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Abstract

Wireless sensor networks (WSN) are one of the most promising technologies due to

their wide range of applications. Location awareness is a critical requirement of those

applications as sensed information is often only meaningful if it is in conjunction with

the location of the sensor. Moreover, localization and target tracking might be the main

task. Therefore, with the purpose of addressing these problems, this thesis proposes

several robust localization algorithms in WSN with a special focus on Target Tracking.

The first part of the thesis considers the problem of locating a single source from noisy

range measurements of a set of nodes in a WSN. Several techniques are presented for

two noise distributions, namely Gaussian and Laplacian, in different space dimensions.

Broadly, the approaches for both noise distributions are based on formulating a range

based Maximum-Likelihood (ML) estimation problem for the source position as a type

of angle-of-arrival localization problem, and then using convex relaxation techniques to

obtain a semidefinite program that can be globally and efficiently solved. Moreover,

algorithms based on `1-norm are used to address the Laplacian noise case, which models

the presence of outliers in some practical ranging systems that adversely affect the

performance of localization algorithms designed for Gaussian noise.

The second part of the thesis presents Simultaneous Localization and Tracking in WSN,

which aims to determine the positions of sensor nodes and a moving target in a network,

given incomplete and inaccurate range measurements between the target and each of

the sensors. One of the established methods for achieving this is to iteratively maximize

a likelihood function (ML) of positions given the observed ranges, which requires ini-

tialization with an approximate solution to avoid convergence towards local extrema. A

modified Euclidean Distance Matrix (EDM) completion problem is solved for a block of

target range measurements to approximately set up initial sensor/target positions, and

the likelihood function is then iteratively refined through Majorization-Minimization. To

avoid the computational burden of repeatedly solving increasingly large EDM problems

in time-recursive operation, an incremental scheme is exploited whereby a new target/n-

ode position is estimated from previously available node/target locations to set up the

iterative ML initial point for the full spatial configuration. The above methods are first

derived under Gaussian noise assumptions, and modifications for Laplacian noise are

then considered.

Simulation results and real indoor experiments show that the proposed algorithms sig-

nificantly outperform state of the art methods in the presence of outliers as well as

Gaussian noise. Additionally, they attain the Cramér Rao Lower Bound for small noise

in the Gaussian case.
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The third part of the thesis addresses sensor network localization problems with addi-

tional difficulties. Modified EDM completion problem is derived to estimate multiple

target positions when there is no a priori information on turn-around time in two-way

time of arrivals (TOA) measurements. It is assumed that targets can collaborate not

only with anchors but also with each other, which leads to accurate localization even

if some of those connect only to few anchors. Another EDM completion problem is

examined to estimate multiple source positions in the existence of unknown transmit

power in received signal strengths (RSS) measurements. Simulation results show that

the proposed method outperforms the state of the art method in two ways: it is more

accurate and it requires less computational operations. Additionally, it is observed that

the cooperation among sources ensures accurate localization when some sources do not

communicate with enough number of anchors.

Range measurements used in above algorithms are estimated from TOA or RSS. In

the last part of the thesis, another range based localization problem, time difference of

arrivals based source localization, is addressed. And a novel approach is proposed to

solve it. The original problem is put in a more tractable mathematical form by using

the square of the differences. Moreover, the exact solution of the modified problem is

obtained by expressing the source location in polar coordinates instead of Cartesian

coordinates.

Keywords: Source localization, sensor network localization, simultaneous localization

and tracking, nonconvex and nonsmooth minimization, semidefinite programming, max-

imum likelihood estimation, Laplacian noise, central processing.



Resumo

As redes de sensores sem fios (RSSF) são uma das tecnoligias mais promissoras pela

sua utilidade num vasto número de aplicações. A informação sobre a localização dos

sensores é um requesito critico uma vez que a informação fornecida só é relevante quando

combinada com a localização. Além do mais, a localização e o seguimento de alvos pode

ser um objectivo por si só. Assim, com o intuito de melhorar as soluções existentes,

esta tese propõe algoritmos robustos de localização em RSSF e com especial destaque

em Seguimento de Alvos.

A primeira parte da tese considera o problema de encontrar uma fonte única apartir de

medidas, com rúıdo, da distância entre a fonte e cada um dos vários nós de uma RSSF.

São apresentadas várias técnicas para duas distribuições de rúıdo, tanto Gaussiano como

Laplaciano, em espaços de diferentes dimensões. As abordagens recorrem à formulação

do problema de estimação de distância baseada na máxima verossimilhança (ML do

Inglês Maximum Likelihood) como uma localização de ângulo de chegada. Este problema

é resolvido usando técnicas de relaxamento convexas que levam a obter um problema de

programação semidefinido positivo, que pode ser global e eficientemente resolvido. Algo-

ritmos com base na norma `1 são usados para resolver o caso de rúıdo Laplaciano. Este

modela a presença de outliers presentes em sistemas reais e que degradam negativamente

o desempenho de algoritmos de localização projectados para rúıdo Gaussiano.

A segunda parte da tese aborda o problema do Seguimento e Localização Simultâneos

em RSSF, que visa determinar as posições dos nós da rede e de um alvo em movi-

mento a partir de medições esparsas e imprecisas de distâncias entre o alvo e cada

um dos sensores. Um dos métodos apresentados corresponde a maximizar iterativa-

mente uma função da probabilidade dos sensores estarem numa determinada posição,

dadas as distâncias observadas. O processo iterativo requer a inicialização com uma

solução aproximada para evitar a convergência para um extremo local. Uma modi-

ficação ao problema de completar uma Matrix de Distância Euclidiana (EDM do Inglês

Euclidean Distance Matrix) relativa ao um conjunto de medidas de distâncias ao alvo

é utilizada para determinar aproximações iniciais das posições de sensores/alvos. A

função de verossimilhança é então refinada iterativamente através um algoritmo de Ma-

jorização-Minimização. Para evitar a carga computacional resultante de repetidamente

resolver problemas cada vez maiores da EDM, explora-se um esquema incremental pelo

qual uma nova posição alvo/nó é estimada a partir de dados anteriores de posições

nó/alvo para configurar o ponto initial do ML. Os métodos referidos são inicialmente

derivados assumindo rúıdo Gaussiano e depois modificados para o rúıdo Laplaciano.



vi

Os resultados obtidos mostram que os algoritmos propostos superam significativamente

os métodos de localização existentes na presena de outliers, bem como rúıdo Gaussiano.

A terceira parte de tese aborda problemas de localização em redes de sensores na pre-

sença de dificuldades adicionais. Em particular, propomos uma modificação ao problema

de preenchimento de EDM para estimar as posições múltiplos alvos quando não temos in-

formação a priori sobre o tempo de viagem em dupla transmissão nos tempos de chegada.

Assume-se que as fontes/alvos podem colaborar não só com as âncoras mas também en-

tre elas, o que leva a uma localização de maior acuidade na localiza ao, mesmo se esta

colaboração envolver apenas poucas ligações. Propomos também um outro problema

de preenchimento de EDM para estimar as posições de vários alvos quando não se sabe

a potência dos sinais transmitidos. Os nossos resultados experimentais indicam que o

método proposto, não só é mais preciso do que o algoritmo considerado estado-da-arte,

como também requer menos operações computacionais. Para além disso, observamos

que a cooperação entre fontes é suficiente para uma localização precisa quando algumas

destas não comunicam com um número suficiente de âncoras.

As medições de distância que os algoritmos anteriores usam são estimadas partir da

diferena de tempos de transmissão/recepção ou a partir da potência do sinal de chegada.

Na última parte da tese, consideramos um outro problema de localização, baseado em

diferença nos tempos de chegada, e uma propomos uma nova abordagem. O problema

original é re-escrito em forma matematicamente mais tratável recorrendo ao do quadrado

das diferenças. Além disso, a solução exacta do problema modificado é obtida expres-

sando a localização da fonte em coordenadas polares em vez de coordenadas Cartesianas.

Palavras-chave: Localização de fontes, localização de rede de sensores, localização e

rastreamento simultâneos, minimização não convexos e não diferenciáveis, programação

semidefinida, estimativa de verosimilhança máxima, rúıdo Laplaciano, processamento

central.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks, Localization and Tracking

Recent advances in technology have allowed the development of low-cost, low-power

and multi-functional sensors that are small in size and able to communicate at short

distances. Cheap and smart sensors, which are networked through wireless links and

deployed in large numbers, provide many opportunities for sensing, monitoring and

controlling homes, cities, and the environment. Current and potential applications of

Wireless Sensor Networks (WSN) include smart homes (home security, control of home

appliances, and locating inhabitants), search and rescue (locating lost children, emer-

gency responders, and earthquake victims), inventory control (real-time tracking of ship-

ments and valuable items in manufacturing plants), environment monitoring (bush fire

surveillance and water quality monitoring) and target tracking.

Location awareness is an essential feature of above WSN applications. Information

collected or communicated by a wireless sensor node is often meaningful only in con-

junction with the location of the node. For example, sensor networks used for detecting

spatial variations in environmental conditions, such as temperature or pollution, require

knowledge of each sensor’s location. Localization is also relevant to the networks main

functions: communication, geographical routing, network coverage, etc. Moreover, lo-

calization and tracking might actually be the main task of WSN such as it is the case

with the applications of habitat monitoring and target tracking). Nevertheless, location

awareness in WSN is far from a trivial task. Since the network can consist of a large

number of sensor nodes that are deployed in an ad-hoc fashion, manually programming

each sensor with its geographic information is impossible. Furthermore, any dynamic

technique must take into account the low-power and low-cost constraints that govern ev-

ery aspect of sensor networks. In most application scenarios, regular maintenance (and

1
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battery recharging) is virtually impossible, making energy efficiency become a critical re-

quirement for these nodes. These restrictions are exactly what inhibits us from using the

obvious solution of incorporating a Global Positioning System (GPS) receiver in every

node. Moreover, GPS-based localization is not applicable in the indoors, underground

and underwater sensor deployment scenarios.

The goal of localization is to determine the physical coordinates of a group of sensor

nodes. Sensor network localization algorithms estimate the locations of sensors by using

knowledge of the absolute positions of a few sensors and inter-sensor measurements such

as distance and bearing measurements. Sensors with known location information are

called anchors and their locations can be obtained by using a GPS, or by installing

anchors at points with known coordinates. In applications requiring a global coordinate

system, these anchors will determine the location of the sensor network in the global

coordinate system. When the relative information is sufficient, the locations of sensors

are an arbitrary “rigid transformation” (rotation, reflection, translation) away from the

global coordinate system. Good surveys on localization in WSN can be found in [1–5].

Sensor network localization can generally be divided into two cases: non-cooperative

and cooperative. In the noncooperative case, sensor nodes can communicate only with

anchor nodes [6, 7]. The lack of accessible anchor nodes and also limited connectivity

among anchor nodes and sensor nodes lead to the emergence of cooperative localization

in which sensor nodes are able to communicate with both anchor nodes and other sensors.

Therefore, not only are measurements between sensor nodes and anchor nodes obtained,

but also the sensor nodes themselves are involved and collect measurements from each

other [8].

Target tracking is an important application for WSNs because of its relevance to in-

telligence gathering and environmental monitoring. In order to achieve good accuracy

in target localization task, the nodes themselves have to be well localized. Moreover,

the localization algorithm should be efficient and scalable. Although several research

works have addressed the problem of target tracking in collaborative networks [9], and

sensor node location estimation [10] separately, very few of them actually treat the prob-

lem of joint location estimation and target tracking, which is sometimes referred to as

Simultaneous Localization and Tracking (SLAT) in the literature [11–13].

Although, the main focus of this thesis is the localization algorithms for WSN, the

proposed algorithms can easily find place in cellular networks and robotics. In other

words, “sensor/source/target/node” might refer to any device involved in the localization

algorithms, such as a cellular phone, a base station or a robot.



Chapter 1. Introduction 3

(a) trilateration (b) triangulation (c) multilateration

Figure 1.1: Geometric Techniques: Range or angle combining (reproduced from [14]).

1.2 Localization Measurements

The use of any localization algorithm is only as good as the validity of the assumptions

on the underlying measurement error distribution in the actual deployment scenario.

Accuracy in measurement technology affects the algorithm accuracy.

Since the sensor nodes are equipped with radios to perform communications, locating

a node in a wireless system from radio signals travelling between nodes attracts lot of

attention. Depending on the positioning technique, Angle of Arrival (AOA), Received

Signal Strength (RSS), Time of Arrival (TOA), or Time Difference of Arrival (TDOA)

information can be used.

TOA: TOA technique measures the distance between nodes using signal propagation

time. In the absence of any errors, the uncertainity on TOA estimate forms a circle

centered at an anchor as shown in Figure 1.1(a) [14]. In order to calculate the TOA pa-

rameter for a signal travelling between two nodes, the nodes must either have a common

clock (one-way ranging approach), or exchange timing information by certain proto-

cols such as a Two Way Ranging (TWR) protocol. The one-way ranging approach to

determine TOA is less used because it requires an accurate synchronization between

the sender and receiver clocks which adds cost and complexity to the WSN. TOA is

susceptible to errors due to obstructions between the sender and the receiver. These

obstructions, leading to so-called Non Line of Sight (NLOS) conditions, can cause a

positive bias in the distance estimate. Estimating arrival times might also be hampered

by noise, interference, multipath and clock drifts [15]. Among the noisy measurements

upon which localization could be based, TOA provides a good tradeoff between the

accuracy and implementation cost [14, 16].



Chapter 1. Introduction 4

TDOA: In the absence of synchronization between the sender and the receiver, the

TDOA estimation can be performed if there is synchronization among the receiver nodes.

TDOA estimation provides the difference in arrival times of two signals travelling be-

tween the sender node and two receiver nodes, which leads to elimination of timing offset.

The noiseless TDOA between receiver nodes defines a hyperbola with foci at receiver

positions (see Figure 1.1(c)). Multipath and NLOS conditions limit the accuracy of the

TDOA estimation [17].

The clock synchronization is an important practical problem of TOA/TDOA based

systems and it effects the accuracy of localization algorithms. Some systems sidestep

this issue without resorting to the TWR protocol by using ultrasound and RF signals.

The difference of those signals’ arrival times to the receiver node gives an accurate

estimate on the distance, between the sender and receiver nodes, which is then used in

localization algorithms [18].

AOA: AOA based methods strictly speaking do not measure distance but the direc-

tion of the received signal (see Figure 1.1(b)) [19]. In these methods, several spatially

separated antennas are used to discover the AOA of the signal based on measurements of

the phase differences in the arrival of a wavefront. These methods can obtain accuracy to

within a few degrees. Another advantage of them is that they do not require receiver or

sender clock synchronization. Unfortunately, AOA hardware tends to be more expensive

than the ones used in above techniques, since it requires a large receiver antenna or an

antenna array. The accuracy of AOA is affected by shadowing and multipath reflections.

RSS: Among the noisy measurements upon which localization could be based, RSS

is an attractive method mainly because of its low complexity and cost [16]. The power

of a signal traveling between two nodes is a signal parameter that contains information

related to the distance between those nodes. In theory, the energy of a radio signal di-

minishes with the square of the distance from the signal’s source. In practice, however, it

is well known that the propagation characteristics of radio signals can vary with changes

in the surrounding environment (weather changes, urban/rural and indoor/outdoor set-

tings) and can be highly non-uniform [3, 20], i.e., it is possible to retrieve the distance

information from a particular direction but not from the others as shown in Figure 1.2.

Multipath signals and shadowing are two major sources of environment dependence in

the RSS measurement [8].

The parameters of the noise can be assumed to be known for all the previously stated

methods and also it is possible to (approximately) model each noise component by

a zero mean Gaussian random variable [20] for TOA, RSS and AOA based systems
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Figure 1.2: The probability of successful packet transmission with respect to distance
from the source in RSS case (reproduced from [3]).

in Line of Sight conditions. The noise distribution in the NLOS case is commonly

modeled as Rayleigh [21], Exponentially modified Gaussian [22] or Gamma distributions

[20]. Algorithms based on `1-norm are known to be robust to outliers or NLOS [23].

Therefore, `1-norm is adopted in the cost functions of the optimization problems in this

thesis. Interestingly, these problems actually become Maximum Likelihood Estimation

(MLE) problems when the noise is assumed as Laplacian as shown in Chapters 2 and 3.

Therefore, Laplacian noise distribution refers to outliers/NLOS throughout the thesis

because of mathematical tractability.

1.3 Localization Algorithms

A detailed survey on localization algorithms can be found in [24] and a survey related

with each chapter’s discussion will be provided at the beginning of the chapters. How-

ever, a general look at the localization algorithms can be found next:

Geometric based techniques are appealing due to their simplicity when the noise is

absent and the number of anchors is small. The most basic and intuitive method is

called trilateration which locates the target node by calculating the intersection of three

circles [25, 26] based on simultaneous range measurements from three nodes located at

known positions as shown in Figure 1.1(a). Triangulation is used when the direction of

the node instead of the distance is estimated, as in AOA systems (Figure 1.1(b)). The

node positions are calculated in this case by using the trigonometry laws of sines and
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cosines [26]. Multilateration is a technique based on the measurement of the difference in

distance to two or more nodes at known locations which forms a hyperbolic curve. The

intersection of two hyperbolas, corresponding to two TDOA measurements, determines

the position of the target nodes shown in Figure 1.1(c) [26, 27].

However, when the position lines intersect at multiple points, instead of a single point,

due to errors on measurements or increased number of parameters, the geometric ap-

proach does not provide a useful insight as to which intersection point to choose as the

position of the target node.

If the data is known to be described well by a particular statistical model, then the

MLE can be derived and implemented. That is because the variance of these estima-

tors asymptotically (as the signal-to-noise ratio goes high) approaches the lower bound

given by the Cramér Rao Lower Bound (CRLB). Even though a closed form Maximum

Likelihood (ML) solution is not possible because of nonlinear dependence between the

measurements and the unknown parameters, approximate and iterative ML techniques

can be derived as will be discussed below.

Typically, ML solutions are obtained as the global minimum of the nonconvex objective

function which is directly derived from the likelihood function of the problem. Several

algorithms have been proposed which aim at finding ML solutions. For instance, the

classic Nonlinear Least Squares (NLS) algorithm [28, 29] and SMACOF algorithm [30,

31] are popular due to their relatively low complexity and ease of implementation. The

nonlinear optimization problem based on AOA or TDOA measurements can be solved

by a Newton-Gauss iteration [32, 33]. For TOA measurements, the steepest descent

[34, 35], Gauss-Newton [36, 37], Majorization-Minimization [37, 38] methods have been

proposed. These methods require an initial estimate close enough to the true minimum

of the cost function. Such an initial estimate may be obtained from prior information,

or using a suboptimal procedure described as follows.

One way to prevent convergence to local maxima is to formulate the localization as

a convex optimization problem. Localization algorithms based on global optimization

such as the Semidefinite Programming (SDP) formulations are not, by design, strictly

derived from the likelihood function [35, 39, 40]. However, the advantage of an SDP is

that its cost function does not have local minima and thus convergence to the global

minimum is guaranteed [23]. One drawback of some SDPs is their high computational

complexity. Additionally, the SDP technique is sub-optimal and cannot achieve the

best possible performance under all conditions. When the probability distribution of

the noise is not known, least squares (LS) techniques can be used to obtain a coarse

localization estimation [6, 41, 42]. Since it is computationally inexpensive, it may be
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used as an initial location estimate to enhance the localization performance of more

accurate (yet more complex) algorithms.

The localization algorithms can also be classified as centralized and distributed [5, 8].

Centralization requires the transfer of inter-node measurements over many hops to a

sufficiently powerful central node. In distributed algorithms, each node uses its own

measurements and exchanges local information with its neighbors (only one hop but

possibly more than once, over multiple iterations). Centralization allows an algorithm

to undertake much more complex mathematics than is possible in a distributed setting.

However, distributed algorithms are more robust to node failures. Moreover, the cen-

tralized algorithms are not suitable for large scale networks due to energy efficiency.

In this thesis, the centralized localization algorithms will be exploited. The main mo-

tive behind the interest in centralized localization schemes is the likelihood of providing

more accurate location estimates than those provided by distributed algorithms. What

is more, once the number of hops to reach the central node is less than the number of

iterations to converge to a stable solution, the centralized algorithms are more energy

efficient than the distributed ones [8].

To this end, while many approaches to localization based on geometric techniques or

heuristic criteria can be found in the WSN literature [43, 44], the primary focus in this

thesis is on optimization-based methods formally derived from the likelihood function of

observations, or related cost functions [45–50]. The main tool is the ML iterative tech-

niques with a good initialization provided by SDP techniques or convex optimization

techniques alone. That’s because, we can take advantage of the optimality properties of

ML estimates to improve the robustness to perturbations in range measurements. Ad-

ditionally, SDPs, which are derived from original problems through convex relaxations,

are likely to have a good approximation (a unique minimizer of SDP) to the original

solution with ease of implementation. Furthermore, as stated above, optimization based

techniques provide more insights than geometric techniques or heuristics in the existence

of noise and multiple parameters. With these tools, two related problems will be tackled:

Source Localization (SL) and Sensor Network Localization (SNL). SNL is also examined

with Target Tracking application, namely SLAT, which is not handled in a usual way as

the target dynamics are not accounted for. That’s because, above methods proposed for

the SLAT problem need a good prior knowledge on sensor deployment and initial tar-

get position. To decrease the sensitivity to initial estimate, a novel two stage-approach

(startup phase and updating phase) is proposed. Briefly, the main goal of the startup

phase is to obtain an outline of the network configuration from a set of measurements

between each target position and sensor/anchor positions. And it is followed by an up-

dating phase (time recursive) where new target sightings are incrementally assimilated

as they become available, while improving all previously determined locations. Each
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phase consists of an initialization step to calculate approximate locations, followed by

an iterative refinement step of the likelihood function. Local convergence to undesirable

extrema in ML methods due to poor initialization is thus alleviated. Throughout the

thesis, these algorithms are derived assuming the noise on the observations has Gaussian

or Laplacian distribution.

1.4 Contributions

The original contributions of this thesis are as follows

1. Source Localization Under Gaussian Noise (Sections 2.4.1 and 2.5.1): In the lit-

erature, TOA based localization algorithms mainly focus on range matching cost

function or the intersection of circles. This work looks at the same problem but

from a different perspective and presents a novel angular framework, called Source

Localization in Complex Plane (SLCP), in Section 2.4.1 (published [45]). SLCP is

a 2D source localization algorithm which manipulates the original range matching

cost function, turning it into an equivalent formulation and that resembles source

localization based on AOA. The framework of SLCP is also extended from 2D

localization to arbitrary (real) dimensions in Section 2.5.1. The latter Semidef-

inite Relaxation (SDR) method is termed as Source Localization with Nuclear

Norm (SLNN), as the nuclear norm arises naturally in the cost function of the re-

laxed optimization problem (submitted [51]).As illustrated by our simulations both

SLCP and SLNN offer a tight relaxation in most problem instances, and retains a

performance advantage over the most popular source localization algorithms.

2. Source Localization Under Laplacian Noise (Sections 2.4.2 and 2.5.2): Laplacian

noise, which represents outliers or NLOS situations, is addressed in Sections 2.4.2

and 2.5.2 by replacing `2 norms with `1 norms for various optimization subprob-

lems. The problems are initially formulated under the assumption of Gaussian

noise, and then by performing suitable manipulations, they are rewritten in a

form that is amenable to general-purpose solvers. For instance, a modification of

SLCP, termed Source Localization with `1 Norm (SL-`1), is introduced for ML

source localization under Laplacian noise for 2D in Section 2.4.2 (published [38]).

The ML formulation of a source localization problem with Laplacian noise is a

more robust solution to outlier measurements, a property that was observed in

simulation even for non-Laplacian range errors. Conceptually similar extensions

for source localization beyond 2D, termed Source Localization with `1 Norm Single

Dimension (SL-`1 SD) and Source localization with `1 Norm Multiple Dimensions
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(SL-`1 MD), are provided in Section 2.5.2, consisting of a reformulation of the non-

differentiable log-likelihood function for Laplacian noise as a reweighted version of

the Gaussian log-likelihood (submitted [51]).

3. SLAT with Modest Prior Knowledge (Sections 3.4.1, 3.4.2 and 3.5.1): This thesis

emphasizes the development of a SLAT method with modest prior assumptions

on the sensor/target positions (published [37], [38]). This is achieved mainly by

casting SLAT as a SNL (Sections 3.4.1, 3.4.2 and 3.5.1) or SL problem during ini-

tialization in the startup and updating phases, respectively, which admit accurate

convex relaxations where local extrema are absent. Anchors are still needed in

refinement steps to eliminate fundamental translation and rotation ambiguities in

the likelihood function.

