2 meters from the ground

91



7.3 Sampling Rate

The sampling rate of the localization system is an important aspect because most discrete controllers

work relying on a fix sampling rate. Significant changes to the sampling rate while the controller is

running can lead to critical changes in the controller output, resulting in poor stability and vehicle control.

As mentioned before, the sampling rate for the ADIS system must be as close to 30 Hz as possible,

but never go below 20 Hz. The biggest obstacle regarding a stable sampling rate is that the localization

system software execution speed depends on multiple factors. It depends on the number of cameras

being used, the number of markers being detected and processed, how many markers are in the overlap

zones, on the sampling rate of the cameras or Kinect, on the load of the computer on which the software

is running on, etc.

To control the sampling rate both the ADIS localization system software and the remote camera’s

software were programmed to never go over the 30 Hz. Their detection and processing loops are

controlled by precise timers that slow down the execution speed when the loop will complete faster than

0.033 seconds. However, the real problem exists when the execution speed is bigger than 1/30 seconds.

To observe how the system behaves under normal load, a simple test was made, that consisted of

recording the frame rate of the system while detecting five markers with one Kinect. As seen in figure 48,

the frame rate rarely drops below 30 frames per second and never reached any FPS number below 27

frames per second. Occasionally the sampling rates of 31 frames per second were measured. These

are caused by rounding errors when calculating the sampling time.
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Figure 48: Frames per second test results

These last results are good and provide robust location data to work with. Yet when the current

version of the ADIS system was installed in the laboratory, occasionally results like the ones in figure 49

were found.
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Figure 49: Frames per second test with bad connection results

These results were unexpected and initially, it was thought that the computer was the culprit. How-

ever, this frame rate drops didn’t occur consistently and seemed independent of the computational load.

After some debugging, it was discovered that this behavior appeared only when remote cameras were

being used. This was still not consistent with the behavior localization system during its accuracy tests

were it ran for hours with a stable frame rate around 30 frames per second. In the end, this behavior

was caused by packet drops, when information is being sent from the remote camera to the localization

system software. The UDP protocol used, does not guarantee packet delivery, which makes it extremely

fast. However, this also leads to situations were due to interference some packets are lost through the

network. These situations were happening because there were a lot of people in the laboratory where

the system is installed. They were not connected to the ADIS Wi-Fi network, but because the 2.4 GHz

Wi-Fi space is overloaded with other networks sharing the same Wi-Fi channels. This amount of Wi-Fi

traffic interferes with the UDP communications causing lost packets. A solution for this problem would

be either acquire a new router with stronger antennas that can receive packets even through heavy con-

current traffic. Another solution could be to switch all the Wi-Fi communications to the 5 GHz space, that

is empty. Unfortunately, hardware that supports this frequency is very scarce at the moment. Because

the 5 GHz frequency is more easily attenuated than the 2.4 GHz, it is rare for a drone to support the 5

GHz Wi-Fi frequency because the range would be affected, making this an unreliable option.

7.4 Communication Delays

The elapsed time between the detection of a marker and the arrival of that information to the controller

is also an important factor that needs to be taken into account. Unfortunately to measure precisely

communications delays, at least tone synchronized machines would be required. Solutions for this exist

like the Network Time Protocol or NTP[51], which is able to synchronize a network of computers within

a range of a few milliseconds. Unfortunately, there was not enough time to execute this kind of complex

setup and quantify how large the delay is, instead a much more empirical test was used.

Because all of the vehicles compatible with the ADIS system are originally made to be operated
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by humans, it is easy to conclude that human-like reflexes are enough to operate and navigate these

vehicles. So, if a person with a marker on his hands cannot detect any delay between his movements

and the data sent from the localization system, the communication delay can be considered acceptable.

Although not objective at all, it was a simple test to verify if the system could handle the current vehicle

fleet. This kind of test is completely unacceptable if a user wants to develop a controller that relies on

very low latency communicates, but then again, the ADIS system was not developed with does kind

of demands in mind. The distributed architecture of the ADIS system impairs this kind of applications

because the information needs to travel through multiple devices, using wireless technologies before

reaching the controller.

In short, the ADIS system was not designed for very low latency applications, but rather to cater to

less demanding situations where an easy to use system is more beneficial than a complex but high-

performance system. This empirical test, in the context of the ADIS system applications, is enough to

provide a good degree of certainty that the system has an acceptable latency to control and navigate its

compatible vehicles.