4. Coherent ML framework for SLAT with Moderate Complexity (Sections 3.4 and

3.5): The startup/time-recursive updating approach is proposed for Gaussian

noise, using cost functions for the initialization steps that match plain range (non-

squared) observations with plain estimated ranges. These allow for both the ini-

tialization and ML refinement steps to operate with cost functions that match

plain ranges, which leads to improved robustness under strong measurement noise

in Section 3.4 (published [38]). In addition to the Gaussian case, this work devel-

ops startup and updating algorithms for Laplacian noise, to model the presence of

outliers in some practical ranging systems that negatively affect the performance

of localization algorithms designed for Gaussian noise in Section 3.5. The details

of proposed cost functions are different for Gaussian and Laplacian noise models,

but in both cases robustness to range errors is gained relative to more standard

Euclidean Distance Matrix (EDM) methods by matching plain distances. This is

attained with a moderate complexity.

In addition to the initialization techniques, a novel ML iterative technique Ma-

jorization Minimization (MM) is proposed for the Gaussian case (Section 3.4.3)

and Laplacian case (Section 3.5.2) (published [37, 38]).

5. Real Indoor Experiments (Sections 2.9 and 3.7): The above contributions are

also validated with a 3D real data from Cricket indoor system, from Crossbow

Technologies [18], which uses both ultrasound and RF signals to estimate the

ranges between sensors and a target. These devices are inexpensive and easy

to deploy; however, their operating range is limited, approximately ten meters

(published [52]).

6. SNL with Unknown Turn-Around Time and Unknown Transmit Power (Sections

4.1 and 4.2): Chapter 4 shows the practices of similar techniques used in Chapter

3 to SNL with additional unknown parameters. An accurate SDP method which
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localizes multiple targets simultaneously in the presence of unknown turn-around

time in a TOA based network is presented in Section 4.1 (accepted [53]). The

cooperation is assumed not only between anchors and targets but also among

targets to improve the localization. For RSS based sensor network with unknown

transmit power, Section 4.2 proposes a modified EDM method which is more

accurate and less complex than the recently published method (submitted [54]).

Accurate results are obtained even if some sources connect to few anchors due to

the cooperation among themselves.

7. Exact Source Localization from Squared TDOA (Section 5.2.3): Classical TDOA

based localization algorithms try to minimize the inconsistencies between the mea-

sured and the estimated range differences. Due to the high nonlinearity between

the measurement model and the problem parameters (and the noise), finding the

exact solution of this problem is difficult. Chapter 5 proposes a novel formulation

using squared range differences which leads to a nonconvex optimization prob-

lem that is solved efficiently and globally by switching from Cartesian coordinate

system to polar/spherical coordinate system [55] (under preparation).

1.5 Thesis Outline

The rest of the thesis starts with addressing TOA based source localization problem in

Chapter 2, which is also one of the crucial steps of the SLAT algorithm. The detailed

derivations under Gaussian and Laplacian noise are given. Additionally, theoretical

limitations, analyses and real setups will be mentioned. Chapter 3 presents a broader

view of localization and shows simultaneous localization of nodes in sensor networks and

target tracking, namely SLAT. Robust algorithms for different noise characteristics will

be provided. Chapter 4 tackles sensor network localization problems with additional

unknown parameters for TOA based as well as RSS based systems and explains the

applications of the methods described in Chapter 3 to these harder problems. Chapter 5

returns back to source localization problem but for TDOA based systems. Conclusions

will be drawn and a possible future work will be discussed in Chapter 6. Finally, some

detailed analyses of the methods in Chapters 2, 3 and 4 will be provided in several

Appendices.



Chapter 2

An Angular Approach for Range

Based Approximate Maximum

Likelihood Source Localization

Through Convex Relaxation

2.1 Introduction

Locating a source from range measurements to a set of known reference points (anchors)

is a classic problem in many engineering applications (e.g., radar, sonar, GPS), and has

received a great deal of attention over the years. Recently, source localization from range

measurements has been intensively examined in the context of WSN, where ranges are

estimated from TOA.

Centralized ML algorithms for range-based source localization, which require the trans-

mission of the full data set to a fusion node for processing, are proposed in [38, 45–

50, 56, 57]. Some of these resort to SDR to alleviate the problem of algorithmic conver-

gence to undesirable local maxima of the likelihood function [45, 50] for Gaussian noise

and [38] for Laplacian noise. A related alternative approach proposed in [46] solves

a constrained LS problem using squared range measurements, subject to a quadratic

constraint (termed SR-LS). This was shown to outperform, on average, the ML SDR

approach of [50] whose relaxed solutions sometimes fail to produce meaningful source

position vectors (rank one solutions). Recently proposed SDP based methods, use either

TOAs or square of them, take care of uncertainties in anchor positions [56]. Another

11
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approach, proposed in [48], approximates the ML solution via second-order cone pro-

gramming and a low-dimensional search. A linearisation based method presented in [57]

solves two consecutive linear systems which exploit the constraint of squared norm of

the source position in the second step.

Distributed algorithms for wireless sensor nodes, where the source location is iteratively

determined through in-network processing at individual nodes and communication be-

tween neighbours, are also being very actively pursued [58–60]. These techniques, how-

ever, are not the focus of this work.

Source localization can also be viewed as a special instance of sensor network local-

ization, where the positions of several sources/sensors are simultaneously determined

from pairwise range measurements. Briefly, when a new source range measurement is

obtained by the sensors, the new position is estimated by defining the previously esti-

mated positions as reference sensors and resorting to the source localization algorithms.

Related algorithms based on SDP have been developed for this class of problems [38, 61],

and are relevant when there is significant uncertainty in anchor positions (see, e.g., [62]

for a similar SDP approach to source localization with anchor uncertainty using range

differences). This view constitutes one of the crucial steps of the SLAT algorithm which

will be explained in Chapter 3.

2.2 Overview

This chapter develops algorithms for range-based source localization in arbitrary di-

mensions, including 2D/3D, through an ML SDR approach. The contributions and the

summary of this chapter are as follows.

Section 2.4.1 presents a novel angular framework, called SLCP, which matches plain

ranges using a formulation in the complex plane to attain an accurate convex relaxation

as an SDP for 2D localization [45]. The framework of SLCP is also extended from 2D

localization to arbitrary (real) dimensions in Section 2.5.1. The latter SDR method

is termed as SLNN, as this norm arises naturally in the cost function of the relaxed

optimization problem [51]. Both SLCP and SLNN offer a tight relaxation in most

problem instances, and retains a performance advantage over SR-LS. Furthermore, a

complete analysis of the accuracy properties of SLCP is provided, whose success in

providing tight relaxations relies on certain parametrically defined sets in R2 being

nearly convex. The convexity of the sets and how to trace the convex hull for any of

them, from which convexity can be empirically assessed are discussed in Section 2.4.1.1.

For three-anchor scenarios a search-based alternative to Singular Value Decomposition
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(SVD) is also examined to extract the source coordinates from the solution of SLCP (a

positive semidefinite matrix with near rank-1) in Section 2.4.1.2.

A modification of SLCP based on the same angular strategy, termed SL-`1, is introduced

for ML source localization under Laplacian noise for 2D in Section 2.4.2 [38]. This builds

robustness to outlier measurements, a property that was observed in simulation even for

non-Laplacian range errors. Mathematically, this stems from usage of `1 instead of `2

norms in the likelihood function, which tend to de-emphasize large discrepancies be-

tween predicted and measured ranges. In Section 2.5.2 a conceptually similar extension

for source localization beyond 2D is provided, consisting of a reformulation of the non-

differentiable log-likelihood function for Laplacian noise as a reweighted version of the

Gaussian log-likelihood. They are SL-`1 MD which outperforms all benchmarked algo-

rithms, and a simplified formulation (SL-`1 SD), which has slightly worse performance

but is less computationally complex [51]. MD and SD refer to Multi Dimension and

Single Dimension, respectively due to the dimension of the epigraph variables used in

the optimization problems not because of space dimension. Section 2.6 mentions about

the computational complexities of the proposed methods.

Extensive simulations were performed to compare the performance of the algorithms

with the theoretical bound and several others of varying complexity and accuracy based

on different criteria in Section 2.8. It is found that the proposed ones exhibit the most

consistent performance over different types of range measurement noise, and relatively

close to the CRLB. The complexity is comparable to that of other SDP-based methods,

and appears suitable for practical implementation in several centralized scenarios of

interest with current technology. The proposed algorithms are also validated with real

data using an experimental 3D indoor localization setup based on Crossbow Cricket

motes [18] (providing mixed RF/acoustic absolute ranging).

2.3 Problem formulation

Let x ∈ Rn be the unknown source position, ai ∈ Rn, i = 1, ..,m be known sensor

positions (anchors), and ri = ‖x − ai‖ + wi be the measured range between the source

and the i-th anchor, where wi denotes a noise term. Under independent and identically

distributed (i.i.d.) Gaussian or Laplacian noise maximizing the likelihood of observations

for the source localization problem is equivalent to

minimize
x

m∑
i=1

|‖x− ai‖p − rpi |
q. (2.1)
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In this chapter it will be shown how to derive the SLCP/SLNN algorithms to (approx-

imately) solve (2.1) under Gaussian noise (p = 1, q = 2), whereas SL-`1 will solve it

under Laplacian noise (p = 1, q = 1). The case (p = 2, q = 2) is also of interest and

corresponds to the cost function used in the SR-LS algorithm of [46], which is used

to benchmark proposed algorithms. Note that the cost function for SR-LS is not a

likelihood function, and it arises out of mathematical convenience.

The main difficulties of solving (2.1) lie in the fact that this cost function is, in general,

nonconvex and hence multimodal. The nonconvexity of the cost function is addressed in

Sections 2.4.1 and 2.5.1 by developing convex relaxations that turn out to be tight in most

problem instances, thus providing a very good approximation to the global minimum of

the objective function. Additional challenges are posed due to the nondifferentiability

of (2.1) for q = 1 which is addressed in Sections 2.4.2 and 2.5.2 by rewriting it as a

weighted version of the case q = 2, where the weights themselves become optimization

variables.

2.4 Source Localization in 2D

This section presents the source localization problem specific for 2D in two parts. The

first part will address the source localization problem under Gaussian noise, while the

second will solve the similar problem under Laplacian noise, i.e., which is used here to

model outliers in an analytically tractable way.

2.4.1 Source Localization Under Gaussian Noise: SLCP

For p = 1, q = 2 each term in (2.1) is viewed as the squared distance between two circles

centered on ai, one with radius ‖x− ai‖, and the other with radius ri (see Figure 2.1).

This term can be replaced by the squared norm of the difference between the position

vector x and its closest point on the circle {y ∈ R2 : ‖y−ai‖ = ri}, which is denoted by

yi. Problem (2.1) can then be equivalently expressed as (a formal proof of equivalence

is provided in Appendix A)

minimize
x,yi

m∑
i=1

‖x− yi‖2

subject to ‖yi − ai‖ = ri i = 1, . . . ,m.

(2.2)

If yi is fixed, the problem (2.2) with respect to x is an unconstrained optimization

problem whose solution is readily obtained as the center of mass of the constellation
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Figure 2.1: Geometrical interpretation of terms in the source localization cost function
(2.1) for p = 1, q = 2.

x = 1
m

∑m
i=1 yi. Moreover, in 2D the constraints of (2.2) can be compactly described in

the complex plane, yielding

minimize
y,θ

‖ 1

m
1m1Tmy − y‖2

subject to y = a + Rθ,

(2.3)

where a =
[
a1 . . . am

]T
∈ Cm holds the anchor coordinates, expressed as complex

numbers, R = diag(r1, . . . , rm) ∈ Rm×m, and θ =
[
ejφ1 . . . ejφm

]T
∈ Cm. The

problem acquires a flavor of AOA localization, as the angles φi encode a set of directions,

departing from anchor nodes, that ideally intersect at the source position. The complex

representation makes it simple to impose unit magnitude constraints on the elements

of θ, and later relax them to obtain an SDR. Expanding the objective function and

deleting constant terms yields the quadratic constrained problem

minimize
θ

2 Re(cHθ)− 1

m
θHrrTθ

subject to |θi| = 1,

(2.4)

where r = R1m and c = R(Im − 1
m1m1Tm)a.

To proceed one wishes to replace Re(cHθ) in (2.4) with −|cHθ|, which is readily written

as a function of a quadratic form in θ and then relaxed in the same way as the second

term in the objective function. To this end, first note that if θ is replaced with θejγ

neither the second term in the objective function of (2.4) nor the constraints change for

any angle γ. By proper choice of γ the complex number cHθ may be rotated to the

(negative) real axis for any feasible θ, such that Re(cHθejγ) = −|cHθ|, thus reducing

the value of the objective function relative to other values of γ. This implies that any

optimal solution of (2.4) will satisfy Re(cHθ) = −|cHθ|, which justifies replacing Re(·)
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with −| · | in the cost function. It should be kept in mind, however, that once a solution

θ to the modified optimization problem is obtained it should be rotated to obtain the

actual vector of phases θejγ such that Re(cHθejγ) = −|cHθ|.

Now the modified problem is equivalently written as

maximize
θ

2
√

tr(ccHθθH) +
1

m
tr(rrTθθH)

subject to |θi| = 1,

(2.5)

and standard manipulations are followed, i.e., the new variable Φ = θθH and an as-

sociated (nonconvex) constraint rank(Φ) = 1 are introduced. Finally, a SDR formula-

tion of SLCP is obtained by introducing the hypograph variable t such that 0 ≤ t ≤
2
√

tr(ccHΦ) and dropping the rank constraint

maximize
Φ,t

t+
1

m
tr(rrTΦ)

subject to Φ � 0, φii = 1, 4cHΦc ≥ t2.
(2.6)

Remark that the solution of (2.6) is a positive semidefinite matrix, which should have a

clearly dominant eigenvalue in problem instances where the SDR is an accurate approx-

imation to the initial problem (2.2). In such cases Φ ≈ λ1u1u
H
1 , where λ1 is the highest

eigenvalue of Φ and u1 the corresponding eigenvector, and the vector of complex phases

is estimated as θ =
√
λ1u1 [63]. An alternative approach for computing θ is examined

in Section 2.4.1.2. Algorithm 1 summarizes SLCP.

Algorithm 1 Summary of the SLCP algorithm

1: Given the anchor positions and range measurements, solve the SDR (2.6)
2: Compute a rank-1 approximation of the SDR solution as Φ ≈ θθH
3: Compute a rotation angle γ such that Re(cHθejγ) = −|cHθ| in (2.4)
4: Obtain the vector of circle projections y = a + Rθejγ

5: Estimate the source position as the centroid x = 1
m1Tmy

2.4.1.1 Tightness and Geometry of the Constraint Set in SLCP

The source localization problem prior to relaxation (2.5) can be written as

maximize
u,v

2
√
u+

1

m
v

subject to (u, v) ∈ S,
(2.7)

where

S =
{(
|cHθ|2, |rTθ|2

)
: θ ∈ Cm, |θi| = 1

}
. (2.8)
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The objective function in (2.7) is concave with respect to u and v, and the optimization

problem would be convex if the set S, over which this function should be maximized,

were convex. Then, the SDR used in SLCP (2.6) would always find a rank-1 solution Φ,

from which the vector of phases θ would readily follow by factorization. In practice it

was found that, even for a moderate number of anchors, the set S is likely to have the

required shape along part of its border, as discussed below, so that the SDR solution

has indeed rank-1. Now, some of the properties of S and the optimal solution will be

examined.

Given the separable form of the cost function (2.7) it is clear that, for fixed v, it can be

maximized by choosing u as large as possible within S, and vice-versa. This implies the

following property for the optimal points of (2.7):

Proposition 2.1. The optimal points of (2.7) lie on the “upper right” boundary of set

S, i.e., optimal points of (2.7) are maximal elements of S with respect to the standard

cone R2
+ [23].

Regarding the convexity properties of S, recall that the cost function of (2.7) was de-

signed to be invariant to rotations of θ so that, without loss of generality, the first

element may be taken as unity. For m = 2 anchors and θ1 = 1, θ2 = ejφ we then have

u = |c∗1 + c∗2e
jφ|2 = |c1|2 + |c2|2 + 2|c1||c2| cos(φ+ α) (2.9)

v = |r1 + r2e
jφ|2 = r2

1 + r2
2 + 2r1r2 cosφ, (2.10)

where α = ∠c1 − ∠c2. Set S is an ellipse centered on (|c1|2 + |c2|2, r2
1 + r2

2), therefore

clearly nonconvex. Given the definitions of c and r in (2.4), for m > 2 anchors it is

always possible to zero out elements 3, . . . ,m in these vectors if r3 = . . . = rm = 0 in

the diagonal of R, thus reverting to the case m = 2. In summary:

Proposition 2.2. Depending on the specific range measurements, set S may be non-

convex for any number of anchors.

In spite of the lack of convexity guarantees for S, the simulation results suggest that for

m ≥ 3 anchors and typical range measurements this set usually does have a convex-like

shape. Even when S is not convex all that is required for the SDR to provide a rank-1

solution is “local convexity” along the “upper right” boundary of S where the optimal

point of (2.7) is known to be located. More formally, it is required that the intersection

of S with any supporting hyperplane defined by a normal direction with nonnegative

components be a compact subset (a single point or a line segment) [23]. Figure B.2

depicts some examples of S for different numbers of anchors and randomly generated c,

r.



Chapter 2. An Angular Approach for Range Based Approximate Maximum Likelihood
Source Localization Through Convex Relaxation 18

The practical test for local (non)convexity of S consists of tracing multiple support-

ing hyperplanes with nonnegative normal elements, and assessing whether any of them

intersect S at two well-separated points. Supporting hyperplanes are built not on S
directly, which is a hard problem, but on the related relaxed convex set

T =
{(

tr(ccHΦ), tr(rrTΦ)
)

: Φ ∈ Cm×m, Φ � 0, φii = 1
}
. (2.11)

Specifically, for a supporting hyperplane with normal (cosβ, sinβ), 0 ≤ β ≤ π
2 , an

intersection point with T is determined by solving the convex optimization problem

maximize
Φ

〈(cosβ, sinβ),
(
tr(ccHΦ), tr(rrTΦ)

)
〉

subject to Φ � 0, φii = 1,
(2.12)

and setting the intersection point as u = tr(ccHΦ), v = tr(rrTΦ). This procedure is

justified by the following result, proved in Appendix B.

Lemma 2.4.1.1. For m ≤ 3 anchors the sets S and T have the same set of supporting

hyperplanes with nonnegative normal elements. Equivalently, in the relevant portion of

its boundary T coincides with the convex hull of S.

Although this result is only proved up to m = 3, the empirical evidence suggests that it

is also valid for higher m, at least up to some maximum order (see Figure B.2). This is

left as a conjecture and apply the procedure for m > 3 as well, noting, however, that the

case m = 3 has major practical significance as the minimum number of anchors that are

necessary to recover a general 2D source position based on range measurements. It is

also conjectured that T is actually the convex hull of S, so (2.12) may be used to trace

the full boundary of co(S), and not just the portion where the supporting hyperplanes

have nonnegative normal elements. This assumption is not required for the analysis,

but was used for generating the set boundaries shown in Figure B.2.

2.4.1.2 Factorization of the SDR Solution

The solution of the relaxed SLCP optimization problem (2.6) is a positive semidefinite

matrix, Φ, from which the vector of complex exponentials θ is calculated by rank-1

factorization. The latter is needed to form the vector of circle projections y = a + Rθ

(see (2.3)) and, ultimately, the source position vector as the centroid x = 1
m1Tmy. The

rank-1 factorization method advocated in Section 2.4.1 is truncation of the eigenvalue

decomposition of Φ at the highest eigenvalue. This subsection examines a more exact

search-based alternative for the practically relevant case of m = 3 anchors, which will

also be useful to assess the accuracy of the factorization based on eigenvalue truncation.
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For a given positive semidefinite matrix Φ ∈ Cm×m one wishes to find vector θ ∈ Cm

satisfying

minimize
θ

‖Φ− θθH‖2F

subject to |θi| = 1.
(2.13)

The objective function in (2.13) is expanded as

‖Φ−θθH‖2F = tr
(
(Φ−θθH)H(Φ−θθH)

)
= ‖Φ‖2F +‖θ‖4︸︷︷︸

m2

−tr(ΦHθθH)−tr(θθHΦ).

(2.14)

Ignoring constant terms the optimization problem is equivalently reformulated as

maximize
θ

θHΦθ

subject to |θi| = 1.
(2.15)

The cost function of (2.15) is insensitive to a global rotation of all elements of θ by a

common factor, hence for m = 3 anchors θ can be written as θ =
[
1 ejα ej(α+δ)

]T
and (2.15) becomes

maximize
α,δ

Re(φ12e
jα + φ23e

jδ + φ13e
j(α+δ)). (2.16)

For fixed α the maximum is attained for δ = −∠(φ23 + φ13e
jα), yielding for (2.16)

maximize
α

Re(φ12e
jα) + |φ23 + φ13e

jα|. (2.17)

The solution to (2.17) is found by searching for the maximum value over the interval

[0, 2π).

Referring to the definitions of the 2D sets S in (2.8) and T in (2.11), similar criteria to

the above were considered for finding θ such that the induced point in S is closest in

Euclidean norm to the one induced by Φ in T . However, the many-to-one nature of the

mapping of θ onto points in S makes this formulation intrinsically ambiguous.

2.4.2 Source localization Under Laplacian Noise: SL-`1

When disturbances are Laplacian and i.i.d., thus heavier tailed than Gaussian, maxi-

mizing the likelihood amounts to solving (2.1) for p = q = 1,

minimize
x

m∑
i=1

|‖x− ai‖ − ri|. (2.18)
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or

minimize
x

(

m∑
i=1

|‖x− ai‖ − ri|)2, (2.19)

where x, ai and ri are defined in Section 2.4.1. The presence of | · | in each summation

term of (2.18), rather than (·)2, de-emphasizes the contributions of measurements ri

corrupted by large noise values. The optimal point of (2.18) is thus less biased by these

outlier measurements than the cost function (2.1) for the Gaussian case p = 1, q = 2.

However, a major difficulty in solving (2.18) is the fact that the cost function is not

differentiable, making it less amenable to the types of analytic manipulations that are

used to develop SDR.

Ideas from [64] are used to express the minimization of (2.19) as a weighted sum of

squares.

Lemma 2.4.2.1. The following problem is equivalent to (2.19)

minimize
x

minimize
λ∈Rm

m∑
i=1

(‖x− ai‖ − ri)2

λi
,

subject to λi > 0, 1Tλ = 1.

(2.20)

A proof is given in Appendix C. As claimed in Section 2.4.1 and shown in Appendix A,

the difference between the true range and observed range is actually equivalent to the

distance between the source position and the closest point on the circle with center ai

and radius ri. An equivalent formulation is therefore

minimize
x, yi, λ

m∑
i=1

‖x− yi‖2

λi

subject to ‖yi − ai‖ = ri, λi > 0, 1Tλ = 1.

(2.21)

If the yi and λi are fixed, the problem (2.21) with respect to x is an unconstrained

optimization problem whose solution is readily obtained by invoking the optimality

conditions
m∑
i=1

(x− yi)

λi
= 0 ⇒ x∗ =

∑m
i=1

yi
λi∑m

i=1
1
λi

. (2.22)

Geometrically, the first constraint of (2.21) defines circle equations, which can be com-

pactly described in the complex plane as yi = ai+rie
jφi . These are collected into a vector

y = a + Ru, where a and R are defined as in Section 2.4.1 and u =
[
ejφ1 . . . ejφm

]T
∈

Cm. Using the optimal x, we get

minimize
u, λ

yHΠy = (a + Ru)HΠ(a + Ru)

subject to λi > 0, 1Tλ = 1, |ui| = 1,

(2.23)
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where

Π =


1
λ1

0 0

0
. . . 0

0 0 1
λm

− 1∑m
i=1

1
λi


1
λ1
...
1
λm

[ 1
λ1

. . . 1
λm

]

= Λ−1 −Λ−11(1TΛ−11)−11TΛ−1,

(2.24)

with Λ = diag(λ1, . . . , λm).

Matrix Π resembles an orthogonal projector. Using the matrix inversion lemma1, it

is seen to be the limiting case Π = limη→∞(Λ + η11T )−1 and thus positive semidefi-

nite. This format is more amenable to analytic manipulations in optimization problems

and will be used throughout this chapter. The parameter η is taken as a sufficiently

large constant (see Appendix C), although it could also be regarded as an additional

optimization variable to ensure adequate approximation accuracy.

An epigraph variable t ∈ R in (2.23) is introduced, i.e., one minimizes over t and add the

constraint t − (a + Ru)HΠ(a + Ru) ≥ 0. Applying Schur complements the constraint

may be successively written as[
t (a + Ru)H

a + Ru Π−1

]
� 0 ⇔ Π−1 − (a + Ru)(a + Ru)H

t
� 0. (2.25)

The formulation becomes

minimize
u, t, λ

t

subject to λi > 0, 1Tλ = 1, |ui| = 1,

tΛ + tη11T � (a + Ru)(a + Ru)H .

(2.26)

Finally, A = [a R], vH = [1 uH ], V = vvH are defined, and the rank-1 constraint on

the new variable V is dropped to obtain the relaxed SDP

minimize
β, t, V

t

subject to βi > 0, 1Tβ = t, Vii = 1, V � 0,

diag(β) + tη11T � AVAH .

(2.27)

The solution of the optimization problem (2.27) includes the positive semidefinite matrix

V from whose first row or column u can be extracted directly2 to obtain y = a + Ru

and the target coordinates from (2.22). Algorithm 2 summarizes SL-`1.

1(A+BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1.
2Alternatively, u can be obtained by rank 1 factorization of the lower right submatrix of V corre-

sponding to uuH , as in [35, 65].
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Algorithm 2 Summary of the SL-`1 algorithm

1: Given the anchor positions and range measurements, solve the SDP (2.27)
2: Compute a rank-1 approximation of the SDP solution from first row or column of

V
3: Obtain the vector of circle projections y = a + Ru

4: Estimate the source position as x =

∑m
i=1

yi
λi∑m

i=1
1
λi

2.5 Source Localization in Higher Dimensions

In this section, the 3D and higher dimension extensions of the algorithms in Section

2.4.1 and in Section 2.4.2 are derived for Gaussian and Laplacian noise assumptions,

respectively. The first part describes the SLNN algorithm for Gaussian noise. The

second part will present SL-`1 MD and SL-`1 SD which, similarly to the 2D case, express

the Laplacian likelihood function as a variable-weighted Gaussian likelihood.

2.5.1 Localization under Gaussian Noise: SLNN

To extend the approach used in SLCP to n > 2 dimensions, the circle/sphere equations

in (2.2) are written using an equivalent parametric form with real coordinates

minimize
x, yi, ui

m∑
i=1

‖x− yi‖2

subject to yi = ai + riui, ‖ui‖ = 1,

(2.28)

where x,yi,ai and ui are now vectors in Rn, rather than complex scalars used in SLCP.

In (2.28) ui ∈ Rn is a unit-norm vector that plays the same role as the complex phase

shift ejφi in SLCP. Equivalently,

minimize
x,yi,ui

‖1mxT −Y‖2F

subject to


yT1
...

yTm


︸ ︷︷ ︸

Y

=


aT1
...

aTm


︸ ︷︷ ︸

A

+R


uT1
...

uTm


︸ ︷︷ ︸

U

, ‖ui‖ = 1, (2.29)

where R = diag(r1, . . . , rm) as in (2.3). For fixed yi, ui (2.29) describes n uncoupled

least-squares problems whose variables are the components of the source location vector

x. The optimal solutions may be jointly written compactly as

xT = (1Tm1m)−11TmY =
1

m
1TmY. (2.30)
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After replacing x in (2.29) with (2.30), the objective function becomes ‖ΠY‖2F =

tr(YTΠY), where Π = Im − 1
m1m1Tm is a projection matrix (hence idempotent). Sim-

ilarly to (2.3)–(2.4), variable Y and the first set of equality constraints might be elim-

inated by replacing Y in the cost function of (2.29). Afterwards, its definition in the

objective function can be expanded and constant terms are ignored to obtain

minimize
U

2 tr(CTU)− 1

m
tr(UT rrTU)

subject to ‖ui‖ = 1,

(2.31)

where C = RΠA and, as in (2.4), r = R1m.

Nuclear Norm Approximation

As in the complex formulation it is required to rewrite the first term in the objective

function of (2.31) in a form that is more amenable to SDR. In the optimization problem

U is thus replaced with the product UV, where V is an n× n orthogonal matrix such

that VTV = VVT = In, yielding

minimize
U,V

2 tr(CTUV)− 1

m
tr(VTUT rrTUV)

subject to ‖ui‖ = 1, VTV = In.

(2.32)

Note that, due to the orthogonality of V, each line of UV still has unit norm, so for

any feasible U in (2.31) UV is also feasible. Regarding (2.32), V may be interpreted

as an inner optimization variable that, for each candidate U, minimizes the value of the

objective function. Noting that the second term in the objective function (2.32) does

not depend on V, as tr(VTUT rrTUV) = tr(rrTUVVTUT ) = tr(rrTUUT ), the inner

optimization problem simply becomes

minimize
V

tr(CTUV) = 〈V,UTC〉

subject to VTV = In.
(2.33)

This involves the minimization of a linear function on the set of orthogonal matrices,

which resembles the known problem of minimizing a linear function of a vector v, say,

〈v,a〉, on the unit sphere ‖v‖2 = vTv = 1. Invoking the Karush Khun Tucker (KKT)

conditions [23] the latter problem is readily seen to yield the optimal cost −‖a‖, attained

at the point on the sphere along vector −a (illustration is given on a circle in Figure 2.2).

One would therefore expect the solution of (2.33) to be −‖CTU‖ which involves some

matrix norm of CTU. In Appendix D, (2.33) is solved by invoking the KKT conditions

and it is shown that this is indeed the case, and the appropriate norm to consider is

the nuclear norm, defined for matrix X as ‖X‖N = tr
(
(XHX)

1
2

)
which equals to the
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Figure 2.2: Minimization of a linear function over a circle.

sum of its singular values [66]. The optimization problem (2.32) is therefore equivalently

rewritten as

minimize
U

− 2‖CTU‖N −
1

m
tr(rrTUUT )

subject to ‖ui‖ = 1,

(2.34)

or

maximize
U

2 tr
(
(CTUUTC)

1
2
)

+
1

m
tr(rrTUUT )

subject to ‖ui‖ = 1.

(2.35)

The variable W = UUT is introduced and the associated nonconvex constraint rank(W) =

n is ignored to obtain the SDR

maximize
W

2 tr
(
(CTWC)

1
2
)

+
1

m
tr(rrTW)

subject to W � 0, wii = 1.

(2.36)

The objective function of (2.36) is the sum of a concave3 function of W with a linear

term, and is therefore concave. The constraint set of (2.36) is convex, thus establishing

that this is indeed a convex optimization problem. It is expressed in standard SDP form

as

maximize
W,Z

2 tr(Z) +
1

m
tr(rrTW)

subject to W � 0, wii = 1, Z � 0,[
CTWC Z

Z In

]
� 0.

(2.37)

3The first term is the composition of the linear map X = CTWC with tr(X
1
2 ), which is known to

be concave in X [23].
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The equivalence between (2.36) and (2.37) is proved in Appendix D.

Similarly to the complex 2D formulation, the solution of the proposed SDR is a m×m
matrix W that should have approximately rank n when the relaxation is tight. The

matrix U of unit-norm vectors is obtained by SVD factorization of W [63] and, after

accounting for the inner rotation of U, it is used to build the yi and, ultimately, the

source position vector x. Algorithm 3 summarizes the SLNN.

Algorithm 3 Summary of the SLNN algorithm

1: Given the anchor positions and range measurements, solve the SDR (2.37)
2: Compute a rank-n approximation of the SDR solution as W ≈ UUT

3: Solve the inner optimization problem (2.33) to get the rotation matrix V, Appendix
D

4: Obtain the matrix of sphere projections as Y = A + RUV
5: Estimate the source position as the centroid of the rows of Y, x = 1

mYT1m

2.5.2 Localization under Laplacian Noise: SL-`1 SD/MD

The strategy adopted to circumvent the nondifferentiability parallels the one used in

Section 2.4.2 for 2D sources, and as a key ingredient involves squaring the cost function

of (2.18) (which does not affect the location of extremal points), and then rewriting it

as

minimize
x,λ

m∑
i=1

(‖x− ai‖ − ri)2

λi

subject to λi > 0, 1Tmλ = 1.

(2.38)

The cost function is thus reduced to a weighted version of the more tractable Gaussian

log-likelihood, where the real weighting coefficients λi become optimization variables

themselves. See Appendix C for a proof of this result (also [67]). Now, the manipulations

used earlier in Section 2.5.1 for the development of SLNN can be replicated here to

reformulate the problem as

minimize
x,yi,ui,λ

m∑
i=1

‖x− yi‖2

λi

subject to yi = ai + riui, ‖ui‖ = 1

λi > 0, 1Tmλ = 1.

(2.39)

For given yi, ui, and λ, (2.39) has a least-squares cost function whose unconstrained

optimal solution with respect to x is readily found in closed form from the first-order
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stationary condition

m∑
i=1

x− yi
λi

= 0, x∗ =

∑m
i=1

yi
λi∑m

i=1
1
λi

. (2.40)

Substituting the optimal x in (2.21), and using matrix notation, the cost function be-

comes tr(YTΞY), where Ξ is the modified projector as in (2.24).

Y and the related constraint can be eliminated to obtain

minimize
U,λ

tr
(
(A + RU)TΞ(A + RU)

)
subject to ‖ui‖ = 1, λi > 0, 1Tmλ = 1.

(2.41)

2.5.2.1 SL-`1 MD

An epigraph variable ti for each term contributing to tr(·) in the cost function of (2.41)

is introduced
minimize

U,λ,t
t1n

subject to eTi (A + RU)TΞ(A + RU)ei ≤ ti

‖ui‖ = 1, λi > 0, 1Tmλ = 1,

(2.42)

where t =
[
t1 . . . tn

]
and ei is the standard coordinate vector with 1 in the i-th

position and zeros elsewhere. As in Section 2.4.2 the matrix inversion lemma is invoked

to express Ξ as the limiting case of (positive semidefinite) Ξ = limη→∞(Λ + η1m1Tm)−1,

which is more amenable to analytic manipulations in optimization problems. Using

Schur complements the inequality constraint in (2.42) may be successively written as[
ti eTi (A + RU)T

(A + RU)ei Ξ−1

]
� 0 (2.43)

ti(Λ + η1m1Tm)− (A + RU)eie
T
i (A + RU)T � 0. (2.44)

The last inequality is bilinear in ti and λ1, . . . , λm, and it is linearized by replacing the

optimization variable λ with a new βi = tiλ. Now, the βi can be assembled into a

matrix

β =
[
β1 . . . βn

]
= λt, (2.45)

which, as shown above, should have rank 1 and satisfy βij > 0, 1Tmβ = t. However,

the rank-1 constraint for β cannot be directly imposed in convex formulations, and

a common technique is resorted to indirectly induce low rank in optimal solutions by

adding to the cost function the (scaled) nuclear norm ‖β‖N . The sensitivity of the

algorithm to the scaling parameter, µ, and its value will be discussed in Section 2.8.
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Regarding the second term on the left-hand side of (2.44), first note that

(A + RU)ei =
[
Aei R

] [ 1

Uei

]
=
[
αi R

] [ 1

υi

]
, (2.46)

where αi and υi denote the i-th columns of matrices A and U, respectively. Now,

consider the following variable, obtained from the stacked rotation vectors that makes

up U,

W =

[
1

vec(UT )

] [
1 vec(UT )T

]
=



1 uT1 . . . uTm

u1 u1u
T
1︸ ︷︷ ︸

W11

...
. . .

um umuTm︸ ︷︷ ︸
Wmm


. (2.47)

Further, let Ii denote the set of row indices that extracts the elements of [1 υTi ]T in (2.46)

from the first column of W. Then, the dyad below is readily obtained by selecting the

submatrix formed from the Ii rows and Ii columns of W

WIiIi =

[
1

υi

] [
1 υTi

]
, (2.48)

and this carries over to (2.44) through (2.46), which can therefore be written in terms of

submatrix WIiIi . The positive semidefinite matrix W will replace U as an optimization

variable, retaining the constraints along the diagonal blocks in (2.47), namely, tr(Wii) =

1. Finally, the full convex relaxation of (2.42) is obtained by combining all the above

elements and dropping the rank-1 constraint for W that is implied by (2.47)

minimize
W,β,t

t1n + µ‖β‖N

subject to diag(βi) + tiη1m1Tm �
[
αi R

]
WIiIi

[
αTi

R

]
W � 0, w11 = 1, tr(Wii) = 1

βij > 0, 1Tmβ = t.

(2.49)

2.5.2.2 SL-`1 SD

The simulation results suggest that in most scenarios the accuracy of the solution ob-

tained from (2.49) is nearly identical to that of a simplified formulation where a single
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epigraph variable, t, is used. Referring to (2.42), we now minimize tr(tIn) or, equiv-

alently, t, and replace the first constraint for all i = 1, . . . , n with the single matrix

inequality (A + RU)TΞ(A + RU) � tIn. Applying Schur complements as in (2.43)–

(2.44) yields

t(Λ + η1m1Tm)−
[
A R

] [In
U

] [
In UT

] [AT

R

]
� 0, (2.50)

and again variable λ is replaced with β = tλ such that βi > 0, 1Tmβ = t. Now, however,

there is no need to assemble a matrix as in (2.45) and to include its nuclear norm as

a penalization term in the cost function. Finally, to obtain a convex relaxation U is

replaced with the new variable

W =

[
In

U

] [
In UT

]
=

 In︸︷︷︸
W11

UT

U UUT

 , (2.51)

and drop the rank-n constraint on W that follows from (2.51). The simplified SDP

formulation for SL-`1 MD, denoted by SL-`1 SD, is given by

minimize
W,β,t

t

subject to diag(β) + tη1m1Tm �
[
A R

]
W

[
AT

R

]
W � 0, W11 = In, wii = 1

βi > 0, 1Tmβ = t.

(2.52)

Note that the optimization variables W and β in (2.49) have size (mn+1)×(mn+1) and

m×n, respectively, whereas the corresponding sizes in (2.52) are only (m+n)× (m+n)

and m × 1. For ambient dimension n = 2 or 3 and for m ≈ 5 anchors used in the

simulations problem (2.52) has considerably fewer variables than (2.49), and the gap

increases as m and n grow.

Given the configuration for variable W in both formulations of SL-`1 (2.47), (2.51), the

required elements of the rotation vectors that make up U can be obtained from the

rightmost (block) column of W or by factorizing submatrices along the block diago-

nal. The former approach is usually more accurate [61]. SL-`1 MD and SL-`1 SD are

summarized in Algorithm 4.
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Algorithm 4 Summary of the SL-`1 MD/SD algorithms

1: Given the anchor positions and range measurements, solve the SDR (2.49) or (2.52)
2: Compute a rank-n approximation of the SDR solution from the rightmost (block)

column of W or by factorizing submatrices along the block diagonal
3: Obtain the matrix of sphere projections as Y = A + RU

4: Estimate the source position as x =

∑m
i=1

yi
λi∑m

i=1
1
λi

Table 2.1: Worst-case complexities of the proposed algorithms.

Algorithms Operation per iteration

OSLCP (2m2)2

OSLNN (m2)2

OSL−l1−MD ((mn+ 1)2 +mn+ n)2(mn)2

OSL−l1−SD ((m+ n)2 +m+ 1)2m2

2.6 Complexity Analysis

Consider the general form of a SDP [68]

minimize
x

cTx

subject to F(x) � 0,
(2.53)

where x ∈ Rk and F(x) = F0 +
∑k

i=1 xiFi. The available data includes the vector

c ∈ Rk and k + 1 symmetric matrices F0, . . . ,Fk ∈ Rl×l. An SDP problem can be

solved by iterative optimization techniques, e.g., interior-point methods. The worst-case

computational complexity of solving SDP in each iteration is O(k2l2) [68]. The number

of iterations is also bounded by O(
√
l log(1/ε)), where ε is the accuracy of the SDP

solution [68].

The proposed methods involve formulating and solving a single SDP, so their worst-case

computational complexities can be readily estimated from the above results. For SLCP,

SLNN, SL-`1 MD and SL-`1 SD, the (k, l) pairs are (k ' 2m2, l ' 1), (k ' m2, l ' 1),

(k ' (mn + 1)2 + mn + n, l ' mn) and (k ' (m + n)2 + m + 1, l ' m), respectively.

Note that m and n are the number of anchors and the space dimension, respectively.

Additionally, note that SVD should be applied to the results of SLCP and SLNN and

this operation brings additional cost. However, the asymptotic complexity of SVD is

much smaller than SDP and it is ignored. The worst-case complexities of the proposed

methods per iteration are given in Table 2.1.
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2.7 Related Works

This section surveys related methods with varying complexities and accuracies that may

be used as benchmarks to the proposed algorithms. They are representatives of different

classes and some of them are originally derived for different measurement models, but

adapted here for TOA-based source localization as discussed in the sequel.

2.7.1 Squared Range Least Squares (SR-LS)

The first state-of-the-art localization algorithm of interest is the exact optimization

method proposed in [47]. This technique relies on a variation of the ML localization

problem given in (2.1), in which range measurements are squared. Specifically, the

problem solved in [47] is

minimize
x

m∑
i=1

(‖x− ai‖2 − r2
i )

2. (2.54)

Since the range measurements ri are squared, this problem differs from the original

ML source localization problem. However, squaring measurements is a very popular

approach (also in TDOA) because it makes optimization-based source localization prob-

lems problem more tractable. Because, it was shown in [47] that the exact solution of

(2.54) can be derived as follows. Write the equivalent form

minimize
y

‖Ay − b‖2

subject to yTHy + 2cTy = 0,
(2.55)

where A =


−2aT1 1

...
...

−2aTm 1

 , b =


r2

1 − ‖a1‖2
...

r2
m − ‖am‖2

 ,H =

[
In 0n

01 0

]
, and c =

[
0n

−0.5

]
.

Next, compute α∗ as the root of

ŷ(α)THŷ(α) + 2cT ŷ(α) = 0, with α ∈ (− 1

α1
,∞) (2.56)

where α1 is the maximum of the generalized eigenvalues [63] of (H,ATA) and

ŷ(α) = (αH + ATA)−1(ATb− αc). (2.57)

Finally, the minimizer of the objective in (2.54) is given by the n first component of

ŷ(α∗) ∈ Rn+1. This method will be called SR-LS from now on. In spite of the fact

that the solution is exact, the formulation of the problem is suboptimal with respect to
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the ML formulation, since squaring the distances amplifies errors on the measurements,

fundamentally increasing the achievable mean square location error [69].

The weighted version of (2.54), designated as WSR-LS, is

minimize
x

m∑
i=1

wi(‖x− ai‖2 − r2
i )

2 (2.58)

where wis are positive constants. And the equivalent problem is

minimize
y

(Ay − b)TW(Ay − b)

subject to yTHy + 2cTy = 0,
(2.59)

Weighting Scheme

The weighting scheme is similar to [41, 70]. Let us discuss the disturbances in b, which

suggest a criterion for choosing W. For sufficiently small measurement error, the squared

value of ri can be approximated as r2
i = (di + ni)

2 ≈ d2
i + 2dini, where di = ‖x −

ai‖ is the true range. As a result, the disturbance between the true and measured

squared distances is ε = r2
i − d2

i ≈ 2dini. In vector form ε = [2d1n1, . . . 2dmnm]T .

The covariance matrix of the disturbance is thus of the form Ψ = BAB, where B =

diag(2d1, . . . , 2dm) and A = diag(σ2
1, . . . , σ

2
m). The optimum weighting matrix is W =

Ψ−1 [70]. Since it depends on the unknown di, it is approximated as Ψ = B̂AB̂, where

B̂ = diag(2ri, . . . , 2rm).

2.7.2 Linear Least Squares (LLS)

LLS method solves two linear system of equations sequentially. It was originally proposed

for RSS in [57], but it is adapted for TOA in this section. The first system of linear

equations is solved by using the same cost function of WSR-LS. The optimal source

position is calculated from the first n components of

θ̂ = (ATWA)−1ATWb. (2.60)

This unconstrained solution ignores the constraint that ties the last component of θ,

denoted by R, to its remaining elements,

R =

n∑
i=1

x2
i . (2.61)
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Based on [70], the solution obtained in first step of LLS algorithm is therefore improved

by solving another linear system of equations to approximately enforce (2.61). When

θ̂1:n is sufficiently close to x,

θ̂2
i − x2

i = (θ̂i + xi)(θ̂i − xi) ≈ 2xi(θ̂i − xi), i = 1, . . . , n. (2.62)

Based on (2.61) and (2.62), a linear system is constructed

h = Gz + q, (2.63)

where h = [θ̂2
1, . . . , θ̂

2
n, θ̂n+1]T , G =

[
In

1Tn

]
, z = [x2

1, . . . , x
2
n]T and q = [2x1(θ̂1 −

x1), . . . , 2xn(θ̂n − xn), θ̂n+1 −R]T .

To determine the parameter vector z, the weighted LS criterion is used again. The weight

matrix Cq is calculated by using the covariance matrix of θ̂, (ATWA)−1, such that Cq =

diag(2x1, . . . , 2xn, 1)(ATWA)−1diag(2x1, . . . , 2xn, 1). In practice, xi is substituted with

θ̂i. As a result, ẑ = (GTCqG)−1GTCq
−1h.

There is a sign ambiguity when x is estimated from z. Therefore, the improved position

estimate is obtained as x̂ = sgn((θ̂)1:n) �
√

ẑ,
√
. operation is used for each element of

the vector.

2.7.3 Two Least Squares (2LS)

The formulation of 2LS in [56] is originally derived for TOA with unknown initial trans-

mission time. The authors tackle the following problem where unknown r0 refers to the

distance corresponding to the unknown initial transmission time

minimize
x,r0

m∑
i=1

(‖x− ai‖+ r0 − ri)2. (2.64)

Since the proposed algorithms are derived for the source localization problem using

TOA with no synchronization problem, r0 is assumed to be a known parameter and

chosen to be 0 for fairness. Define an auxiliary variable for τi = ‖ai − x‖ and denote

r = [r1, . . . , rm]T , τ = [τ1 . . . τm]T , Q = ττT to write the objective function of (2.64) as

tr[Q− 2tτT + ttT ]. Clearly, the objective function is a linear function of both Q and τ

and thus it is convex. However, because the constraints τi = ‖ai−x‖ and Q = ττT are

nonconvex, the optimization problem is nonconvex. To obtain a convex optimization

problem note that (ai − x)T (ai − x) =

[
xi

−1

]T [
I x

xT xs

][
xi

−1

]
, where xs = xTx.
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Use this and Cauchy-Schwarz inequality to yield

Qii = τ2
i = (ai − x)T (ai − x) =

[
xi

−1

]T [
I x

xT xs

][
xi

−1

]

and

Qij = τiτj = ‖ai − x‖‖aj − x‖ ≥

∣∣∣∣∣∣
[

xi

−1

]T [
I x

xT xs

][
xj

−1

]∣∣∣∣∣∣
which are convex in terms of Q, x and xs. There are still two nonlinear and nonconvex

constraints, Q = ττT and xs = xTx. Through semidefinite relaxations and linear

matrix inequalities the following convex optimization problem is obtained

minimize
x,xs,τ ,Q

tr[Q− 2tτT + ttT ]

subject to

[
Q τ

τT 1

]
≥ 0,

[
I x

xT xs

]
≥ 0,

Qii =

[
xi

−1

]T [
I x

xT xs

][
xi

−1

]
,

Qij ≥

∣∣∣∣∣∣
[

xi

−1

]T [
I x

xT xs

][
xj

−1

]∣∣∣∣∣∣ ,
i = 1, . . . ,m, j = i+ 1, . . . ,m.

(2.65)

2.8 Performance Analysis and Numerical Results

In this section, the performance and the computational complexity of several algorithms

are analyzed. They are compared with CRLB, simulated data and real test bed data.

The algorithms, SLCP (Algorithm 1), SL-`1 (Algorithm 2), SLNN (Algorithm 3) and SL-

`1 MD/SD (Algorithm 4) are benchmarked against the following algorithms in 2D and 3D

scenarios under various noise assumptions: i) SR-LS and its weighted version WSR-LS

in [47] directly optimize the source coordinates using an iterative root-finding procedure

(Section 2.7.1). The weighting procedure penalizes larger ranges more and assumes prior

knowledge on the variance of disturbances, as described in Section 2.7.1. ii) 2LS in [56]

approximates the ML estimate of the source position with a SDP formulation (Section

2.7.3). iii) SDR, another popular formulation based on semidefinite relaxation is chosen

for benchmarking [50]. iv) LLS in [57] solves sequentially two linear systems, where the

second step improves the source position estimate by exploiting the constraint on the

squared norm of the source position (Section 2.7.2).
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In each reported simulation M Monte Carlo runs are performed, where in each run

the source and anchor locations were randomly generated from a uniform distribution

over a square or cube. The observed ranges, corrupted by i.i.d. noise, were generated

as described in Section 2.3 under appropriate noise probability densities. Figures show

Root Mean Square Error (RMSE), computed as√√√√ 1

M

M∑
i=1

‖xi − x̂i‖2, (2.66)

where xi and x̂i denote the actual and estimated source positions in the i-th Monte

Carlo run, respectively.