7.5 Tracking and Overlap Zones

The performance of the tracking algorithm must also be analyzed. To test how the tracking algorithm

performs, two similar tests were executed. One consisted of using three cameras to cover a large area,

and then drive a car with three markers on top and see if any marker was lost or switched. This test

evaluated the performance if the tracking algorithm in a 2D setup. The second test aimed to evaluate

the tracking algorithm in a 3D setup. It used one remote camera equipped with a Kinect to track three

markers on top of a drone. Both tests attested to the reliability of the tracking algorithm, however, each

revealed two problems.

(a) Overlap Zones problem illustration (b) Lost of depth problem illustration

Figure 50: Tracking Algorithm Performance Issues

Figure 50a illustrates one problem related to 2D tracking. When the car passes over a wide section

of an overlap zone, the tracking algorithm performance was good and never missed a point. Yet when
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the car passed through a thinner section of the overlap zone one marker was consistently lost and

identified has a new one. Analyzing frame by frame the behavior of the localization software while the

car passed over the thinner section of overlap zone revealed when the car reaches the neighborhood

of the thin overlap zone, a new track appears because one marker is being detected by two cameras at

the same time. This should only happen inside the overlap zone, where the algorithm4 would eliminate

this extra point. Unfortunately, small errors in the calculation of the boundaries of the overlap zone

placed this thin section slightly to the side. This leads to the algorithm4 not taking action at the right

time, leaving the extra point. Because this overlap zone is so thin, the real world boundaries and the

calculated boundaries do not overlap, meaning that the localization software never eliminates the new

marker. This stresses that good camera placement and careful calibration are always required. When

the overlap zones are wider, the real boundaries and calculated boundaries will overlap, which will

trigger the algorithm4, eliminating the extra points regardless. Another problem still related to these

overlap zones is that algorithm4 affects the overall system performance. Even after optimization, the

sampling time inside these zones may be slower than desired. This should be taken into account and

the vehicle should spend as little time as possible in these zones.

The last two problems encountered are related to Kinect depth performance. Usually, in dark-colored

areas, the Kinect cannot measure depth information. As illustrated by figure 50b, this could lead to abrupt

changes in the marker location that the tracking algorithm assumes as new markers appearing into the

frame. This problem was solved by feeding into the tracking algorithm the X an Y coordinates still not

corrected for the Z coordinate. This means that the tracking algorithm is the same as the one used for 2D

tracking and during testing it displayed the same performance. The final encountered problem is related

to overlap zones with the Kinect. Unfortunately, these zones are not possible to implement when a

Kinect is used. When to Kinects are pointing at the same area, their infrared projected patterns interfere

with each other. This interference prevents either Kinect to acquire depth information. This problem

could be solved by synchronizing the depth capture process in such a way that each Kinects projected

their infrared pattern alternately. However, this would require a way to rapidly switch the infrared project

on and off, which is not currently supported by the Kinect driver used.
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8 Conclusion

This thesis aimed to create a comprehensive system for the development of navigation and control

algorithms targeted at mobile vehicles. The main idea behind a system like this is to provide a stable

development environment, capable of accurate and reliable data collection for educational or research

purposes. The vehicles used were both commercially available drones and radio controlled cars.

A system like this presents itself with three main challenges, how to locate and track more than one

test vehicle in an indoor environment, how to communicate and control these vehicles and how to provide

a simple, but yet useful user interface. The solution to the first problem was to build an indoor localization

system. Because solutions based on GPS signals are often not suited for indoor applications, another

approach using cameras and depth sensors was used. Various iterations of this concept lead to a final

architecture, composed by remote cameras connected to Kinect sensors. These are able to detect

specific markers in three-dimensional space. After the tests presented in section 7, it is safe to say

that the localization system has enough accuracy to locate either a car or a flying drone. Nevertheless,

problems still exist regarding overlap zones, because two Kinects interfere with each other when their

field of view intercepts. Because Kinects, among other techniques, use a projected infrared pattern to

perceive depth, when two of these patterns overlap, both Kinects are unable to output depth information.

This problem prevents the use of multiple Kinects to cover an area uninterruptedly. The current solution

is to replace the Kinects with USB cameras, which provides similar accuracy, but location data in two

dimensions.