The CRLB gives a lower bound on the variance attainable by any unbiased estimators

[71]. Although it is loose compared to the performance of the ML estimator in the

presence of large perturbations [72] and there exists no efficient unbiased estimate for

the source position due to the nonlinearity between the variable and the observation

[73], it is still of interest as a benchmark [41, 70] and it is derived briefly in Appendix E

in terms of the notation adopted in this thesis. Thus, the error plots for Gaussian noise

also show CRLB, calculated as √√√√ 1

M

M∑
k=1

trace(CRLBk) (2.67)

for each noise variance, where CRLBk denotes matrix lower bound at the k-th Monte

Carlo iteration.

Example 1 [Localization in 2D and 3D under Gaussian noise] M = 1000

Monte Carlo runs are performed, where in each run the source and anchor locations

were randomly generated from a uniform distribution over a square or cube whose sides

are [0, 10] m. The observed ranges, corrupted by i.i.d. Gaussian noise whose σgaussian ∈
[10−2 0.8] m, were generated as described in Section 2.3.

Figure 2.3 shows the RMSE of the algorithms for 5 and 6 anchors in 2D and 3D, re-

spectively. The worst performances, both in 2D and 3D, are attained by SR-LS and

LLS. The former squares measurements (p = 2, q = 2 in (2.1)), and thus becomes

more sensitive to the presence of (Gaussian) noise in range measurements. The latter

resorts to linearization, which is not very accurate for this observation model and be-

comes less so as the noise power increases. The weighted version (WSR-LS) performs

significantly better than SR-LS, as it de-emphasizes long ranges where the impact of

squared disturbances is strongest. However, in practice this method requires some form



Chapter 2. An Angular Approach for Range Based Approximate Maximum Likelihood
Source Localization Through Convex Relaxation 35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

!gaussian

rm
se

 (m
)

Comparisons of RMSE in 2D without outliers, 5 Anchors

 

 

SR−LS
WSR−LS
SLCP
SLl1
SLNN
SLl1−SD
SLl1−MD
LLS
2LS
CRLB

1

(a) RMSE Comparisons in 2D without outlier for 5 anchors

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

σgaussian

rm
se (m
)

 

 

SR−LS
WSR−LS
SLNN
SLl1−SD
SLl1−MD
LLS
2LS
CRLB

1

(b) RMSE Comparisons in 3D without outlier for 6 anchors

Figure 2.3: RMSE Comparisons, without outliers.

of calibration to estimate the variances of the disturbances. The remaining algorithms

behave similarly, with SL-`1 MD providing slightly better performance at higher noise

levels. Note also how the RMSE of the simplified formulation SL-`1 SD (2.52) is quite

close to that of SL-`1 MD (2.49). SLCP and SL-`1 are absent from Figure 2.3(b), as

these two algorithms are specific for 2D localization. The RMSE gap to the CRLB is

significant (about 0.3 m for σgaussian = 0.8 m), but it seems unlikely that it could be

closed by alternative algorithms.
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Example 2 [Localization in 2D and 3D in the presence of outliers] The same

setup for Gaussian noise is adopted here, except that ranges are contaminated either by

Laplacian noise with σlaplacian ∈ [0.4 1.8] m, or by what is designated here as selective

Gaussian noise. Range measurements for the latter are created as

ri = ‖x− ai‖+ wi + |ε|, (2.68)

where wi is a Gaussian noise term with σgaussian = 0.04 m that is present in all ob-

servations and ε is also a Gaussian disturbance, but with higher standard deviation

σoutlier ∈ [0.3, 2.1] m, that contaminates only one measured range (i.e., ε = 0 for all

other observations). This statistical model is less tractable than the Laplacian noise

model, but it is included in some of the simulations as it more realistically reflects how

outliers occur in real ranging systems [24, 74].

Figures 2.4 and 2.5 depict RMSEs for 2D and 3D source localization under both outlier

generation models. There are now more substantial disparities between different classes

of algorithms. Broadly, the RMSE curves in these figures can be divided into 3 groups:

As before, LLS and SR-LS attain the highest RMSEs. An intermediate group is formed

by algorithms designed for Gaussian likelihoods (SLCP/SLNN and 2LS), as well as

WSR-LS. Finally, the algorithms designed for Laplacian noise (SL-`1 in 2D and SL-`1

MD/SD in 2D or 3D) outperform all others. Interestingly, their superiority is even

more evident under selective Gaussian noise, which does not match the underlying cost

(likelihood) function of Section 2.4.2. Overall, the `1-based algorithms show the most

consistent behavior across all noise models.

Example 3 [Practical Computational complexity of algorithms vs. the num-

ber of anchors and the space dimension] Several authors have examined the

theoretical (worst-case) complexity of localization algorithms, e.g., [56, 75]. The compu-

tational complexities of the proposed algorithms are discussed in Section 2.6 and given

in Table 2.1. The emphasis here is on demonstrating the practical feasibility of the

algorithms in centralized scenarios with moderate computational power, so actual run-

ning times are focused on, knowing that many technological factors related to hardware

and software architectures may influence it. Note, however, that SLCP, SLNN, SL-`1

MD/SD, as well as 2LS, are single-shot formulations that essentially require a single in-

vocation of the same general-purpose solver, and the running times for these algorithms

should therefore closely reflect the relative operations count. These times are evaluated

in 2D and 3D for variable numbers of anchors that encompass those that one would

reasonably expect to find within range of a given target position in practice. The ex-

periments were conducted on a machine powered by an Intel Xeon 3.2 GHz Quad-Core
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Figure 2.4: RMSE Comparisons in the case of Selective Gaussian Noise.

CPU and 8 GB of RAM, using Matlab R2010b and CVX/SeDuMi as a general-purpose

SDP solver. Figure 2.6(a) shows that SR-LS, WSR-LS and LLS are much faster than

the other algorithms (average times are 0.2 ms for LLS, 3 ms for SR-LS, and 2.5 ms

for WSR-LS), but their larger RMSEs would make them preferred mainly under se-

vere temporal or computational constraints. The running times of SLCP and SLNN

are almost constant in the figure (about 0.2 s), suggesting that the fixed overhead from

the software implementation plays an important role (the variable component becomes

significant above 15 anchors). Regarding SL-`1 and SL-`1 SD, the times increase mod-

erately, remain below 0.5 s, and are similar in 2D and 3D (Figure 2.6(b)). The largest
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Figure 2.5: RMSE Comparisons in the case of Laplacian Noise.

times and increase rates are attained by 2LS in 2D and SL-`1 MD in 3D. Note that in

SL-`1 MD the number of variables is affected multiplicatively by the ambient space di-

mension, leading to larger effort in 3D. Notice that the ordering of proposed algorithms

according to the operations count given in Table 2.1 agrees with the results for execution

time given in Figures 2.6(a) and 2.6(b).

The above results show that SL-`1 SD has nearly the same performance of SL-`1 MD at

a fraction of the complexity. The running times for these algorithms, even with more

modest hardware, may enable tracking of relatively slow targets with practical numbers
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Figure 2.6: Speed comparisons of algorithms vs. number of anchors.

of anchors. Figure 2.6(c) summarizes the RMSE vs. speed tradeoff of the considered

algorithms in 2D for 5 anchors and Selective Gaussian noise with σoutlier = 1.5.

Example 4 [The sensitivity of SL-`1 MD to µ] SL-`1 MD has a penalizing term

µ for the norm of the variable β which is constrained to be rank-1. Figure 2.7 shows the

(in)sensitivity of the method to the penalizing term for two scenarios where the ranges

were corrupted with white Gaussian noises having σ = 1 m and σ = 0.5 m, respectively.

The source and five anchors were uniformly distributed over a square whose sides are

[0, 10] m at each Monte Carlo run. It is chosen to be equal to 10 throughout the

simulations.
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Figure 2.7: The sensitivity of SL-`1 MD to the penalizing term µ

Example 5 [Convexity and tightness of SLCP] In this example we characterize

the accuracy of the convex relaxation used in SLCP and compare its performance to that

of the SDR algorithm of [50]. Range measurements to a variable number of randomly

placed anchors in a square whose sides are [−10, 10] m were generated over M = 1000

Monte Carlo runs, and corrupted by white Gaussian noise.

First, it is estimated how often the constraint set S (2.8), which appears in the formu-

lation of the source localization problem prior to relaxation (2.7), is convex along its

“upper right” boundary where the optimal solution lies. As discussed in Section 2.4.1.1,

when this property holds the relaxed solution Φ obtained by SLCP (2.6) will have rank

1 and can be factorized to yield the optimal point for the non-relaxed problem (2.7)

on the boundary of S. Convexity of S is empirically assessed by tracing the boundary

of the (partially hypothesized) convex hull T (2.11) and searching for line segments

that delimit regions where the boundaries of S and T depart due to local concavity

of S. Specifically, the support hyperplane problem (2.12) is solved for a grid of angles

0 ≤ β ≤ π
2 and detect the presence of a line segment when the distance between the

intersection points
(
u(β), v(β)

)
for two consecutive angles β exceeds a threshold. For a

noise standard deviation σgaussian = 10−2 m, S passed the convexity test in 80% of runs

for three anchors. The percentage increased to 84% for five anchors, in line with the

reasoning in Section 2.4.1.1 that S is more likely to be convex as the number of anchors

increases.

Next, the RMSEs of SDR and SLCP are compared. As in [47] Monte Carlo runs are

provided for SDR, SLCP and also for so-called tight runs (denoted by SDRt, SLCPt)

where the solution for the relaxed localization problem is close to having rank 1, as
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Table 2.2: Source localization accuracy for relaxation-based methods (RMSEs listed
for total and tight runs).

σgaussian NSDR NSLCP SDR [50] SDRt [50] SLCP SLCPt

10−3 490 921 0.0045 0.0014 0.0020 0.0015
10−2 444 815 0.0162 0.0107 0.0112 0.0108
10−1 478 527 0.1503 0.0960 0.1207 0.0959

1 538 526 1.6070 1.1885 1.2169 1.1885

desired for subsequent factorization to obtain the actual source coordinates. A solution

matrix is considered to be tight when the ratio between its first and second eigenvalues

is at least 102. Table 2.2 lists the RMSEs and the number of tight runs (NSDR, NSLCP)

over 1000 trials for five anchors and Gaussian noise standard deviations of 1 m, 10−1 m,

10−2 m, and 10−3 m. SLCP is clearly superior over the full set of trials, but the gap to

SDR closes in the subset of tight runs, indicating that the advantage is mostly due to a

much higher probability of its solution having near rank 1. Even for the highest noise

power, where the number of tight runs in both algorithms is comparable, the ratio of

first to second eigenvalues is usually higher in SLCP, leading to lower RMSE.

Under the same simulation setup as above, but using only three anchors, the alternative

search-based method described in Section 2.4.1.2 to obtain the vector of rotation factors

θ from the relaxed solution matrix of SLCP, Φ is tested. Improvements in total RMSE

are under 1% for all noise variances using 2 × 105 grid points on the interval [0, 2π)

to evaluate (2.17). Foremost, this suggests that rank-1 factorization by SVD, which is

adopted as the technique of choice to efficiently extract rotation factors, yields results

that are indeed very close to the best possible strategy for finding θ.

2.9 Real Indoor Experiments

There is a large and growing list of practical works related to localization systems (mostly

for target (self)-localization, but not for joint sensor/target localization) which rely on

infrared (IR), RSS, Ultra Wideband (UWB) and ultrasound signals, etc. Many such

systems rely on RSS, but these are impractical to use when indoor propagation conditions

are complicated [76]. The overall performance of IR degrades under direct sunlight or

high ambient temperature. On the other hand, these systems are appropriate for spaces

in which other technologies do not perform properly [77]. The Active Bat [78] is based

on ultrasonic pulses which rely on TOA measurements, requiring very accurate clock

synchronization in the system. UWB based systems are an emerging indoor localization

technology which provides an accuracy on the order of a few centimeters. However,

they are still expensive [79]. In this work, a Cricket system from Crossbow Technologies
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Figure 2.8: Range Measurement using ultrasound and radio signals (reproduced from
[18]).

[18] is employed, using both ultrasound and RF signals to estimate the ranges between

sensors and a target. These devices are inexpensive and easy to deploy; however, their

operating range is limited, approximately ten meters.

To estimate ranges, a mobile Cricket Node (beacon/target) simultaneously emits a radio

and an ultrasound pulse every second. Since the difference in arrival time of these two

pulses to a sensor node (listener) is proportional to the range between the sensor node

and the target, Crickets compute ranges from these arrival times as shown in Figure 2.8.

Note that this scheme does not require TWR or clock synchronization.

Since the algorithms scheme entirely rely on distance estimates, any inaccuracies or

spurious estimates will result in erroneous positions. Therefore, in the sequel the un-

certainties are described in the setup. The line-of-sight operating range of ultrasonic

listener-beacon pairs is around 10 meters, when both the listener and the beacon are

facing each other. It is observed in [80] that approximately within 5 m range when a

listener and beacon face each other at 0 − 40 ◦ angles, the error in range estimation

remains quite stable within 2 cm boundaries. From 40 ◦ on up to 75 ◦, the error rises to

9 cm. From 75 ◦ onwards, the listener is no longer able to detect the ultrasonic signal.

In the setup similar behaviour was experienced; for up to 4 m range measurements the

uncertainties in measurements can go up to 6 cm due to the variable facing angle be-

tween sensors and the beacon along the trajectory. Secondly, the ultrasound sensor on a

Cricket occupies an area of 1 cm x 2 cm on the circuit board, so it is difficult to estimate

the ground truth for its location below those dimensions. Additionally, the anchor nodes

are normally assumed to be fixed at known positions. However, in practice, there are

uncertainties in anchor node positions due to imperfect deployment etc.
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Figure 2.9: The test enviroment and Pioneer P3-DX: 4 Cricket sensors on the ceiling
and 4 on top of tripods distributed over the lab in a 4m by 4m area. The robot or a

human carries the beacon.

Results will be presented relative to tracking a Pioneer P3-DX robot in a test environ-

ment shown in Figure 2.9, where 8 listeners were deployed around the lab and on the

ceiling in a 4 m by 4 m area and the beacon was attached to a Pioneer P3-DX mobile

robot programmed to follow a desired path for approximately 2 minutes, generating 24

target positions. As the robot moves, the beacon periodically emits signals which allow

the anchors to measure their distances to the robot. Anchor positions were manually

measured to a precision of about 2 cm. For ground truth, the initial point for the beacon

path was similarly determined, and the remaining ones were set relative to it accord-

ing to the planned trajectory (the robot’s navigation system is very precise under the

test conditions). Figure 2.10 shows an estimated representative trajectory (a straight

line, followed by a half circle, a straight line, and a full circle) by the best three methods

(SLNN, SL-`1 MD and 2LS) and their average RMSEs for all 24 target/source positions.

Results for SLNN and SL-`1 MD are very similar, slightly outperforming 2LS. As there

are no obvious outlier range measurements here (noise statistics are unknown) `1-based

algorithms are on a par with those based on Gaussian assumptions. On a final practical

note, producing the trajectories shown in Figure 2.10 required no tuning of parameters.

2.10 Conclusion

Approximate ML algorithms have been proposed for range-based source localization

through convex relaxation of likelihood functions for Gaussian or Laplacian noise. These

centralized algorithms yield excellent localization accuracy with moderate computational
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Figure 2.10: Piecewise linear/circular trajectory of Pioneer P3-DX.

cost. The fact that they solve a single convex optimization problem and do not require

setting critical parameters a priori makes them robust and very convenient for practical

use, if execution times on the order of 1 second or less using contemporary generic

computers can be tolerated.

SLCP and SLNN are proposed as an ML-based source localization approach under Gaus-

sian noise by resorting to complex plane and nuclear norms, respectively. SL-`1 local-

ization algorithms for Laplacian noise are also developed. The simulation results show

that the proposed algorithms are very accurate compared to other optimization-based

localization methods that operate on range measurements with a moderate computa-

tional complexity. In 3D scenarios with Gaussian noise SLNN delivered solutions that

were about 5% more accurate than those of SL-`1, whereas in the presence of outlier

range measurements the situation was reversed and SL-`1 proved to be about 5–20%

more accurate under either Laplacian or selective Gaussian models. SL-`1 MD/SD are

developed as 3D extensions of SL-`1, which exhibited comparable performance, with a

slight advantage of SL-`1 MD. However, SL-`1 SD is a lot faster. Complexity consider-

ations (e.g., computational load, maximum admissible problem size) will then play an

important role when selecting one of those algorithms for a particular application. Ex-

perimental results demonstrated the feasibility of the proposed algorithms in a practical

centralized indoor localization testbed.

An analysis of the geometry of the 2D formulation for ML localization under Gaussian
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noise (SLCP) is carried out, and it is found that the high probability that a certain

portion of the (outer) border of its constraint set is convex justifies the observed strong

tightness of the relaxation. The simulation results for random anchor configurations

indicate that another well-known SDR relaxation for the same problem has a significantly

higher chance of yielding optimal solutions that do not have the necessary properties

(unit rank) to accurately recover source positions. Regarding the extraction of spatial

coordinates from the positive semidefinite matrix computed by SLCP, a search-based

alternative to standard rank-1 factorization using the SVD is examined. This strategy

is feasible for the practically important case of range-based localization using three

anchors, but was found to yield only minor improvements relative to the SVD-based

factorization.



Chapter 3

Robust Localization of Nodes and

Time-Recursive Tracking in

Sensor Networks Using Noisy

Range Measurements

3.1 Introduction

This chapter addresses the problem of tracking a single target from distance-like mea-

surements taken by nodes in a sensor network whose positions are not precisely known.

The goal is to estimate the positions of all sensors and of the target, given partial or no a

priori information regarding the spatial configuration of the network. As the ability to

track a target is a key component in several scenarios of WSNs, methods that avoid the

need for careful calibration of sensor positions are practically relevant. Since target dy-

namics are not considered in the proposed approach, the target tracking is not handled

in the usual sense and the proposed method might be better framed in the group of SNL.

Nevertheless, the problem tackled in this chapter is viewed as simultaneous localization

and tracking (SLAT) due to the functional similarities with the approaches originally

presented in [11, 81].

In [11, 81] SLAT is formulated in a Bayesian framework that exploits the connections

with the well-studied problem of simultaneous localization and mapping (SLAM) in

robotics. The a posteriori probability density function of sensor/target positions and

calibration parameters is recursively propagated in time as new target sightings become

available. The observations in [11] are true range measurements obtained through a

46
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combination of transmitted acoustic and radio pulses. Some alternatives to range in-

clude pseudorange and bearing information estimated from camera images [81] or the

(somewhat unreliable) RSS of radio transmissions [82]. In [83] the SLAT problem is also

formulated in a Bayesian framework as a general state evolution model under a binary

proximity model and solved in a decentralized way using binary sensor networks. An-

other SLAT-like approach using localization techniques (calibration) is presented in [84],

where positions and orientations of unknown sources and sensors are centrally obtained

via ML based on TOA and AOA measurements.

In the presented approach target dynamics are not accounted for; therefore the SLAT

problem may be thought of as a special type of SNL, with a limited set of intersensor

measurements, for a network comprising the original set of nodes and the sensed target

positions. The proposed approach resorts to EDM methods based on SDP, which were

previously adopted for static SNL (see [35] and references therein). EDM completion

for SLAT is discussed in [82], although the authors pursued an alternative approximate

completion approach based on a variant of Multidimensional Scaling (MDS). Underwater

and underground scenarios with uncertainty in anchor positions are considered in [85],

and edge-based SDP is proposed to reduce the computational complexity of SNL. In [74]

static SNL is formulated as a problem of ML phase retrieval.

In addition to centralized SNL approaches such as [35, 74, 85], enumerated above, a

wealth of results are available on distributed approaches for scenarios where the exis-

tence of a central node is inconvenient, e.g., due to congested communications in its

vicinity or excessive vulnerability of the whole infrastructure to failure of that single

node [31, 59, 82, 86–88]. A two-step approach based on second-order cone programming

relaxation with inaccurate anchor positions is introduced in [86]. In [59] a weighted

least-squares algorithm with successive refinement provides both position estimates and

their covariances in partially connected scenarios. A distributed weighted MDS method

with majorization approximations is applied in [31]. The cost function and the ma-

jorization technique are similar to those used in this chapter for ML iterative refinement

under Gaussian noise, but initialization relies on prior estimates of sensor positions.

3.2 Overview

The summary and the contributions of the chapter are highlighted as follows.

This part of the thesis focuses on centralized SLAT based on plain ML estimation which

is formulated in Section 3.3. A two-stage approach, consisting of a startup phase and

updating phase, is proposed. The main goal of the startup phase is to obtain an outline
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of the network configuration from a block of measurements (as in [11], the term batch

is often used for such a block, or to qualify the associated processing algorithms). It is

followed by an updating phase where new target sightings are incrementally assimilated

as they become available, while improving all previously determined locations. Each

phase consists of an initialization step to calculate approximate locations, followed by

an iterative refinement step of the likelihood function using MM [89]. Local convergence

to undesirable extrema in ML methods due to poor initialization is thus alleviated.

During startup the initialization step solves an EDM completion problem for range

data from multiple target sightings, which requires little a priori knowledge of sensor/-

target positions. The updating phase, carried out for each new target sighting after

startup, aims to bypass the need for EDM initialization with increasingly large matri-

ces as time progresses and more range measurements become available. Initialization

in this phase uses source localization algorithms that fix all previously estimated po-

sitions and attempt to determine the location for the most recently observed target.

The computational load of this simplified recursive initialization scheme is scalable with

time.

This work develops startup and updating algorithms for Gaussian noise and also for

Laplacian noise which models the presence of outliers in some practical ranging systems

that adversely affect the performance of localization algorithms designed for Gaussian

noise [11, 90]. The proposed methods for the initialization steps are novel and relevant

for SNL and SL applications. In particular, for startup initialization EDM completion

methods are developed that depart from related approaches [35, 65] in which squared

range measurements are matched. The details of the proposed cost functions are different

for Gaussian and Laplacian noise models, but in both cases robustness to range errors

is gained relative to more standard EDM methods by matching plain distances. With

regard to the updating phase, the initialization step under Gaussian noise is carried out

by the SLCP or SLNN methods proposed in Sections 2.4.1 and 2.5.1. Under Laplacian

noise `1 norm based methods addressed in Sections 2.4.2 and 2.5.2 are used.

To this end, Section 3.4 presents the proposed localization algorithms that use range

measurements corrupted by Gaussian noise, namely, EDM initialization, iterative like-

lihood refinement by MM, and time-recursive updating through incremental estimation

of target/sensor positions. Section 3.5 develops similar methods for Laplacian noise.

Section 3.6 provides simulation results for the performances of startup and updating al-

gorithms under both types of measurement noise. Additionally, theoretical performance

limits and asymptotic complexity are assessed. This work experimentally evaluates the

proposed algorithms for solving SLAT real-world problems in 3D indoor environments

using a Cricket-based positioning system [52] in Section 3.7.
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3.3 Problem Formulation

The network comprises sensors at unknown positions {x1,x2, . . . ,xh} ∈ Rn, a set of

reference sensors (anchors) at known positions {a1,a2, . . . ,am} ∈ Rn, and unknown

target positions S = {e1, e2, . . . , el} ∈ Rn, where n is the ambient space dimension

(n = 2 or 3 for 2D or 3D scenarios, respectively). A central processing node has access

to range measurements between target positions and sensors/anchors, namely,

dij = ‖xi − ej‖+ wij i ∈ Cj , dij = ‖ai − ej‖+ wij i ∈ Bj , and j ∈ S,

where wij denotes noise terms and the sets B and C are defined as

Bj = { i | anchor i can communicate with target j }, (3.1)

Cj = { i | sensor i can communicate with target j }. (3.2)

A practical system that provides such range measurements is used, e.g., in [11].

SLAT Under Gaussian Noise: If disturbances are Gaussian, i.i.d., then maximizing the

likelihood for the full batch of observations is equivalent to minimizing the cost function

ΩG(x) =
∑
j∈S

∑
i∈Cj

(‖xi − ej‖ − dij)2 +
∑
j∈S

∑
i∈Bj

(‖ai − ej‖ − dij)2. (3.3)

The set of unknown sensor and target positions is concatenated into column vector

x ∈ Rn(h+l), the argument of ΩG. The goal of the proposed SLAT approach is to find

the set of coordinates in x which minimize (3.3).

SLAT Under Laplacian Noise: When the disturbances are Laplacian and i.i.d., thus

heavier tailed than Gaussian, maximizing the likelihood amounts to minimizing the cost

function

ΩL(x) =
∑
j∈S

∑
i∈Cj

|‖xi − ej‖ − dij |+
∑
j∈S

∑
i∈Bj

|‖ai − ej‖ − dij |. (3.4)

When compared with (3.3), the absence of squares in the summation terms of (3.4)

renders the function less sensitive to outlier measurements dij with large deviations

from the true ranges.

Since the Euclidean distance metric in both problem setups is invariant to global rota-

tion, translation, and reflection, so are the functions ΩG and ΩL in the absence of an-

chors. To remove most of those ambiguities1 in the solutions, a minimum of m = 3 or 4

1Some geometrical configurations for sensor and target positions have intrinsic rotation/reflection
ambiguities for range-based localization that cannot be resolved by anchors.



Chapter 3. Robust Localization of Nodes and Time-Recursive Tracking in Sensor
Networks Using Noisy Range Measurements 50

non collinear anchors must be considered. As in many other ML problems, the func-

tions ΩG and ΩL are in general nonconvex and multimodal, hence their (approximate)

minimization proceeds in two steps: initialization and refinement. The former pro-

vides suitable initial points, through EDM completion (startup) or source localization

(updating), for target/sensor positions which tend to avoid convergence towards unde-

sirable local minimizers of the ensuing iterative refinement algorithms based on MM or

weighted-MM. Sections 3.4 and 3.5 develop algorithms for the operations listed in Al-

gorithm 5 under Gaussian and Laplacian noise, respectively. Figure 3.1 shows the flow

of the algorithms.

Algorithm 5 Summary of the proposed SLAT algorithm

Goal: Given incomplete and inaccurate range measurements, find sensor and target
positions which (locally) maximize the likelihood function (3.3) for Gaussian noise or
(3.4) for Laplacian noise

Startup phase (Batch algorithms)

Collect a block of range measurements for target sightings at times t = 1, . . . , T
Initialization step: Solve EDM completion problem using (3.10) or (3.20)
Factorize EDM matrix to get spatial coordinates
Refinement step: Improve the likelihood of sensor/target positions by iterative MM
using (3.15) or (3.25)

Updating phase (Time-recursive algorithms)

Collect range measurements for a new target sighting at time t > T
Initialization step: Solve source localization problem for new target position using
SLCP/SLNN in Sections 2.4.1/2.5.1 or SL`1 SD/MD in Sections 2.4.2/2.5.2
Refinement step: Repeat likelihood refinement as in startup

3.4 SLAT under Gaussian Noise

This section develops algorithms for EDM initialization, MM refinement, and time-

recursive estimation in SLAT under the assumption that measurement noise is i.i.d.

and Gaussian. First, a basic formulation of EDM completion with squared distances is

provided to form the basis for the initialization methods described in Sections 3.4.2 and

3.5.1.

3.4.1 EDM with Squared Distances

The basic EDM completion problem, described below, operates on squared ranges [23,

91]. Even though it is not matched to the likelihood function (3.3), it is useful for
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Figure 3.1: Architecture of the SLAT algorithms.

benchmarking in Section 3.6, as its performance is representative of other popular SNL

methods [35, 65] and the SLAT approach of [37].

A partial pre-distance matrix D is a matrix with zero diagonal entries and with cer-

tain nonnegative elements equal to the squares of observed distances, Dij = d2
ij . The

remaining elements are considered free. The nearest EDM problem is to find an EDM

E that is nearest in the least-squares sense to matrix D, when the free variables are not

considered and the elements of E satisfy Eij = ‖yi − yj‖2 for a set of points yi. The

geometry and properties of EDM (a convex cone) have been extensively studied in the

literature [23, 91]. The nearest EDM problem is formulated as

minimize
E

∑
j∈S

∑
i∈Bj∪Cj

(Eij − d2
ij)

2

subject to E ∈ E , E(A) = A

rank(JEJ) = n,

(3.5)
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where J =
(
Iρ − 1

ρ1ρ1ρ
T
)
, ρ = h+m+ l, is a centering operator which subtracts the

mean of a vector from each of its components. The constraint E(A) = A, where A is the

index set of anchor/anchor distances and Aij = ‖ai − aj‖2 is the corresponding EDM

submatrix, enforces the known a priori spatial information. Matrix E belongs to the

EDM cone E if it satisfies the properties

Eii = 0, Eij ≥ 0, −JEJ � 0. (3.6)

The rank constraint in (3.5) ensures that the solution is compatible with a constellation

of sensor/anchor/target points in Rn. Extraction of the set yi from E is described

below. Problem (3.5) is also known as the penalty function approximation [23] due to

the form of the cost function ϕ1(E) =
∑

i,j(Eij − d2
ij)

2. By expressing (3.5) in terms of

full matrices and dropping the rank constraint, a compact relaxed SDP formulation is

obtained as
minimize

E
‖W � (E−D)‖2F

subject to E ∈ E , E(A) = A,
(3.7)

where W is a mask matrix with zeros in the entries corresponding to free elements

of Dij = d2
ij and ones elsewhere. When combined with the Hadamard product �,

the Frobenius norm ‖.‖F replaces the summation in (3.5) over the observed index sets

j ∈ S, i ∈ Bj ∪Cj . From here on, this method will be called EDM with squared ranges

(EDM-SR).

3.4.2 Startup Initialization: EDM with Plain Distances

Instead of trying to match squared distances, EDM completion can be applied to plain

distances as
minimize

E

∑
j∈S

∑
i∈Bj∪Cj

(
√
Eij − dij)2

subject to E ∈ E , E(A) = A

rank(JEJ) = n.

(3.8)

For this method the penalty function is ϕ2(E) =
∑

i,j(
√
Eij − dij)2, which more closely

resembles the terms in the likelihood function (3.3), and (3.8) is thus expected to inherit

some of the robustness properties of ML estimation. Expanding the objective function
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in (3.8) results in

minimize
E

∑
j∈S

∑
i∈Bj∪Cj

(Eij − 2
√
Eijdij + d2

ij)

subject to E ∈ E , E(A) = A

rank(JEJ) = n.

(3.9)

A relaxed SDP is obtained by introducing an epigraph-like variable T and dropping the

rank constraint
minimize

E,T

∑
j∈S

∑
i∈Bj∪Cj

(Eij − 2Tijdij)

subject to T 2
ij ≤ Eij

E ∈ E , E(A) = A.

(3.10)

From here on, this method will be called EDM with plain ranges (EDM-R).

3.4.2.1 Estimation of Sensor and Target Positions from EDM

Note that the solutions of the initialization techniques described here and in Sections

3.4.1 and 3.5.1 are distance matrices. To estimate the spatial coordinates of the sensors

and target positions from EDM, define a matrix Y whose columns hold all sensor,

anchor and target coordinates, globally translated so that their average is located at the

origin. Then the Gram matrix YTY is obtained from the EDM matrix E by a linear

transformation [23], Sec. 8.3, from which spatial coordinates Y are extracted by SVD

up to a unitary matrix. In most cases the SVD will return a coordinate matrix whose

rank is greater than the embedding dimension (2 or 3 in this work) so valid coordinates

are obtained by truncating the SVD to the appropriate rank. The anchors are then used

to estimate the residual unitary matrix Q after SVD by solving the Procrustes problem,

[63]

minimize
Q

‖A−QYA‖2F

subject to QTQ = I,

(3.11)

where the columns of A hold the anchor positions, and YA denotes the relevant subset

of the columns of the truncated SVD output Y (the anchor set and the subconstellation

are also centered to the origin as explained above.). This problem has a closed-form

solution.

Observation noise can significantly disrupt the estimated sensor/target coordinates through

EDM completion and rank truncation, and it was found that much more accurate results
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Figure 3.2: Majorization Minimization Technique.

are obtained by using those as a starting point for likelihood maximization. Next, MM

algorithms are proposed for iterative likelihood maximization.

3.4.3 Refinement Steps: Majorization-Minimization

The key idea of MM is to find, at a certain point xt, a simpler function that has the same

function value at xt and anywhere else is larger than or equal to the objective function

to be minimized. Such a function is called a majorization function. By minimizing the

majorization function the next point of the algorithm is obtained, while decreasing the

cost function [89] as shown in Figure 3.2.

Define two convex functions as

fij(x) = ‖xi − ej‖, gij(x) = ‖ai − ej‖. (3.12)

and assume that sensors and targets are not at the same positions, i.e., xi 6= ej and

ai 6= ej .

Expanding f and g in (3.3) and using first-order conditions on convexity [23],

ΩG(x) ≤
∑
j∈S

∑
i∈Cj

(
f2
ij(x)− 2dij

(
fij(x

t) + 〈∇fij(xt), (x− xt)〉
)

+ d2
ij

)
+
∑
j∈S

∑
i∈Bj

(
g2
ij(x)− 2dij

(
gij(x

t) + 〈∇gij(xt), (x− xt)〉
)

+ d2
ij

)
,

(3.13)

where 〈u, v〉 = uT v, the proposed majorization function is on the right side of (3.13),

which is quadratic in x and easily minimized. The MM iteration

xt+1 = arg min
x

∑
j∈S

∑
i∈Cj

(
f2
ij(x)− 2dij〈∇fij(xt),x〉

)
+
∑
j∈S

∑
i∈Bj

(
g2
ij(x)− 2dij〈∇gij(xt),x〉

)
(3.14)
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turns out to be obtained as the solution of the following linear system of equations∑
j∈S

∑
i∈Cj

MT
ijMij +

∑
j∈S

∑
i∈Bj

NT
j Nj

xt+1 =
∑
j∈S

∑
i∈Cj

dij∇fij(xt) +
∑
j∈S

∑
i∈Bj

dij∇gij(xt)

−
∑
j∈S

∑
i∈Bj

Nja
T
i ,

(3.15)

where the selection matrices Mij and Nj are defined in Appendix G and

∇fij(xt) =
MT

ijMijx
t

‖Mijxt‖
, ∇gij(xt) =

NT
j (ai + Njx

t)

‖ai + Njxt‖
.

3.4.4 Updating Initialization: Recursive Position Estimation using SLCP

/ SLNN

Suppose that a batch of observations have been processed and a new target position

is to be estimated. One idea is to repeat MM refinement with EDM-R initialization

acting on an expanded batch that concatenates all previous range measurements and

those for the new target sighting. However, this would be computationally expensive

due to the EDM completion step. Also, previously estimated positions would be ignored

and could not contribute to computational complexity reduction. To alleviate the load

a simple methodology is proposed to obtain a good initial point for MM which avoids

the EDM step. This consists of fixing the previous positions at their estimated values

and only estimating the new target position. More precisely, the following cost function

is minimized

ΨG(y) =
m+h∑
i=1

(‖bi − y‖ − di)2, (3.16)

where y is the new target position, bi denotes the previously estimated position of

a sensor or anchor, and di is the corresponding range measurement. SLCP or SLNN

proposed in Section 2.4.1 or Section 2.5.1 can be used to minimize (3.16).

After an optimal target position is obtained through SLCP/SLNN, the cost function

(3.3) is resorted to iteratively refine all estimates using (3.15). In SNL this incremental

procedure could also be applied as new sensors become available.

In a previous paper [37], the source localization method derived in [46], termed SR-LS,

was proposed for initialization during the updating phase. Note that in [46] squared

distances are matched, leading to a Trust Region optimization problem. However, as

demonstrated in [45] and in Chapter 2, SLCP is a more accurate source localization

method and its cost function (3.16) is better matched to the likelihood function (3.3).
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This makes it more convenient for initialization of iterative refinement algorithms, which

will then require fewer iterations to converge and/or will be less likely to get trapped in

undesirable local extrema.

3.5 SLAT under Laplacian Noise

3.5.1 Startup Initialization: EDM with Ranges and `1-norm

Among the penalty function approximation methods, the `1-norm approximation is

known to be robust to outliers [23]. Therefore, the penalty function of the third SLAT

startup initialization method is chosen as ϕ3(E) =
∑

i,j |
√
Eij − dij |, and the associated

optimization problem becomes

minimize
E

∑
j∈S

∑
i∈Bj∪Cj

|
√
Eij − dij |

subject to E ∈ E , E(A) = A,

rank(JEJ) = n.

(3.17)

The terms |
√
Eij − dij | in the objective function for this problem are convex when√

Eij − dij < 0, but concave for
√
Eij − dij > 0. To obtain a convex approximation

each of those terms is replaced by a linear approximation

cijEij + sij , cij =
1√

Emax + dij
, sij = −

d2
ij√

Emax + dij
(3.18)

in part of the domain where it is concave, as shown in Figure 3.3. The two functions

coincide for Eij = d2
ij and Eij = Emax, where the constant Emax is a practical upper

bound on (squared) range measurements. Thus |
√
Eij − dij | is replaced by its convex

envelope max{dij −
√
Eij , cijEij + sij} and the epigraph variable T is used to obtain

minimize
E,T

∑
j∈S

∑
i∈Bj∪Cj

Tij

subject to max{dij −
√
Eij , cijEij + sij} ≤ Tij

E ∈ E , E(A) = A

rank(JEJ) = n.

(3.19)
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Figure 3.3: The value of |
√
Eij − dij | vs Eij , and the linear approximation of the

concave part.

A relaxation of (3.19) after dropping the rank constraint is

minimize
E,T

∑
j∈S

∑
i∈Bj∪Cj

Tij

subject to (dij − Tij)2 ≤ Eij , cijEij + sij ≤ Tij

E ∈ E , E(A) = A.

(3.20)

Note that the first constraint in (3.20) is not equivalent to dij −
√
Eij ≤ Tij , but rather

to −
√
Eij ≤ dij−Tij ≤

√
Eij , which amounts to intersecting the original epigraph with

the parabolic hypograph dij +
√
Eij ≥ Tij . This preserves the convexity of the feasible

set and does not change its lower boundary for Eij ∈ [0, Emax], where the optimal point

will be found. The constraint can now be readily expressed in standard form without

introducing additional variables, e.g., as an LMI or a second-order cone constraint [92][
1 dij − Tij

dij − Tij Eij

]
� 0 or

∥∥∥∥∥2(dij − Tij)
Eij − 1

∥∥∥∥∥ ≤ Eij + 1. (3.21)

This technique will be called EDM with ranges and `1-norm (EDM-R-`1).

3.5.2 Refinement Steps: Weighted Majorization Minimization

Robustness to outliers in the cost function (3.4) for Laplacian noise is gained at the

expense of differentiability. To circumvent this shortcoming the well-known re-weighted

least squares approach will be resorted [93], which replaces the minimization of (3.4)

with a sequence of minimizations of smooth approximation functions that converge to
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ΩL(x). Specifically, (3.4) is first written as

ΩL(x) =
∑
j∈S

∑
i∈Cj

uij(‖xi − ej‖ − dij)2 +
∑
j∈S

∑
i∈Bj

vij(‖ai − ej‖ − dij)2, (3.22)

with

uij =
1

|‖xi − ej‖ − dij |
, vij =

1

|‖ai − ej‖ − dij |
.

At time t the minimization function becomes Ωt
L(x), which has the same form of (3.22)

but the functions uij , vij above are now replaced by constants based on the estimated

positions after the previous iteration

utij =
1

|‖xti − etj‖ − dij |
, vtij =

1

|‖ai − etj‖ − dij |
. (3.23)

An inner optimization loop could now be used to minimize Ωt
L(x) for every t but, as

shown in Appendix F, a single iteration suffices to ensure convergence. With fixed utij ,

vtij the same majorization technique of Section 3.4.3 yields the weighted-MM iteration

xt+1 = arg min
x

∑
j∈S

∑
i∈Cj

utij
(
f2
ij(x)− 2dij〈∇fij(xt),x〉

)
+
∑
j∈S

∑
i∈Bj

vtij
(
g2
ij(x)− 2dij〈∇gij(xt),x〉

)
.

(3.24)

Thus, the new point is obtained by solving the linear system∑
j∈S

∑
i∈Cj

utijM
T
ijMij +

∑
j∈S

∑
i∈Bj

vtijN
T
j Nj

xt+1 =
∑
j∈S

∑
i∈Cj

utijdij∇fij(xt) +
∑
j∈S

∑
i∈Bj

vtijdij∇gij(xt)

−
∑
j∈S

∑
i∈Bj

vtijNja
T
i ,

(3.25)

where ∇fij(xt), ∇gij(xt), Mij and Nj are the same as in (3.15).

In practice the weights utij and vtij must be modified to avoid the possibility of division

by zero [94], which in this thesis is achieved by saturating them at 105 when computing

(3.24). Hence, truncating the weights, which are the Huber thresholds, is equivalent to

using the Huber function.
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3.5.3 Updating Initialization: Recursive Position Estimation using SL-

`1

The ML source localization problem under Laplacian noise is equivalent to

minimize
y

ΨL(y) =
h+m∑
i=1

|‖y − bi‖ − di| (3.26)

where y, bi and di are defined in Section 3.4.4. The ideas of Sections 2.4.2 and 2.5.2 are

followed to express the minimization of Ψ2
L as a weighted sum of squares.

As in Section 3.4.4, after an optimal target position is obtained, the cost function (3.4)

is resorted to iteratively refine all the estimates using (3.25). Section 3.6 and Section 2.8

demonstrate in simulations that SL-`1 and its 3D extensions are more robust to outliers

than the SLCP/SLNN algorithms of Section 2.4.1 and Section 2.5.1, as the cost function

(3.26) is better matched to the likelihood function (3.4).

3.6 Numerical Results

Example 1 [Comparison of Initialization Methods for the Startup Phase

(EDM Completion)] To investigate the accuracy of the methods, a physical sce-

nario that contains four anchors, five unknown sensors, and six target positions in a

[0, 2] m ×[0, 2] m area is set. Range measurements are corrupted by additive spatio-

temporally white noise with standard deviation σgaussian ∈ [0.005, 0.03] m. This noisy

observation model may lead to near-zero or negative range measurements, in which case

normal practice [35] is followed and they are set to be equal to a small positive constant

(10−5 in the simulations). With the chosen noise variances this occurs sufficiently seldom

(up to 0.04% of measurements) for its impact on estimation accuracy to be unimportant.

Several algorithms are tested (EDM-SR, EDM-R, EDM-R-l1, MM initialized by EDM-

SR (EDM-SR+MM), MM initialized by EDM-R (EDM-R+MM) and MM initialized by

EDM-R-l1 (EDM-R-l1+MM)), and their performances are compared according to the

total RMSE √√√√ 1

K

1

h+ l

K∑
k=1

h+l∑
i=1

‖xi − x̂ki ‖2, (3.27)

where x̂ki denotes the i-th estimated sensor or target position in the k-th Monte Carlo

run for the specific noise realization. The RMSE defined in (3.27) and (2.66) are the

same with only one difference that (3.27) is the mean of all target and sensor positions

hence it is called total RMSE. In each of K = 150 Monte Carlo runs, a random network is

generated according to the physical scenario described above. To assess the fundamental
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hardness of position estimation, error plots for Gaussian noise also show the total CRLB,

calculated as √√√√ 1

K

1

h+ l

K∑
k=1

trace(CRLBk) (3.28)

for each noise variance, where CRLBk denotes the matrix lower bound at the k-th

Monte Carlo run. The CRLB for anchored and anchor-free localization using ranging

information has been studied in [16, 95, 96] for different variance models of range esti-

mation noise. For convenience, the CRLB for the SLAT problem under Gaussian noise

is rederived in Appendix G in terms of the notation adopted in this thesis. To fully

justify benchmarking against the CRLB, the unbiasedness of the proposed estimators,

a mathematically challenging endeavor, should be proved. In the experimental results,

however, no clear evidence of bias for small noise levels is found, where convergence to

undesirable extrema of the cost functions is avoided. Figure 3.4(a) shows that plain

EDM-R has better accuracy than EDM-SR and EDM-R-l1, although the performance

gap closes after iterative refinement by MM. Moreover, MM initialized by the various

methods nearly touches the CRLB except when the noise variance is large.

To compare the total RMSE of the algorithms in the presence of outliers, modified range

measurements are created according to a “selective Gaussian” model defined in (2.68).

The disturbance εi with σoutlier ∈ [0.4, 2] m randomly affects only two range measure-

ments, whereas wi with σgaussian = 0.01 m is present in all observations. This outlier

generating model deviates from the earlier Laplacian assumption, but it is arguably rep-

resentative of observed range measurements in practical systems [74]. Numerical results

under a pure Laplacian model will be presented in Examples 3 and 4. In the presence

of high noise and/or outliers, Figure 3.4(b) shows that weighted-MM refinement does

not close the performance gap between EDM-R-l1, EDM-R and EDM-SR initialization

because in the latter cases the algorithms converge more often to local minima, thus

producing a larger total RMSE.

Example 2 [Uncertainty Ellipsoids] To further examine the accuracy of MM and

weighted-MM with different initialization methods in the startup phase, two networks

of 10 sensors, 4 anchors and 11 target positions are randomly generated. 100 Monte

Carlo runs were used to find the mean and (1σ) uncertainty ellipsoids of the positions

estimated by the methods. The mean and uncertainty ellipsoids for σgaussian = 0.025 m

and σgaussian = 0.02 m / σoutlier = 0.8 m are shown in Figures 3.5 and 3.6, respectively.

Again, outliers are randomly added to two range measurements in Figure 3.6.

Without outliers (Figure 3.5) using EDM-SR, EDM-R, or EDM-R-l1 as an initialization

to MM makes the uncertainty ellipsoids shrink dramatically after refinement, yielding
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Figure 3.4: Comparison of initialization and refinement methods in the startup phase
of SLAT.

very similar means and covariances. These are only displayed in the detail view of Figure

3.5(b), as they are too small to be shown in Figure 3.5(a). In the presence of outliers

(Figure 3.6), the uncertainty ellipsoids of EDM-SR+wMM are bigger than for other

methods and the means of the estimated positions are shifted. Since EDM-R-l1 and

EDM-R initializations converge to global extrema most of the time, the means of the

positions estimated by weighted MM still approach the true positions and their uncer-

tainty ellipsoids are much smaller than for EDM-SR+wMM. In the presence of outliers

this example shows that EDM-R-l1+wMM is clearly superior to the other methods.
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Figure 3.5: Mean and uncertainty ellipsoids in the startup phase with different ini-
tialization methods. No outliers, σgaussian = 0.025.

A Note on Practical Computational Complexity of EDM Initialization The

experiments were conducted on a machine with an Intel Xeon 2.93 GHz Quad-Core

CPU and 8 GB of RAM, using Matlab 7.1, CVX 1.2 and Yalmip 3/SeDuMi 1.1 as a

general-purpose SDP solver. CPU times are similar for EDM-SR, EDM-R and EDM-

R-`1, under 5 seconds for the example described above with h = 25 unknown positions

and empirically increasing with h4.5 for larger values of n (< 100). This gives a notion

of what network sizes are currently practical for the EDM initialization methods, while

keeping in mind that CPU times are known to be unreliable surrogates for intrinsic
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Figure 3.6: Mean and uncertainty ellipsoids in the startup phase with different ini-
tialization methods. Selective Gaussian Noise (outlier), σoutlier = 0.8/σgaussian = 0.02.

computational complexity due to dependencies on factors such as machine hardware

architecture, operating system, efficiency of numerical libraries, and solver preprocessing.

No attempt was taken to formulate the EDM completion problems in the most efficient

way possible for the SDP solver. For MM-type iterative algorithms, extremely large

problem sizes can be efficiently handled using contemporary numerical algorithms and

computing platforms. In the experiments each iteration takes up to about 1 millisecond.
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Example 3 [Global Assessment of the Updating Phase (Time-Recursive Al-

gorithms)] This example assesses the performance of the full time-recursive proce-

dure (updating phase), comprising SLCP or SL`1 initialization followed by refinement.

The network scenario has 16 unknown sensors, 4 anchors and 10 target locations, all

randomly positioned. A new target sighting (the 11th one) becomes available and is

processed incrementally, i.e., the position is estimated through SLCP or SL`1 by fixing

all the remaining ones, then all estimates are jointly refined. Results are benchmarked

against refinement with full batch initialization, which makes a fresh start to the pro-

cess without using any previous knowledge at every new target position to be estimated,

solving different and increasingly large EDM completion problems for ML initialization.