To follow the test vehicles through time, a tracking algorithm was implemented. It assigns a Kalman

filter to every point detected. This Kalman filter predicts the marker future locations using previously

recorded location data. These estimated positions allow matching points detected in the next frame

with the ones detected in the current frame. This tracking technique works well in the right conditions,

unfortunately, the overlap zones are still a problem. To handle these overlap zones, a specialized algo-

rithm was integrated that uses the Procrustes method to find and delete duplicated points, however, this

algorithm only starts when a point is detected as being within an overlap zone. Unfortunately, due to

small inconsistencies between calibrated cameras, these overlap zones are calculated with small errors

in their boundaries locations. This, in certain conditions, originates duplicated points that confuse the

tracking algorithm and cause point matching errors.

To send and retrieve information from vehicles to fulfill any kind of communication with a remote

device, a Wi-Fi based communication network was created. Depending on the type of information sent

through the network, different transport layer protocols were implemented. Most of the time the TCP

protocol is used. TCP guarantees the delivery of a message to its destination, making it ideal to send

messages containing control commands or any type of information that does not require to be delivered

with the least amount of latency possible. Latency can be an issue for example, when a remote camera

is sending location data to the computer running the localization software. In this case, all messages are

sent using UDP. UDP is faster than TCP because it does not guarantee that a packet is delivered to its

destination. This causes issues, in situations where there is a lot of Wi-Fi traffic. This excessive traffic
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does not necessarily need to be on the ADIS Wi-Fi network. Because the laboratory has a very high

density of Wi-Fi signals, interference coming from separate networks impacts the system performance

greatly. This impact can lead to large amounts of dropped UDP packets, slowing down the localization

system. Thankfully, this problem is not always present, because it requires a big amount of Wi-Fi traffic.

Regarding vehicle integration, this thesis only addressed flying vehicles, more specifically drones.

The drone model selected was the AR.Drone 2.0 from Parrot. In the end, this choice turned out to be a

success. This drone model is durable, and it endured testing, without breaking. Another relevant charac-

teristic was the official and unofficial community support around it. Simulink controllers are available for

it, directly provided or promoted by MathWorks. This helped the overall system integration considerably.

Nonetheless, the USB port and embedded Linux based operating system were the keys for a successful

integration within the ADIS system. The lack of WPA2 support and no easy repair method were defi-

nitely challenges that took a time to overcome correctly, but the use of the chroot method to change to a

purposely made file system contained inside an external USB flash drive, provided the desired degree

of security and flexibility.

The software workflow and final user interface can also be considered a success. This conclusion

is quite subjective, but if we consider how simple the user interface appears to be and the amount of

functionality it provides, it is hard not to consider this as a good and necessary addition to this thesis

final product. No script or text-based tool can provide the amount of information provided by this simple

GUI, which contains real-time video and depth streaming, location data visualization capabilities, as well

as visual cues to guide the user throughout the mandated workflow.
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9 Future Work

For as much as this thesis has created from scratch, there still is a big amount of work that can be done

to further improve and expand the feature set of the ADIS system. Algorithm optimizations can definitely

be done to not only improve general performance but also to solve problems mentioned previously.

The overlap zones issue can be easily solved by artificially expand the calculated boundaries. This

would force the algorithm that identifies and deletes duplicated points to start earlier, removing the extra

points that confuse the tracking system. However, further performance optimizations to this algorithm

are also needed. The remote cameras can also be enhanced. A smaller form factor would definitely be

a big addition to the system flexibility. In terms of size, the ideal processing unit for a remote camera

would be a single board computer. Usually, these kind of computers are not powerful, but with enough

optimization, they have enough processing power to run the necessary vision algorithms. One of these

optimizations could be a complete rewrite from Python to C/C++ of the image processing algorithms

used by the remote cameras. Because C/C++, support real multi-threading, true multi-core algorithms

can be written. Many image processing techniques can be highly parallelized to fully use all multiple

cores available, greatly improving performance. The Kinect driver is also a point that could be improved

in the future. If the ability to turn the infrared projected pattern rapidly on and off was added, the overlap

zones interference between Kinects could be resolved. Together with a synchronization system, Kinects

with overlap zones could be coordinated to only acquired depth data and project its infrared pattern one

at a time, effectively eliminating interference.

Regarding network performance, a better router is undoubtedly necessary. Excessive Wi-Fi traffic

can occasionally slow down the ADIS system performance rendering it unusable. A higher quality router

can withstand noisier environments and prevent UDP packet drops. Change from UDP to TCP would

eliminate packet drops, but would probably not solve the low sample rate problem, since TCP would

equally suffer from interference slowing down the communications as well.

Future perspectives include the use of ADIS system as the position sensor for navigation and control

or mobile robots, exploiting its dynamics and convergence to solutions with proved stability using ADIS

for the update of state variables phases.
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