As explained in Section 3.4.4, this type of incremental approach was used in [37] with

the SR-LS algorithm of [46] and MM refinement for Gaussian noise. However, SLCP

is used here instead of SR-LS because, as shown in [45], it increases the convergence

speed of subsequent iterative methods and also alleviates the problem of convergence

to local extrema of the ML cost function by providing better initial points than SR-

LS does. Figure 3.7 shows the evolution of the Gaussian cost function ΩG(x) during

refinement after ranges to the 11th target position are sensed (σgaussian = 0.04 m). The

time-recursive (SLCP)+MM approach takes advantage of previously estimated positions

to start with a lower cost than batch (EDM-R)+MM, but it reaches the same final error

value.

The same network scenario is adopted in the presence of outliers. Figure 3.8 shows the

evolution of cost function ΩL(x) during refinement for Laplacian outliers (σlaplacian = 0.1
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Figure 3.8: Evolution of Laplacian cost function ΩL(x) during refinement for EDM-
R-`1+wMM and SL`1+wMM approaches, with σlaplacian = 0.1.

m), whose behavior is similar to the Gaussian case of Figure 3.7. In both Gaussian and

Laplacian settings refinement yields similar accuracy and convergence speed after batch

or time-recursive initializations. Therefore, time-recursive updating is seen to retain the

essential features of the EDM-based approach to SLAT, namely, a very limited need for

a priori spatial information and fast convergence, at a fraction of the computational

cost.

3.7 Real Indoor Experiments

The present section illustrates the performance of proposed algorithms in a real world

experimental setup explained in Section 2.9, where the statistics of perturbations are

unknown and the true locations of sensors are only approximately known (to an accuracy

on the order of 2 cm) [52]. In the following, results will be presented relative to tracking

a Pioneer P3-DX robot and a human in a test environment shown in Figure 2.9. The

same RMSE metric defined in (3.27) is used, without averaging over Monte Carlo runs.

Experiment 1: In the first experiment, 8 listeners are deployed around the lab and on

the ceiling in a 4 m by 4 m area and a beacon is attached to a Pioneer P3-DX mobile robot

programmed to follow a circular trajectory. As the robot moves, the beacon periodically

emits signals which allow some of the sensors and anchors to measure their distances

to the robot. The sensors and anchors send their measurements to a desktop machine

to process them in batch and time recursive algorithms. Note that no measurements

are collected between sensors. Through the trajectory of 1.5 minutes, 18 positions
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Figure 3.9: Circular trajectory of Pioneer P3-DX. B-est and TR-est refer to estimation
from full batch (EDM-R + MM) and the time recursive ((EDM-R + MM )+ SLNN +

MM) procedures, respectively.

of the robot are observed. The ground truth of sensors and beacon/robot positions

are obtained using manual measurements. On average 7 sensors heard beacon signals

from each target position. The algorithm is able to accurately localize a network of 4

anchors, 4 sensors and 18 target positions with an RMSE of 4.1 cm. The geometrical

configuration of these sensor and target positions has intrinsic reflection ambiguities

that are not resolved with anchors because the robot moves in the same z-coordinate

through the circular trajectory. Therefore, some of the sensor positions are estimated

at the mirror of their real positions with respect to the robot z-coordinate. For this

particular setup, the intrinsic reflection ambiguity is readily solved by projecting them

to the positive z-axis with respect to the estimated robot z-coordinate.

Figure 3.9 shows sensor/anchor positions and the 3D nominal and estimated target

trajectories. Dark symbols represent estimated positions from the full batch (18 tar-

get positions), while red symbols display the estimated positions from an initial batch

(first 15 target positions), followed by three time recursive updates for the three last

target positions. At each time recursive update, it is assumed that a new target range

measurement is obtained by the sensors and the new position is estimated by fixing

the previously estimated positions while minimizing (2.37). The newly estimated tar-

get position and all positions estimated previously are given as an initial point to start

MM. Therefore, Figure 3.9 presents not only the last three target positions estimated in

updating initializations, but also all positions refined by MM step.

Experiment 2: In this experiment, the robot moves along a straight line, followed by

a half circle, a straight line, and a full circle for approximately 2 minutes, generating 24
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MM )+ SLNN + MM) procedures, respectively.

target positions. The RMSE of this setup (4 anchors, 4 sensors and 24 target positions)

is 3.95 cm which is slightly better than the previous experiment due to the larger batch

dimension (24 target positions). Figure 2.10 shows the sensor/anchor node positions,

as well as the nominal and estimated target trajectories for both the batch and time

recursive approaches. The latter pertains to the last three target positions, as described

in Experiment 1. The time recursive procedure attains the same accuracy as the batch

algorithm, with the advantage of lower computational complexity.

Experiment 3: In this experiment, a human carries the beacon, generating 18 target

sightings along a somewhat erratic trajectory (the human moves to the positions that

have ground truths). Figure 3.11 depicts the sensor/anchor positions, the nominal and

the estimated target trajectories. Since the human carries the beacon in different z-

coordinates, there is no symmetry, thus no intrinsic ambiguity in this case. The RMSE

of this network of 4 anchors, 4 sensors and 18 target positions is 3.88 cm.

3.8 Conclusion

In this chapter, a ML-based technique is presented to solve a SLAT problem using a

two-phase approach under Gaussian or Laplacian noise. A MM method is proposed to

iteratively maximize the non-convex likelihood function, for which a good initial point is

required. Therefore, two initialization schemes, EDM completion and SLCP/SLNN/SL-

`1s are investigated that bypass the need for strong priors on sensor/target positions.
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Figure 3.11: Trajectory of a human target.

After the first batch of measurements is obtained, EDM completion is used for the first

initialization of the sensor network topology. In the experiments this was accomplished

reasonably fast (a few seconds) for scenarios with up to about 30 unknown positions.

As EDM completion is not scalable, after startup an alternative, lightweight, incremen-

tal initialization scheme is resorted as additional target range measurements become

available. The SLCP/SLNN or SL-`1 family of time recursive methods use the already

estimated positions at each time a new position is to be estimated; afterwards the newly

estimated position and the already estimated ones are given as an initialization to the

optimization methods. Anchors are used to avoid some inherent ambiguities of the

sensor/target localization problem using range measurements.

Simulation results showed that proposed scheme nearly attains the CRLB under mod-

erate Gaussian noise. In the presence of outliers, both EDM-R-`1 and SL-`1 provide

more accurate initial position estimates than other existing methods. Moreover, when

used as input to iterative refinement methods they provide a good starting point that

reduces the probability of convergence to undesirable extrema, yielding improved over-

all estimation performance. Hence, with this methodology, a processing structure is

obtained that is robust to outliers and provides a scalable and accurate solution to the

SLAT problem. Importantly, the algorithms based on `1 norm optimization exhibited

robust behaviour in simulation not only for Laplacian outliers, but also for an alterna-

tive outlier generation technique that did not match the underlying Laplacian modelling

assumptions.

The proposed algorithms are tested in a real 3D indoor environment. It is observed that
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the range estimation accuracy depends on the distance and the facing angle of sensor-

target pair, which affects the accuracy of the algorithms. Additionally, for particular

setups, intrinsic ambiguities can not be resolved with anchors. It is demonstrated ex-

perimentally that the proposed scheme can track a target and localize sensors to within

about 4 cm accuracy in a 3D indoor environment using mixed ultrasound-RF ranging.



Chapter 4

Sensor Network Localization in

the Presence of Unknown

Turn-Around Time or Transmit

Power

In this chapter, cooperative sensor network localization with nuisance parameters, i.e.

unknown turn-around time for TOA based and unknown transmit power for RSS based

systems will be addressed. Mathematically, these problems are closely related to the

ones addressed in Chapter 3, with additional difficulties. Therefore, similar techniques

are resorted to solve them.

4.1 TOA based Sensor Network Localization with Unknown

Turn-Around Time

4.1.1 Introduction

As the TOA measurements are time-based, clock synchronization among different nodes

affects localization algorithms. Moreover, because of the stringent cost and power con-

straints of WSNs, low-cost clocks are normally employed. This makes time-based local-

ization and synchronization tightly coupled and challenging. To address this problem,

in this section, the Two-Way Time-of-Arrival (TW-TOA) protocol is adopted, where

the anchor node sends the ranging request and the target node responds back. The time

of flight of the signal is proportional to the distance between target-anchor if there is

70
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no delay in the response time of the target, or if that delay, called turn-around time, is

correctly included in the reply packet and subtracted at the node originating the ranging

request. Although, broadcast mode, pairwise distances are obtained one at a time, is

less obvious than the one for TOA based systems, this way, TW-TOA based systems can

exploit unsynchronized clocks as shown in Figure 4.1. However, in practical scenarios,

calibration of nodes to determine the turn-around time is costly and difficult [97, 98].

In addition, the responding target might deceive the anchor by reporting a wrong turn-

around time. Therefore, localization algorithms should tackle this issue which is solved

within the context of cooperative localization in this section. In this scheme, not only

are TW-TOAs between target nodes and anchor nodes measured, but also the target

nodes themselves are involved and collect TW-TOA measurements from each other.

In [99], an UWB ranging-based localization strategy which is immune to an internal

ranging attack, a false timestamp report, is proposed using TW-TOA protocol. For

example, a compromised sensor node tampers its timestamp report to deceive its pro-

cessing time in order to falsely decrease or enlarge distance measurements, or a sensor

node submits an inaccurate timestamp report due to the clock drift. The authors resort

to TDOA type algorithms to solve the synchronization and localization problem. In

[100, 101], the authors first propose closed-form LS estimators for joint synchronization

and a single target localization using the TW-TOA protocol in which clock offset and

skew are unknown. And then the authors propose an Asymmetric Trip Ranging (ATR)

protocol, where anchors are not only able to communicate with the target, but also lis-

ten to the other anchor-target communications. An asynchronous position measurement

system is proposed in [102] and another LS based method is solved for indoor localization

of a single target by using the differential TOA. The target node position and clock offset

are estimated by a weighted least-squares estimator in a computationally efficient way

in [103]. A generalized total LS algorithm is developed for the joint synchronization and

localization of an unknown node in [104]. The authors consider hierarchical hop-by-hop

time synchronization and localization where only one node needs to be localized and

synchronized to the anchors at a time. Recently, an LS based approach using hybrid

TW-TOA and TDOA in cooperative networks is proposed for the joint estimation of

unknown turn-around times and node locations [105]. The authors did not consider

TW-TOA measurements between targets to improve the accuracy. All mentioned meth-

ods either estimate a single target position or estimate each target position at a time by

a linearization-based LS. Therefore, the main contribution of this section is an accurate

SDP method which localizes multiple targets simultaneously in the presence of unknown

turn-around time in a cooperative network.

To find the MLE for the sensor network localization problem with unknown turn-around

times, it is necessary to solve a nonlinear and nonconvex optimization problem. To avoid
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this difficulty, the original MLE is transformed into an approximate NLS problem using

squared range measurements. Then, relaxation techniques are applied to convert the

NLS problem into a convex optimization problem by resorting to EDM completion.

Through this, the target turn-around times are considered as nuisance parameters and

estimated jointly with the target locations. The resulting problem is globally solvable,

but it is sub-optimal and hence cannot achieve the best possible performance under all

conditions.

The remainder of this section is organized as follows. Section 4.1.2 formalizes the prob-

lem and formulates the proposed EDM completion. Simulations and computational

complexity analysis are given in Section 4.1.3. Conclusions are drawn in Section 4.1.4.

4.1.2 Problem Formulation

This section formulates the cooperative localization problem using TW-TOA measure-

ments, where the target locations and turn-around times are unknown. Two sets of

TW-TOA measurements are available to the estimator: target-anchor and target-target

measurements. Let sj ∈ Rn, j ∈ S = {1, . . . , h} and ai ∈ Rn, i ∈ A = {h+1, . . . , h+m}
denote h target and m anchor locations, respectively. The cooperative TW-TOA mea-

surement (converted to distance) [106], when the i-th node interrogates the j-th node,

is expressed as

dij = Tj + 2d̂ij + wij , j ∈ S, i ∈ Bj ∪ Cj (4.1)

where Tj is the turn-around time of the j-th target (converted to distance), d̂ij =

‖si − sj‖, i ∈ Cj and d̂ij = ‖ai − sj‖, i ∈ Bj . Sets Bj and Cj are defined in (3.1)

and (3.2), respectively. Note that, here, Cj contains the index set of targets (called as

sensors in (3.2)) that communicate with the j-th target. In addition, wij are modeled as

i.i.d. zero mean Gaussian random variables with standard deviation σij . Consequently,

there are in total n × h + h unknown elements that should be estimated, including

the target locations and the turn-around times defined as S = [s1, . . . , sh] ∈ Rn×h and

T = [T1, . . . , Th]T ∈ Rh, respectively.

In practical scenarios, we can assume that a target sends a ranging request to another

target, which responds back. When the communication initiator gets the response,

it then sends a final packet as if it had been interrogated. In this way, with three

communications, two TW-TOA measurements are obtained as shown in Figure 4.1(a).

Whenever an anchor sends a ranging request to a target, that target not only responds

back to the ranging message but also sends its TW-TOA measurements obtained with

respect to the other targets with which it has communicated. As a result, all TW-TOA

measurements are conveyed to the central node via anchors.
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(a) TW-TOA measurements. (b) TOA measurements.

Figure 4.1: Two TW-TOAs are obtained in three commucations between target
nodes. TOA measurements are estimated accurately only when the clocks of the nodes

are synchronized.

4.1.2.1 EDM Formulation

By moving Tj to the left hand side (LHS) of the equation and squaring both sides, (4.1)

can be reformulated as

d2
ij − 2dijTj + T 2

j = 4d̂2
ij + 4d̂ijwij + w2

ij . (4.2)

For sufficiently small noise, w2
ij in the right-hand side of (4.2) can be neglected and (4.2)

is written as

d2
ij − 2dijTj + T 2

j = 4d̂2
ij + εij , (4.3)

where εij = 4d̂ijwij is a zero-mean Gaussian noise with standard deviation 4d̂ijσij . The

NLS formulation that matches predicted (d̂ij , Tj) vs. observed dij ranges is

minimize
S,T

∑
j∈S

∑
i∈Bj∪Cj

(d2
ij − 2dijTj + T 2

j − 4d̂2
ij)

2. (4.4)

The unknown squared distances can be arranged into a single symmetric EDM matrix

of size (h+m)× (h+m), with elements Eij = d̂2
ij , and satisfying the properties of the

EDM cone E [23, 38] given in (3.6).
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Introducing a vector epigraph variable K = [K1, . . . ,Kh]T yields the following relaxed

EDM problem:

minimize
E,T,K

∑
j∈S

∑
i∈Bj∪Cj

(d2
ij − 2dijTj +Kj − 4Eij)

2

subject to E ∈ E , E(A) = A

Kj ≥ T 2
j , Tj ≥ 0, and γj ≥ Kj .

(4.5)

The constraint E(A) = A enforces the known a priori spatial information related with

anchors in the appropriate EDM submatrix. In (4.5) the desired nonlinear equality

constraint Kj = T 2
j is relaxed to an inequality to obtain a convex optimization problem.

However, the relaxation can cause Kj to become arbitrarily large, which is undesirable

because estimated locations become arbitrarily far apart. To mitigate this difficulty,

large Kj values might be penalized by adding a regularization term to the objective

[23, 91]. However, this is sensitive to the penalization term [107]. Another way is to

upper bound Kj by a constant γj , which might be chosen with respect to prior knowledge

of system specifications, i.e., knowledge of the maximum possible value of turn-around

time or according to the method proposed in Section 4.1.2.2.

Note that the solution of (4.5) is a distance matrix E. Detailed explanations of how to

estimate the spatial coordinates of the targets from EDM and the usage of anchors are

given in Section 3.4.2.1.

4.1.2.2 Estimate of γj

To provide a reasonably good upper bound, γj , for the variable Kj , (4.3) can be approx-

imated by dropping the noise term when i ∈ Bj as

d2
ij − 2dijTj + T 2

j = 4‖ai‖2 − 8aTi sj + 4‖sj‖2, (4.6)

and rearranging terms as

d2
ij − 4‖ai‖2 = −8aTi sj + 4‖sj‖2 + 2dijTj − T 2

j , (4.7)

which can be written as bij = Hijyj , where bij = d2
ij − 4‖ai‖2, Hij = [1, − 8aTi , 2dij ]

and yj = [4‖sj‖2 − T 2
j , sj , Tj ]

T . The vector bj and matrix Hj are constructed from

bij and Hij , i ∈ Bj , such that bj = Hjyj . If Hj has full column rank, coarse estimates

of sj and Tj are obtained from the LS solution

ŷj = (HT
j Hj)

−1HT
j bj . (4.8)
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Through simulations it was observed that the accuracy of position estimation is better

than the turn-around time estimation with this method. Therefore, estimated turn-

around times are calculated as T̃j = (
∑

i∈Bj (dij − 2d̃ij))/|Bj |, where d̃ij is the estimate

of d̂ij from the estimated target position ŝj , and |Bj | is the cardinality of Bj . The upper

bound in (4.5) is set as γj = T̃ 2
j . Note that to solve (4.8), at least 4 (2D) or 5 (3D)

anchors are needed. The estimator first estimates the locations and turn-around times of

targets that are connected to a sufficient number of anchors, and it uses the estimated

position of the neighboring targets as virtual anchors for the remaining ones. When

these conditions are not satisfied, the estimator simply assigns a constant to γj based

on prior knowledge of maximum turn-around times.

Note that, ideally, one would like γj to be large enough (but no larger) so that the true

values of Kj = T 2
j for a given network setup are included in the feasible set of (4.5).

Even though the method above for setting γj does not really guarantee that, simulation

results show that it is a good heuristic.

4.1.3 Simulations

In this section, computer simulations are performed to evaluate the performance of the

proposed algorithm which will be called “EDM” in the figures. The comparison metric is

the total RMSE defined as in (3.27). To assess the fundamental hardness of the position

estimation, error plots also show the average CRLB with known (“CRLB-Known-T”)

and unknown turn-around times (“CRLB”) for each noise variance. The derivation of

the CRLB is given in Appendix H.1 and it follows the same reasoning as in [16].

To compare the proposed algorithm with MLE, Matlab’s function lsqnonlin is initial-

ized with the output of the proposed method and with random initialization, denoted

below as EDM-MLE and RAND-MLE, respectively. Additionally, results for EDM lo-

calization with true turn-around time (“EDM-Known-T”) will be provided. In every

realization of the network, the turn-around time is randomly drawn from [1, 100] ns and

the measurement noise assumed i.i.d. Gaussian, with σij = σ ∈ [0.01, 18] m.

Example 1 [Random network] A fully connected (all anchors and targets are within

communication range) randomly distributed network in [−80 80] m × [−80 80] m con-

sisting of 6 targets and 8 anchors is generated at each Monte Carlo run for each noise

level. Figure 4.2 shows the RMSE of different approaches. The accuracy of the proposed

method is good and the degradation in performance due to unknown turn-around time

is small when compared to EDM-Known-T. Additionally, EDM-MLE attains the CRLB.

The RMSE of RAND-MLE is the worst one.
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Figure 4.2: RMSE comparisons in a fully connected randomly distributed network.

Example 2 [Structured network] The behavior of the algorithms is examined for

a structured network, in which ai ∈ {[±50,±50]T , [0,±70]T , [±70, 0]T } m and si ∈
{[±20, 40]T , [0,±40]T , m [0, 0]T , [20, 40]T }, i.e., when all 6 targets are in the convex hull

of 8 anchors and they are fully connected. As shown in Figure 4.3, the accuracy of EDM

is good and EDM-MLE attains the CRLB. However, for this scenario RAND-MLE also

achieves the CRLB because the cost function appears to have a unique minimum.
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Figure 4.3: RMSE comparisons in a fully connected structured network.
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Example 3 [The sample mean and uncertainity ellipsoids] The sample mean

and the uncertainty ellipsoids of EDM and EDM-Known-T are given in Figure 4.4(b)

when σ = 10 m for the structured network. The connectivity matrix for the network

is shown in Figure 4.4(a), where the 5th and 6th targets are only connected to two

anchors and all others communicate with five anchors. Although two anchors are not

enough for the 5th and 6th targets to be localized in 2D, all positions are eventually

determined with good accuracy through cooperation, as the remaining targets are within

range of a sufficient number of anchors. Figure 4.4(c) shows the RMSE comparisons for

this network. With limited connectivity to anchors the localization problem becomes

harder, similarly to what is known to occur even with full connectivity when some of

the targets lie outside the convex hull of the set of anchors. This is seen, e.g., in the

significant degradation of RAND-MLE for strong observation noise levels (σ > 10 m).

However, EDM still provides good accuracy. Moreover, EDM-MLE attains the CRLB.

A Note on Practical Computational Complexity: The worst case computational complex-

ity of SDP based algorithms for sensor network localization is bounded by O((h+m)6)

[35]. For the proposed algorithm, CPU time empirically increases with (h+m)4.5. The

experiments were conducted on a laptop with Intel Core i5-2430M 2.4 GHz CPU and 4

GB of RAM, using MATLAB 7.11, CVX 1.22 and SeDuMi as a general purpose SDP

solver. The CPU time to solve the proposed method is about 0.5 seconds for this net-

work.

4.1.4 Conclusion

This section discussed the localization of multiple targets when target turn-around times

are not known in TOA based cooperative sensor networks under the TW-TOA protocol.

The turn around times are assumed as nuisance parameters and jointly estimated with

target locations. To avoid the difficulty of solving the original nonconvex and nonlinear

problem, it is approximately solved by using the squared range measurements and EDM

completion. Simulations showed that the accuracy of the proposed method is good

and also when it is used as an initialization of MLE, the latter attains the CRLB.

More importantly, it is observed that the cooperation among targets provides accurate

localization even if some targets are connected to few anchors.
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Figure 4.4: RMSE comparisons, sample mean and uncertainty ellipsoids of localiza-
tion when the 5th and 6th targets of a structured network are connected to only two

anchors.
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4.2 RSS based Sensor Network Localization with Unknown

Transmit Power

4.2.1 Introduction

The RSS measurement model is a function of the transmit power of the source node as

given in (4.9), which depends on its battery and antenna gain and might change with

time. And the anchor/receiver nodes are only able to find the location of a source node

from RSS measurements if transmit power of the source is known. Consequently, each

source node has to report its transmit power to anchor nodes during RSS measurements

which requires additional hardware and software in both anchor nodes and source nodes

making the network more complex. Thus, localization using RSS in the practical case,

where transmit powers are different and unknown, is currently an open problem. There-

fore, this issue is addressed within the context of cooperative localization in this section.

In the proposed setup, not only are RSSs between source nodes and anchor nodes mea-

sured, but also the source nodes themselves are involved and collect RSS measurements

from each other.

One of the common solutions is to eliminate the dependency of the transmit power from

the RSS measurement model by using the differential RSS between a source node and

two anchor nodes [108] which enhances the noise and degrades the accuracy. Another

very recent method is to estimate the transmit power of the source along with its location

[109, 110] which uses SDP similar to the proposed method with less accuracy and more

computational complexity. Therefore, the main contribution of this section is to provide

a SDP method which is more accurate and less complex than the recently published

method.

Similar to Section 4.1, to find the MLE for the sensor network localization problem with

unknown transmit powers, it is necessary to solve a nonlinear and nonconvex optimiza-

tion problem which is transformed into an approximate NLS problem. Then, relaxation

techniques are applied to convert the NLS problem into a convex optimization prob-

lem by resorting to EDM completion. Through this, the source transmit powers are

considered as nuisance parameters and estimated jointly with the source locations.

The remainder of this section is organized as follows. Section 4.2.2 formalizes the prob-

lem. Simulations and computational complexity analysis are given in Section 4.2.3.

Conclusions are drawn in Section 4.2.4.
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4.2.2 Problem Formulation

This section formulates the cooperative RSS based localization problem in which there

are more than two source nodes with unknown locations, and moreover, source nodes

can communicate not only with anchor nodes but also with each other. The power of the

received signal from each source can be measured at both anchor nodes and other source

nodes. In other words, two sets of RSS measurements are available to the estimator:

source-anchor and source-source measurements. Let sj ∈ Rh, j ∈ S = {1, . . . , h} and

ai ∈ Rn, i ∈ A = {h+1, . . . , h+m} denote h source and m anchor locations, respectively.

The RSS measurement model is expressed as

Pij = Pj − 10βlog10d̂ij + wij , j ∈ S, i ∈ Bj ∪ Cj , (4.9)

where Pj [dBm] is the reference power at a reference distance (1m) from the j-th source, β

is the path loss exponent that measures the rate at which the RSS decreases with distance

and it depends on the specific propagation environment. In addition, the random effect

of shadowing is modelled by wij which is a zero mean Gaussian random variable with

standard deviation σij [8]. Moreover, d̂ij = ‖si − sj‖, i ∈ Cj and d̂ij = ‖ai − sj‖, i ∈ Bj .
Sets Bj and Cj are defined in (3.1) and (3.2), respectively. Consequently, there are in

total n × h + h elements that should be estimated including the source node locations

and the transmit powers of the source nodes defined as S = [s1, . . . , sh] ∈ Rn×h and

P = [P1, . . . , Ph]T ∈ Rh, respectively.

By rearranging the logarithmic term and dividing both sides by 5β, (4.9) can be refor-

mulated [110] as

d̂2
ijλij = αj10

wij
5β , (4.10)

where λij = 10
Pij
5β and αj = 10

Pj
5β . For sufficiently small noise, the right hand side (RHS)

of (4.10) can be approximated using the first order Taylor series expansion as

d̂2
ijλij = αj(1 +

ln10

5β
wij), (4.11)

and this can be rewritten as

d̂2
ijλij = αj + εij , (4.12)

where εij is a zero mean Gaussian random variable with standard deviation αj
ln10
5β σij .

The corresponding NLS estimator of the unknown parameters S and α is

minimize
S,α

∑
j∈S

∑
i∈Bj∪Cj

(d̂2
ijλij − αj)2. (4.13)
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The unknown squared distances can be arranged into a single symmetric EDM matrix

of size (h+m)× (h+m), with elements Eij = d̂2
ij , and satisfying the properties of the

EDM cone E [23, 38]. Therefore, the nearest EDM problem is formulated as

minimize
E,α

∑
j∈S

∑
i∈Bj∪Cj

(Eijλij − αj)2

subject to E ∈ E , E(A) = A.

(4.14)

Note that the solution of (4.14) is a distance matrix E. Estimation of the spatial

coordinates of the sources from EDM is explained in Section 3.4.2.1.

4.2.3 Simulations

In this section, computer simulations are performed to evaluate the performance of the

proposed algorithm which will be called “EDM” in the figures. The comparison metric is

the total RMSE defined as in (3.27). To assess the fundamental hardness of the position

estimation, error plots also show the total CRLB with known (“CRLB”) and unknown

transmit power (“CRLB-Unknown-P”) derived in Appendix H.2 for each noise variance.

Throughout the simulations the value of the path loss exponent β is assumed known

and set to 4. The standard deviation of shadowing is σij = σ ∈ [1 8] [dB].

To compare the proposed algorithm with MLE, Matlab’s function lsqnonlin is initial-

ized with true values of the positions and transmit power of sources, denoted below as

“MLE”. Additionally, the results will be benchmarked with a recently published method

“SDP-URSS” [110] which resorts to similar formulations but uses different semidefinite

relaxations.

Example 1 [Regular network] In the first scenario, five anchor nodes were placed

regularly on the corners and in the center of a square 20 m by 20 m and ten source nodes

were distributed in a square area 19 m by 19 m inside the convex hull of the anchor nodes,

i.e, S = [2 19; 4 3; 6 4; 6 10; 12 2; 14 4; 15 7; 15 16; 16 3; 18 18] m as shown in Figure 4.7. The

corresponding reference powers are P = −[3.92; 11.55; 9.48; 19.47; 5.11; 19.63; 12.42; 14.65; 2.51; 10]

[dBm]. Full connectivity was assumed, meaning that each source node was connected

to all anchor nodes and also to all other source nodes. Figure 4.5 shows that the RMSE

of EDM and SDP-URSS are almost the same and they are close to MLE and CRLB.

Example 2 [Irregular network] In the second scenario, the location of the source

nodes is the same as in Example 1, but the anchor nodes are placed irregularly as
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Figure 4.5: RMSE comparisons for the first scenario where the sources are inside the
convex hull of the anchors.
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Figure 4.6: RMSE comparisons for the second scenario where the sources are not
inside the convex hull of the anchors

A = [2 2; 4 16; 10 10; 12 14; 17 5] m. For this irregular scenario EDM outperforms SDP-

URSS, as shown in Figure 4.6. Note that, the performance of the proposed method and

the state of the art method is far from the ML estimator for this scenario because they

converge to local minima more often when some of the sources lie outside the convex

hull of the anchors. Moreover, MLE attains the CRLB only at small noise levels.

A Note on Practical Computational Complexity: The worst case computational complex-

ity of SDP based algorithms for sensor network localization is bounded by O((h+m)6)
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Figure 4.7: Sample mean (shown as crosses) and uncertainty ellipsoids of EDM when
sources [s1 s10] = [2 19; 18 18] are connected to only two anchors.

[35]. In detail, without imposing any structure on matrix variables [68] and follow-

ing the formulation given in Section 2.6: for EDM and SDP-URSS, the (k, l) pairs are

(k ' (h + m)2 + h, l ' h + m), (k ' 3h + h2 + L, l ' L), respectively such that

OEDM = ((h + m)2 + h)2(h + m)2) and OSDP−URSS = (3h + h2 + L)2L2), where L is

the total number of connections. For full connectivity L = h(m+ (h− 1)/2).

Similar to TOA based cooperative sensor network localization, for the proposed algo-

rithm, CPU time empirically increases with (h + m)4.5. The CPU time used by EDM

and SDP-URSS is about 0.3 and 0.7 seconds, respectively for this network.

Example 3 [The sample mean and uncertainty ellipsoids] The sample mean

and uncertainty ellipsoids of EDM are given in Figure 4.7 when σ = 4 [dB] for the

first scenario. Two of the sources ([s1 s10] = [2 19; 18 18] m) are only connected to two

anchors and all others communicate with five anchors. With the limited connectivity to

anchors the localization problem becomes harder, similarly to what is known to occur

even with full connectivity when some of the sources lie outside the convex hull of the

set of anchors. Moreover, although two anchors are not enough for those sources to

be localized in 2D, all positions are eventually determined with good accuracy through

cooperation, as the remaining sources are within range of a sufficient number of anchors.
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4.2.4 Conclusion

The localization of multiple sources is studied when there is no “a priori” information

on the source transmit power in RSS based cooperative sensor networks. A variation

of EDM completion is derived by applying approximations and relaxations to ML. Al-

though the ML estimator outperforms other algorithms, finding its global minimum

involves complex computations and requires a good initialization. However, the pro-

posed SDP approach having a quite close performance to ML for regular networks can

be solved efficiently without any initialization and with ease of implementation if a

convex solver is available. Its performance is close to CRLB at some scenarios. Addi-

tionally, EDM outperforms the state of the art method in two ways: it is more accurate

and it requires less computational operations. Moreover, the cooperation among sources

provides accurate localization even if some sources are connected to few anchors.



Chapter 5

A Polar Decomposition Approach

for Exact Source Localization

from Squared Range Differences

5.1 Introduction

This chapter addresses source localization based on the TDOA measurement model, for

which only the differences of measured arrival times between sensing nodes are required.

Classical TDOA-based self-localization in navigation applications can be realized by in-

tersecting a set of hyperbolas that are contour lines of constant range difference between

the source and various beacons. Because of errors in TDOA measurements, these hy-

perbolas will not intersect at a single point, which leads to mathematically inconsistent

localization equations. A common goal is to find an estimate of the source location that

minimizes those inconsistencies.

In the literature, there are mainly four approaches to solve the nonlinear system of

equations defining the hyperbolic localization problem [111].

The first traditional approach is the reorganization of the nonlinear terms and introduc-

tion of additional variables to attain linear equations that can be solved in closed form

by LS [70]. Closed-form solutions are usually less computationally burdensome than

iterative or ML methods which will be explained in the following paragraph. Neverthe-

less, the reorganized linear equations are only suitable in practice for sufficiently small

measurement noise.

85
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The second approach is based on the nonlinear LS framework where Taylor-series ex-

pansion is used for linearization and the solution is obtained iteratively [112]. When the

TDOA measurements have Gaussian distribution, the global minimum of the objective

function corresponds to the ML location estimate, which has proven asymptotic con-

sistency and efficiency. Although optimum estimation performance can be attained, it

requires a sufficiently precise initialization.

Recently, various SDR methods, each with its own advantages and drawbacks, were

proposed to solve different variations of the hyperbolic localization problem. An ap-

proximate ML formulation of the TDOA localization is presented in [113], based on

an effective relaxation method to transform the original nonconvex optimization prob-

lem into a convex one. However, for accurate results all pairwise TDOA measurements

between pairs of nodes have to be exhaustively incorporated into a cost function for

minimization, which potentially leads to high computational complexity.

An approximate and iterative localization method that can be implemented in a dis-

tributed manner is introduced in [114]. It is based on the popular approach of Projection

Onto Convex Sets (POCS), modified to accommodate the unbounded hyperbolic sets

that arise in TDOA localization. Numerical simulations show that hyperbolic POCS

has several desirable features, such as the ability to accurately locate sources outside of

the convex hull spanned by the sensors.

In the present work, an exact LS technique denoted Bisection-KKT is proposed for the

source localization problem using the square of noisy range difference measurements.

Although the problem is nonconvex, the formulation shows that it can be efficiently

and globally solved by switching from Cartesian to polar/spherical coordinates. Besides

that, two more search based methods are derived. The methods have low computational

complexity and several numerical examples suggest their accuracies are good. Note

that algorithms which use plain range differences might provide better accuracy at the

expense of an additional computational complexity.

The organization of this chapter is as follows. Section 5.2 formulates the squared TDOAs

based source localization problem, introduces the techniques and discusses their pros and

cons. Simulation results are presented in Section 5.3 to evaluate the location estimation

performance of the proposed estimators by comparing them with other existing methods.

Finally, conclusions are drawn in Section 5.4.
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5.2 Problem Formulation

Let x ∈ Rn be the unknown source position, ai ∈ Rn, i = 1, . . . ,m be known sensor

positions (anchors) and assume there exists an additional reference sensor (sensor 0)

located at the origin. The noiseless range difference between sensor i and sensor 0,

which also defines a hyperbola with foci ai and a0, is given by

di = ‖x− ai‖ − ‖x‖, for i = 1, . . . ,m.

In the presence of noise-induced inconsistencies a natural choice is to minimize the sum

of residuals between measured range differences and those predicted by a hypothesized

source location. However, the source localization problem can also be solved by picking

the source location as the minimizer of a so-called equation error, i.e., the minimizer of

the difference between values of functions of the measured range differences and functions

of a hypothesized source location [42] which leads to exact solution with the proposed

formulations. Specifically, the modified residual is

‖x− ai‖2 − (di + ‖x‖)2 = −2aTi x− 2di‖x‖ − d2
i + ‖ai‖2

yielding the following LS criterion [46]:

minimize
x

m∑
i=1

(−2xTai − 2‖x‖di + gi)
2 (5.1)

where gi = ‖ai‖2 − d2
i .

Expanding (5.1) and dropping constant terms, it can be represented more compactly as

minimize
x

xTAx + fT ‖x‖x + sTx + e‖x‖ (5.2)

where

A =

m∑
i=1

(4aia
T
i + 4d2

i I), f =

m∑
i=1

8diai, e =

m∑
i=1

−4digi, s =

m∑
i=1

−4aigi.

Expressing the source location in terms of its range and bearing, i.e., {x = ru : r ≥ 0

and ‖u‖ = 1}, (5.2) can be written as the following constrained optimization problem:

minimize
r,u

f(r,u) = r2(uTAu + fTu) + r(sTu + e)

subject to r ≥ 0, ‖u‖ = 1.
(5.3)
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For a given u, (5.3) is a quadratic cost function whose unconstrained optimal solution

with respect to r is readily found in closed form from the first order stationary condition

∇rf(r,u) = 2ruTAu + 2rfTu + sTu + e = 0

and

r∗ = − e+ sTu

2(uTAu + fTu)
, for e+ sTu < 0. (5.4)

Substituting the optimal r in (5.3) leads to

p∗ =
maximize

u

(e+ sTu)2

4(uTAu + fTu)

subject to ‖u‖ = 1, e+ sTu < 0.

(5.5)

Problem (5.5) can be solved in three ways:

5.2.1 Direct Search Method

The straightforward approach to solve (5.5) is one or two dimensional search to obtain an

optimal u that gives the minimum value of (5.5) when n = 2 or n = 3, respectively. For

instance, for 2D u vector is equivalent to [cos θ sin θ]T , where θ belongs to the interval

(0, 2π] and for 3D, u = [sin θ cosψ sin θ sinψ cos θ]T , where θ ∈ (0, π] and ψ ∈ (0, 2π].

It is a trivial method and if the search is fine enough, it finds a good approximation

to the source location. However, Direct Search takes a considerable amount of time

to attain the desired accuracy. Instead, Liptschitz Optimization is initially resorted to

detect the smaller interval that is known to contain the global maximum of (5.5) for

a given accuracy ε [115]. Afterwards, further direct search might be performed in that

interval.

5.2.2 Lipschitz Optimization

Lipschitz Optimization considers the problem of finding the global minimum/maximum

of a function g defined on the closed interval [l, u]. By assuming knowledge of a bound

on the rate of the change of the function, Lipschitz constant L, for every y ∈ [l, u], the

following inequality holds

‖g(x)− g(y)‖ ≤ L‖x− y‖, for all x ∈ [l, u].

This assumption can be used to place a lower or upper bound on the function in any

closed interval whose endpoints have been evaluated, i.e., it leads to a piecewise linear
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function that approximates g(x) from below/above and gives the rule to further divide

the interval into smaller pieces and convergence to the global minimum/maximum at a

finite number of iterations [115, 116].

Lipschitz Constant L: The main challenge of Lipschitz Optimization is to find the Lip-

schitz constant, L, which is obtained for g(u) = (e+sTu)2

4(uTAu+fTu)
as follows:

The gradient of g(u) is

∇ug(u) =
(e+ sTu)s

2(uTAu + fTu)
− (e+ sTu)2(2Au + f)

4(uTAu + fTu)2
. (5.6)

Using the triangle inequality, positive homogeneity and Cauchy-Schwartz inequality [63],

it is calculated that

‖∇ug(u)‖ ≤ L =
(‖e‖+ ‖s‖)‖s‖

K
+

(‖e‖+ ‖s‖)2(2‖A‖+ ‖f‖)
K2

, (5.7)

where K is the solution of

minimize
r,u

2(uTAu + fTu)

subject to ‖u‖ = 1, e+ sTu < 0.
(5.8)

Problem (5.8) has a similar closed form solution shown in the next section.

However, the bound on the Lipschitz constant obtained from (5.7) is usually loose,

leading to an excessively fine search grid and therefore unnecessarily large computational

complexity. An alternative good heuristic is proposed: the term (e+sTu
2(uTAu+fTu)

in (5.6)

is equal to −r∗ in (5.4). Therefore, replacing that term with −r∗ in (5.6) and using

the triangle inequality, positive homogeneity and Cauchy-Schwartz inequality leads to a

tighter Lipschitz constant. But what is −r∗ or a sufficiently good upper bound on that

quantity? Since a knowledge of the area where the sensors and the source are deployed

is known, one can guess an upper bound on r∗.

Deciding the search interval : The constraints of (5.5) constitute a region that is an

intersection of a circle and a half-space. Lipschitz optimization method searches the

global maximum on the interval corresponding to this region, which is easily decided by

trivial algebraic manipulations.

5.2.3 Bisection Method

Before showing the application of the bisection method to (5.5), an interval, known to

contain the optimal value of (5.5) and where the bisection search is done is defined.
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Problem (5.5) can be equivalently stated as

maximize
u,v

(e+ sTu)2

4(vTAv + fTv)

subject to ‖u‖ = 1, e+ sTu < 0,

‖v‖ = 1, e+ sTv < 0,

u = v,

(5.9)

and the last equality constraint is dropped to obtain a relaxed form

maximize
u,v

(e+ sTu)2

4(vTAv + fTv)

subject to ‖u‖ = 1, e+ sTu < 0,

‖v‖ = 1, e+ sTv < 0.

(5.10)

The optimization problem (5.10) can be expanded into two problems to separately max-

imize the numerator and minimize the denominator. The ratio of their optimum values

gives the upper bound of the interval, ub. For the lower bound, lb, 0 or −ub might be

chosen.

The bisection method checks if p∗ ≥ t at the midpoint of the interval, t = (ub + lb)/2,

and updates the interval at each iteration until its length is below a given threshold.

The feasibility problem is

find u

subject to (e+sTu)2

4(uTAu+fTu)
≥ t,

‖u‖ = 1, e+ sTu < 0,

(5.11)

equivalently,

find u

subject to uTMu + 2bTu + δ ≤ 0,

‖u‖ = 1, e+ sTu < 0,

(5.12)

where M = 4tA − ssT , 2b = 4tf − 2es and δ = −e2. However, this is equivalent to

checking if the optimal value of the following optimization problem is less than 0 or not

minimize
u

uTMu + 2bTu + δ

subject to ‖u‖ = 1, e+ sTu < 0.
(5.13)

Problem (5.13) is a variation of the trust region subproblem, for which optimality con-

ditions and approaches to obtain the global minimizer are known [117]. An efficient

method will be introduced to exactly solve (5.13) using KKT conditions in the sequel.
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Since M is a symmetric matrix, it is decomposed as M = QDQT with D diagonal

matrix and QQT = QTQ = I to re-express (5.13) as

minimize
v

vTDv + 2cTv + δ

subject to ‖v‖ = 1, e+ sTQv < 0,
(5.14)

where v = QTu and c = QTb.

For any optimization problem with differentiable objective and constraint functions for

which strong duality holds, any set of primal and dual optimal points must satisfy the

KKT conditions [23]. The Lagrangian of (5.14) with the dual variable λ and γ is defined

as

L(v, λ, γ) = vTDv + 2cTv + δ + λ(vTv − 1) + γ(e+ sTQv). (5.15)

The KKT conditions

e+ sTQv∗ < 0, (5.16)

v∗Tv∗ = 1, (5.17)

γ∗ ≥ 0, (5.18)

γ∗(e+ sTQv∗) = 0, (5.19)

∇vL(v∗, λ∗, γ∗) = 0 (5.20)

are satisfied by the primal-dual optimal points (v∗, λ∗, γ∗). From the conditions (5.16),

(5.18) and (5.19), it is obvious that γ∗ = 0 and

∇vL(v, λ) = (D + λI)v + c = 0, (5.21)

vTv = cT (D + λI)−T (D + λI)−1c = 1. (5.22)

Since D = diag([σ1 . . . σm]) where σi denotes an eigenvalue of M and λ can be found by

calculating the roots of the polynomial

m∑
i=1

c2
i

(σi + λ)2
= 1.

For example for 2D, we have a 4th-degree polynomial

λ4 + 2(σ1 + σ2)λ3 + (4σ1σ2 + σ2
2 + σ2

1 − c2
1 − c2

2)λ2+

2(σ2
1σ2 + σ1σ

2
2 − σ2c

2
1 − σ1c

2
2)λ+ σ2

1σ
2
2 − c2

1σ
2
2 − c2

2σ
2
1 = 0,

whose four roots correspond to four possibilities for critical points v = −(D + λI)−1c.

Evaluating the objective function of (5.14) with the constraint e+ sTQv < 0 at these
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Table 5.1: RMSE comparisons of SEARCH, KKT, SRD-LS and SI for near field case.

σgaussian SEARCH KKT SRD-LS SI

1e-4 0.0215 0.0190 0.0204 0.0230
1e-3 0.0574 0.0572 0.0568 0.0603
1e-2 0.1646 0.1646 0.1647 0.1808
1e-1 0.5604 0.5604 0.5605 0.6117

points, the global minimum can be obtained. It is an exact and very fast method. The

major requirement is to calculate the roots of a polynomial of degree 4 (for 2D) or 6 (for

3D). This method will be called Bisection-KKT.

5.3 Simulations and Comparisons with Existing Methods

An exact solution to the problem of source localization using squared range differences

(SRD-LS) is given in [46], solving a quadratic objective function subject to two quadratic

constraints. Another popular approximate solution to (5.1), the so-called Spherical

Interpolation (SI) method, is based on closed-form linear techniques [42]. In the sequel,

the proposed methods are contrasted with SRD-LS and SI. Additionally, in the examples,

SEARCH refers to Direct Search and Lipschitz Optimization. KKT refers to Bisection-

KKT, respectively.

Example 1: To investigate the accuracy of the methods, two physical scenarios are

set with a source located in the near field and far field of the sensor networks. The

performance metric is RMSE defined in (2.66). The number of Monte Carlo runs is 1000

for each noise level.

Near Field Case: In this part of the example, the methods will be compared using

five anchors plus a reference sensor at the origin. In each Monte Carlo run the anchor

locations ai and the source x were randomly generated from a uniform distribution over

the square [−10, 10] × [−10, 10] m. The observed range-difference measurements were

obtained by adding a normal random variable with mean zero and standard deviation

σgaussian ∈ [10−4, 10−1] m to the exact range differences. Figure 5.1 shows the positions

of anchors, hyperbolas defined by each anchor-reference sensor pair and real source

position and its estimation by KKT and SRD-LS at one Monte Carlo run of Near Field

case. The true and estimated source position appear at the intersection of left branches

of hyperbolas. Table 5.1 lists the RMSE of the methods. The RMSE of exact methods

SEARCH, KKT and SRD-LS are more or less the same with a slight superiority of KKT

and better than the approximate method SI.
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Figure 5.1: Hyperbolas and the source position estimated by KKT and SRD-LS
methods.

Table 5.2: RMSE comparisons of SEARCH, KKT, SRD-LS and SI for far field case.

σgaussian SEARCH KKT SRD-LS SI

1e-4 0.3156 0.3222 0.3224 0.3270
1e-3 1.1821 1.1823 1.1834 1.2154
1e-2 3.6724 3.6725 3.6724 3.8401
1e-1 13.303 13.303 13.303 13.397

Far Field Case: An array with 11 sensors (including sensor 0) is considered. In each

run, the coordinates of the 10 sensors that are not located at the origin were randomly

generated from a uniform distribution over the square [−10 10] × [−10 10] m and

the coordinates of the source were randomly generated from a uniform distribution

over the square [−200 − 190] × [−200 − 190] m. The observed range-difference

measurements were obtained as described above. Table 5.2 shows the RMSE of the

methods for σgaussian ∈ [10−4, 10−1] m. Again the results of the exact methods are

nearly identical and better than the approximate one. The RMSEs are considerably

higher than in Table 5.1, as the source is now predominantly located outside of the

convex hull of the anchors, and localizing it becomes harder.

Example 2: This example is provided for direct comparison with Example 3 in [46].

Consider an array of m = 5 sensors in the plane (n = 2) whose coordinates are given

by a1 = (−5,−13)T m, a2 = (−12, 1)T m, a3 = (−1,−5)T m, a4 = (−9,−12)T m,

a5 = (−3,−12)T m. The source coordinates are x = (−5, 11)T m. The observed range

differences were obtained by adding white Gaussian noise with standard deviation 0.2 m
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to the exact range differences. The exact range-differences and their noisy observations

are given by

Exact: 11.9170 0.1235 4.4094 11.2622 11.0037

Noisy: 11.8829 0.1803 4.6399 11.2402 10.8183.

SRD-LS has a two-step solution procedure based on search and root finding techniques

on defined intervals. When the first step fails, i.e., when the last component of a so-

lution vector is negative, it invokes the second step that satisfies necessary optimality

conditions. The first step often fails for problems with high noise levels. The estimated

source positions given by each method are

xfirst step SRD-LS = (−7.1645,−12.2497)T ,

xSI = (−6.5644,−6.0209)T ,

xSEARCH = (−4.9800, 10.2834)T ,

xKKT = (−4.9798, 10.2786)T and

xsecond step SRD-LS = (−4.9798, 10.2786)T .

For this setup SRD-LS is unable to give an accurate result without the second step. It

is worth to point out that proposed methods do not need any special procedure to check

if the solution is correct or not or take a decision among intervals, except calculating

the bounds of the bisection interval.

5.4 Conclusion

TDOA based source localization leads to a nonconvex optimization problem whose ex-

act solution or global minimum is difficult to find. To cope with this difficulty, squared

range differences are used which leads to another (approximate) nonconvex optimization

problem whose solution can be efficiently and globally obtained. Several techniques are

proposed to find its global minimum. The proposed method KKT, which resorts to bisec-

tion method and KKT conditions, attains the exact solution with simple formulations

when the source position is expressed in polar coordinates. Additionally, simulations

show that the accuracies of the proposed methods are good and diminish for far-field

case due to the source being outside of the convex hull of the anchors.



Chapter 6

Conclusion and Outlook

6.1 Conclusion

This thesis proposed several robust algorithms for source localization and sensor network

localization under different measurement models (TOA, TDOA and RSS) and noise as-

sumptions (Gaussian and Laplacian). The common theme is to determine the unknown

positions by solving optimization problems that provide a solid framework even under

challenging geometries and strong measurement noise, where the intuition behind heuris-

tic/geometric methods might fail. A strong emphasis is placed on formulating relaxed

convex problems, whose global minima may be determined easily, efficiently, and reliably

with general-purpose solvers. Simulation results show that these relaxed problems yield

very good localization accuracy, often close to the CRLB. In some cases these relaxations

are used as initialization to true MLE methods, in which case convergence to undesir-

able minima of the latter is almost completely avoided, and near-optimal performance

is consistently obtained. On a practical note, the proposed algorithmic constructions

for localization are easy to implement, often involving the solution of a single optimiza-

tion problem, thus making them very well suited for rapid prototyping. This contrasts

with other high-performance (near-MLE) approaches available in the literature, which

involve a number of relatively elaborate steps that require considerable effort to set up

and tune. Detailed conclusions for the various methods are given next.

The nonconvex ML based source localization problem using TOA measurements was

tackled for Gaussian and Laplacian noise models in 2D and higher space dimensions. The

proposed range based source localization algorithms have a flavor of AOA localization.

SLCP is derived by formulating the original problem as an optimization problem in the

complex plane. And then it takes advantage of the nearly convex nature of the resulting

cost function and constraint set to obtain a SDP relaxation. This essentially involves
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dropping a rank constraint, which was found in simulations that it has a negligible impact

on the accuracy of the solution in many scenarios. SLNN is proposed as an extension of

SLCP to 3D and higher dimensions by formulating it as an optimization problem using

nuclear norms and SDR. Similarly, source localization is solved by resorting to `1-norm

when the noise on the observations is Laplacian, i.e., outliers case. The key insight for

this setup is to reformulate the non-differentiable log-likelihood function for Laplacian

noise as a reweighted version of the Gaussian log-likelihood where the weights become

optimization variables.

Simulation results show that, for Gaussian noise, the proposed algorithms are more ac-

curate than linearization approaches and those relying on squared ranges. Broadly, their

accuracy is comparable to state-of-the-art relaxation-based methods and to (nonrelaxed)

ML methods. In the presence of outliers the `1-based algorithms clearly outperform all

the remaining ones. Overall, SL-`1 SD emerged as a versatile algorithm that delivers very

good performance under different types of disturbance and whose moderate complexity

scales favorably with the number of anchors and the ambient space dimension. Exper-

imental results demonstrated the feasibility of the algorithms in a practical centralized

indoor localization testbed.

An ML-based technique is presented to solve a SLAT problem using a two-phase ap-

proach under Gaussian or Laplacian noise. A MM method is proposed to iteratively

maximize the nonconvex likelihood function, for which a good initial point is required.

To that end, two initialization schemes are investigated based on EDM completion and

source localization (SLCP/SLNN/SL-`1s) that bypass the need for strong priors on sen-

sor/target positions. After acquiring an initial block of range measurements for the

startup phase, a SNL method based on EDM completion was used to estimate the

node positions and some of the target locations. As EDM completion is not scalable,

after startup, an alternative, lightweight, incremental initialization scheme is used as

additional target range measurements become available. The SLCP/SLNN or SL-`1s

time-recursive methods fix the already estimated positions whenever a new one is to be

determined; afterwards all positions are given as initialization to the likelihood refine-

ment methods. With this methodology, a good initialization and a scalable solution for

the SLAT problem is guaranteed. Moreover, the details of the proposed cost functions

are different for Gaussian and Laplacian cases, but robustness to range errors is gained

relative to other methods by matching plain distances (as opposed to squared ones,

which are more tractable and popular, but lead to worse accuracy) and using consistent

cost functions at each step of both cases.

Simulation results showed that the SLAT method nearly attains the CRLB under mod-

erate Gaussian noise. In the presence of outliers, both EDM-R-`1 and SL-`1 provide
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more accurate initial position estimates than other existing methods. Importantly, the

algorithms based on `1-norm optimization exhibited robust behaviour in simulation not

only for Laplacian outliers, but also for an alternative outlier generation technique that

did not match the underlying Laplacian modelling assumptions. It is demonstrated ex-

perimentally that the proposed scheme can track a target and localize sensors to within

about 4 cm accuracy in a 3D indoor environment using mixed ultrasound-RF ranging.

Our SLAT approach is a type of SNL problem. In other words, in SNL problem, each

position in target trajectory can be assumed as an individual target and inter-target and

inter-sensor measurements beside sensor-target measurements are collected. Therefore,

similar formulations of EDM completion are applied to harder problems of cooperative

sensor network localization based on TOA with unknown turn-around time and RSS

with unknown transmit power which are still relatively unexplored in the literature.

Simulations showed that the MLE initialized with the proposed method for TOA based

systems attains the CRLB. The algorithm proposed for RSS case is better than a recently

published method both in accuracy and computational complexity. Moreover, the main

conclusion is that the cooperation among sources/targets provides accurate localization

even if some sources/targets are connected only to few anchors.

This thesis addresses TDOA based source localization which is hard to be solved with

plain range differences. Although, squaring measurements is contrary to our preferred

methodology, and it does impact performance, the difficulty of solving a nonconvex opti-

mization problem of TDOA based source localization was overcome by reformulating it

as an approximate nonconvex optimization problem with squared range differences. At

each bisection iteration, the proposed method solves a variation of the trust region sub-

problem, for which optimality conditions and approaches to obtain the global minimizer

are known. Hence the exact solution is obtained with simple formulation by expressing

the source position in polar coordinates. It is shown that the accuracy of the proposed

method is good and diminishes when the source is outside of the convex hull of the

anchors.

6.2 Outlook

The proposed methods for TOA based SL have very good accuracy with moderate

computational complexity. Implementing those algorithms in a faster way is still an open

question for us. What’s seen from the literature and the performances of the proposed

algorithms, TOA based SL under Gaussian noise is a saturated area. However, more

accurate and faster methods might be derived for Laplacian noise/outlier/NLOS.
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The SLAT algorithm uses modified EDM completion problem as an initialization tech-

nique under Gaussian and Laplacian noise. A faster implementation or formulation of

EDM completion is still needed for the SLAT algorithm to be more feasible for large-

scale real world applications. For the time being, the SLAT algorithm does not consider

target dynamics. With the inclusion of target dynamics, more accurate results might be

obtained.

The proposed methods for SNL with TOA in the presence of unknown turn-around

time and SNL with RSS in the presence of unknown transmit power resort to EDM

completion which uses squared measurements. New methods using plain measurements

might be derived to obtain more accurate results. Additionally, the former exploit a

heuristic to sidestep the difficulty induced by one of those convex relaxations. This issue

needs further exploration.

Our algorithm for TDOA based source localization employs squared range differences to

avoid the difficulty of solving a harder problem. Can the above proposed methods for

TOA based SL be adapted to solve TDOA based SL with plain measurements? This

needs more attention.

Lastly, most clocks at sensors are not so precise because the frequency, the rate at which

a clock progresses, is never exactly right. Even a frequency deviation of only 0.001%

would bring a clock error of about one second per day. Moreover, there is not only a clock

offset, due to internal delays or the lack of a common time origin, but also clock drift

which is hard to predict because it depends on the deviation from the ideal frequency and

on a few environmental parameters, i.e, temperature, power, voltage, and pressure [118].

This makes time-based localization and synchronization tightly coupled and challenging.

Chapters 4 discusses this problem only in the existence of clock offsets for cooperative

sensor networks. However, it might be interesting to solve joint synchronization and

localization with different clock models which consider not only the clock offset but also

other clock parameters.



Appendix A

Equivalence of (2.1) and (2.2)

(2.2) can be written as

minimize
x

minimize
yi

m∑
i=1

‖x− yi‖2

subject to ‖ai − yi‖ = ri i = 1, . . . ,m.

(A.1)

Given x, the inner optimization problem is separable. Defining ηi = yi−ai
ri

it can be

solved for y1, . . . , ym by individually solving the subproblems

minimize
ηi

‖x− riηi − ai‖2 = ‖x− ai‖2 + r2
i ‖ηi‖2 − 2riη

T
i (x− ai)

subject to ‖ηi‖ = 1,
(A.2)

or, equivalently,

maximize
ηi

ηTi (x− ai)

subject to ‖ηi‖ = 1,
(A.3)

The optimal solution of (A.3) is clearly given by ηi = x−ai
‖x−ai‖ , leading to an optimal cost

in (A.2) ‖x− ai‖2 + r2
i − 2ri‖x− ai‖ = (‖x− ai‖ − ri)2. Substituting the sum of these

optimal costs for i = 1, . . . , m back into (A.1) yields an unconstrained problem whose

cost function is given by (2.1) .
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Appendix B

Proof of Lemma 2.4.1.1

The proof of Lemma 2.4.1.1 relies on a result, interesting in its own right, that charac-

terizes the convex hull of the set of 3 × 3 rank-1 matrices built from complex vectors

with unit-magnitude components.

Lemma B.0.0.1. Let

A =
{
θθH : θ ∈ C3, |θi| = 1

}
, (B.1)

B =
{
Φ ∈ C3×3 : Φ � 0, φii = 1

}
. (B.2)

then B = co(A).

Proof. co(A) ⊂ B is straightforward since B is convex and A ⊂ B. For the reverse

direction co(A) ⊃ B the goal is to find, for every Φ ∈ B, matrices Θi ∈ A and nonzero

scalars λi ≥ 0, with
∑

i λi = 1, such that Φ =
∑

i λiΘi.

Note that both A and B are invariant under the (unitary) similarity operation

M→ PMPH , (B.3)

where P is the product of a permutation and a diagonal unitary matrix. In other words,

rows and columns can be simultaneously permuted and the i-th row and i-th column

are multiplied by a unit-magnitude complex number. Thus, it can be assumed without

loss of generality that Φ is of the form

Φ =


1 a b

a 1 z∗

b z 1

 , 0 ≤ a ≤ b, z ∈ C. (B.4)

100



Appendix B. Proof of Lemma 2.4.1.1 101

Since Φ � 0, we must have a ≤ 1, b ≤ 1, |z| ≤ 1 and

0 ≤ |Φ| = 1− a2 − b2 − |z|2 + 2abRe{z}, (B.5)

which, for z = x+ jy, reads

(x− ab)2 + y2 ≤ (1− a2)(1− b2). (B.6)

For fixed a, b this inequality describes a circle (with interior) in the (x, y) plane, cen-

tered on (ab, 0). Since any point in the interior of a circle can be written as a convex

combination of two points on its boundary, it can be assumed that there is an equality

in (B.6). Thus, from now on it is assumed that

z = ab+
√

(1− a2)(1− b2)ejϕ. (B.7)

Now the proof is completed by expressing such Φ as a convex combination of two matrices

from A. For given 0 ≤ a ≤ b ≤ 1 and ϕ ∈ [0, 2π[ one wants to find α, β, γ, δ ∈ [0, 2π[,

and 0 ≤ λ ≤ 1 such that

Φ =


1 a b

a 1 z∗

b z 1

 = λ


1

ejα

ejβ

[1 e−jα e−jβ
]

+ (1− λ)


1

ejγ

ejδ

[1 e−jγ e−jδ
]
. (B.8)

Thus,

a = λejα + (1− λ)ejγ , b = λejβ + (1− λ)ejδ, (B.9)

z = λej(β−α) + (1− λ)ej(δ−γ). (B.10)

From the first two relations it is obtained

ejγ =
a− λejα

1− λ
, ejδ =

b− λejβ

1− λ
, (B.11)

and replacing these in the third relation yields, after simple manipulations,

z = ab+
λ

1− λ
(e−jα − a)(ejβ − b). (B.12)

Before proceeding, a useful lemma from elementary geometry will be stated and proved:

Lemma B.0.0.2. Referring to Figure B.1(a), if A is a point inside a unit circle whose

distance to the center is a, RS is any line through A, and PQ is a diameter through A,

then

AR ·AS = AP ·AQ = (1− a)(1 + a) = 1− a2. (B.13)
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(a) (b) (c)

Figure B.1: Illustration of geometrical Lemma B.0.0.2 and its application to a convex
combination on the unit circle.

Proof. Triangles APR and AQS, depicted in Figure B.1(b), are similar, hence

AP

AS
=
AR

AQ
. (B.14)

The lemma above with parameters is used as depicted in Figure B.1(c). From A =

λR+ (1− λ)S we have AR
AS = 1−λ

λ , and by Lemma B.0.0.2 AR ·AS = 1− a2, hence

AR =

√
1− λ
λ

(1− a2), ejα = a+

√
1− λ
λ

(1− a2)ejϕ1 . (B.15)

Similarly, with A = b, R = ejβ, S = ejδ, and ϕ2 instead of ϕ1, the following equality is

obtained

ejβ = b+

√
1− λ
λ

(1− b2)ejϕ2 . (B.16)

Substituting (B.15), (B.16) back in (B.12) yields

z = ab+
√

(1− a2)(1− b2)ej(ϕ2−ϕ1), (B.17)

which has the same form as (B.7), obtained from the positive semidefinite condition for

matrix Φ in (B.4).

Now it is argued that letting angle α go from 0 to 2π is equivalent to letting ϕ1 cover

an interval of length 2π as well (Figure B.1(c)). Fixing ϕ1, and consequently α, the

two relations in (B.9), together with an arbitrary requirement that Im{ejβ} ≥ 0, fix the
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values1 of β, γ, δ, λ, and, in particular, of ϕ2. Thus, ϕ2 = f(ϕ1) is a continuous function

of ϕ1.

When ϕ1 = 0, ϕ2 has a certain value, say, ε0 ∈ [0, π] (it can be computed, but is not

needed in this proof). For ϕ1 = π it is straightforward to see that ϕ2 = π − ε0, and

for ϕ1 = 2π it is again ε0. In particular the continuous function ϕ2 − ϕ1 takes values

from ε0 − 0 = ε0 to ε0 − 2π, i.e., modulo 2π it takes all values in [0, 2π[. Thus, for

any given angle ϕ in (B.7), let ϕ1 be such that f(ϕ1) − ϕ1 = ϕ, modulo 2π. Then,

the corresponding α, β, γ, δ, and λ, as explained above, give the desired decomposition

(B.8).

Now let us proceed and prove lemma 2.4.1.1 under the assumption of lemma B.0.0.1,

thus tacitly assuming m = 3. Note that the proof is valid for arbitrary c, r in (2.8) and

(2.11), i.e., it does not require that the structure for these vectors defined in (2.4) be

taken into account.

Proof. Rewrite sets S in (2.8) and T in (2.11) using the notation (B.1)

S =
{(

cHΘc, rTΘr
)

: Θ ∈ A
}
, (B.18)

T =
{(

cHΦc, rTΦr
)

: Φ ∈ co(A)
}
. (B.19)

Obviously S ⊂ T . Now let α ∈ [0, π2 ] and define

(u1, v1) = arg max
(u,v)∈T

〈(cosα, sinα), (u, v)〉. (B.20)

It is desired to show that

〈(cosα, sinα), (u1, v1)〉 = max
(u,v)∈S

〈(cosα, sinα), (u, v)〉, (B.21)

so that the inner product over S attains the same maximum value as over the larger

set T , and the support hyperplanes with normal (cosα, sinα) thus coincide for the two

sets. It is enough to prove that there exists (u′, v′) ∈ S that attains the left-hand side

of (B.21).

One can write Φ1 ∈ co(A) which maximizes (B.20) as

Φ1 =
∑
i

λiθiθ
H
i , λi ≥ 0,

∑
i

λi = 1, |θik| = 1, (B.22)

1Equivalently, note that fixing ϕ1 fully defines the geometrical construction shown in Figure B.1(c),
and thus fixes the values of γ and λ. Then, λ fully defines the corresponding construction for A = b if,
in addition, Im{ejβ} ≥ 0 is specified, and thus fixes the values of β, δ, and ϕ2.
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Figure B.2: The constraint set S for randomly generated θ satisfying |θi| = 1 and
different numbers of randomly placed anchors. For each set the hypothesized convex

hull, computed by relaxation of S, is also depicted.

hence

〈( cosα, sinα), (u1, v1)〉 = (
√

cosα c)HΦ1(
√

cosα c︸ ︷︷ ︸
p

) + (
√

sinα r)TΦ1(
√

sinα r︸ ︷︷ ︸
q

)

=
∑
i

λi
(
pHθiθ

H
i p + qHθiθ

H
i q
)

=
∑
i

λi
(
|pHθi|2 + |qHθi|2

)
.

(B.23)

Let i0 be the index where the last summation attains its maximum value. Then

〈(cosα, sinα), (u1, v1)〉 ≤ |pHθi0 |2+|qHθi0 |2 = 〈(cosα, sinα), (cHθi0θ
H
i0 c, rTθi0θ

H
i0 r)〉,
(B.24)

which completes the proof because the second argument in the inner product is an

element of S.



Appendix C

Properties of Single-Source

Localization using SL`1

Proof of Lemma 2.4.2.1. To streamline the notation let us define Ki = |‖x − ai‖ − ri|,
and apply the KKT condition to the inner optimization problem in (2.20) while fixing

x. The Lagrangian function is

L(λ, γ) =

m∑
i=1

K2
i

λi
+ γ(1Tλ− 1). (C.1)

The KKT conditions are

dL

dλi
= −K

2
i

λ2
i

+ γ∗ = 0, 1Tλ = 1. (C.2)

Using (C.2), it is found that λ∗i = Ki∑n+l
i=1 Ki

as a solution of the inner optimization

problem. Plugging the optimal λ in the cost function of (2.20) yields (
∑

iKi)
2, thus

establishing the equivalence with (2.19) .

Approximation accuracy of Π = limη→∞(Λ + η11T )−1. To decide how large η should

be, let us first define Π(η) = (Λ + η11T )−1. The norm of the difference to the original

definition of Π in (2.24) is given by

‖Π−Π(η)‖F = ‖Λ−11[(1TΛ−11)−1 − (1TΛ−11 + η−1)−1]1TΛ−1‖F

=
1TΛ−21

(1TΛ−11)(η1TΛ−11 + 1)
.

(C.3)
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Now assume the most unfavourable case with identical λi = 1
m , such that

‖Π−Π(η)‖F =
m

η(m)2 + 1
≤ ε ⇒ η ≥ 1

(m)ε
− 1

(m)2
. (C.4)

For ε = 10−4 and m = 100, for example, this yields η ≥ 102−10−4 ≈ 102, which is quite

low and does not raise any numerical issues in commonly available convex optimization

solvers.



Appendix D

Analysis of SLNN

Solution of the inner subproblem (2.33). For any optimization problem with differen-

tiable objective and constraint functions for which strong duality holds, any set of primal

and dual optimal points must satisfy the KKT conditions [23]. Define the Lagrangian

of (2.33) with dual variable Λ as

L(V,Λ) = tr(CTUV) + tr
(
ΛT (VTV − In)

)
. (D.1)

The first-order KKT conditions are given by

∇VL(V,Λ) = UTC + V(Λ + ΛT ) = 0, (D.2)

VTV = In, (D.3)

where (D.2) is obtained by setting to zero the gradient1 of (D.1) with respect to V,

whereas (D.3) is the original orthogonality constraint in (2.33).

Premultiplying (D.2) with VT , taking the trace (i.e., taking the inner product with V),

and using (D.3) yields the optimal value for the cost function

tr(CTUV) = tr(VTUTC) = −tr(Λ + ΛT ). (D.4)

But from UTC = −V(Λ + ΛT ) in (D.2) both sides can be squared to get

CTUUTC = (Λ + ΛT )2. (D.5)

Hence, among candidate optimal points satisfying the KKT system, the cost function

can be made as small as possible by choosing Λ + ΛT in (D.4) as a positive semidefinite

matrix square root of the left-hand side of (D.5). Replacing this in (D.4) gives the final

1We use the standard results ∂
∂X

tr(ATX) = A and ∂
∂X

tr(XBXT ) = X(B + BT ) [66, 119].
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optimal cost

tr(CTUV) = −tr
(
(CTUUTC)

1
2
)

= −‖CTU‖N . (D.6)

Interestingly, note that the more usual Frobenius norm solves the following relaxed

version of the inner subproblem (2.33)

minimize
V

tr(CTUV) = 〈V,UTC〉

subject to tr(VTV) = ‖V‖2F = n,
(D.7)

which is easily verified by writing the KKT system based on the Lagrange function

tr(CTUV) + λ(tr(VTV)− n),

UTC + 2λV = 0, tr(VTV) = n, (D.8)

whose solution at the minimum is

V = −
√
n

UTC

‖UTC‖F
, λ =

‖UTC‖F
2
√
n

, (D.9)

with optimal cost −
√
n‖UTC‖F . The minimum cost within the expanded domain of

this relaxed subproblem will at least be as low as that of (2.33), hence ‖UTC‖N ≤
√
n‖UTC‖F . On the other hand,

‖UTC‖N =

√(∑
i

σi
)2 ≥√∑

i

σ2
i = ‖UTC‖F , (D.10)

where σi denotes the i-th singular value of UTC. Combining the two inequalities the

bounds are

‖UTC‖F ≤ ‖UTC‖N ≤
√
n‖UTC‖F . (D.11)

Proof of equivalence between (2.36) and (2.37). First (2.37) is rewritten replacing the

linear matrix inequality with an equivalent Schur complement

maximize
W,Z

2 tr(Z) +
1

m
tr(rrTW)

subject to W � 0, Wii = 1

Z2 � CTWC, Z � 0.

(D.12)

Let p∗1 and p∗2 be the optimal values of problems (2.36) and (D.12), respectively.
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Choose a feasible point (Z,W) for the second problem, such that 0 � Z2 � CTWC.

This implies2 Z � (CTWC)
1
2 , hence the values of the two objective functions satisfy

2 tr(Z) +
1

m
tr(rrTW) ≤ 2 tr

(
(CTWC)

1
2
)

+
1

m
tr(rrTW). (D.13)

In particular, choosing for (Z,W) the unique maximizer of (D.12), inequality (D.13)

asserts that p∗1 ≥ p∗2.

For the converse choose a feasible point W for the first problem and consider the eigende-

composition CTWC = QΛQT . Now set Z = QΛ
1
2 QT , so that Z2 = QΛQT = CTWC,

and (W,Z) is therefore feasible for (D.12). For both problems the value of the cost func-

tion is

2 tr(Λ
1
2 ) +

1

m
tr(rrTW). (D.14)

In particular, choosing for W the maximizer of (2.36) the construction for Z yields

a feasible point (W,Z) for (D.12) where the objective function equals p∗1. Therefore

p∗1 ≤ p∗2, and coupling this with the converse inequality above we conclude that p∗1 = p∗2

and the two problems are equivalent.

2A � B � 0⇒ A
1
2 � B

1
2 � 0 [120].



Appendix E

Derivation of CRLB for Source

Localization Based on TOA

The log of the joint conditional pdf for TOA Source Localization problem for Gaussian

case is (up to an additive constant)

logf(r|x) = − 1

2σ2

∑
j

(‖x− aj‖ − rj)2. (E.1)

where x and r denote the source position and the concatenation of all range measure-

ments, respectively. The first derivative of (E.1) with respect to x is

∇x log f(r|x) =
1

σ2

∑
j

(‖x− aj‖ − rj)
x− aj
‖x− aj‖

. (E.2)

The second derivative of (E.1) with respect to x is

∇2
x log f(r|x) = − 1

σ2

∑
j

[(x− aj)(x− aj)
T

‖x− aj‖2

+
‖x− aj‖ − rj
‖x− aj‖

(In −
(x− aj)(x− aj)

T

‖x− aj‖2
)
]
.

(E.3)

The Fisher information matrix, Fx, is obtained by taking the negative expected value

of (G.5) with respect to ranges as [71]

Fx = −Er{∇2
x log f(r|x)} =

1

σ2

∑
j

(x− aj)(x− aj)
T

‖x− aj‖2
. (E.4)

The CRLB matrix in (2.67) is taken as the inverse of Fx.
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Appendix F

Convergence of Weighted

Majorization Minimization

To prove (local) convergence of the weighted MM iteration (3.24) the Laplacian cost

function (3.4) is first majorized at time t by

ΓtL(x) =
1

2

∑
j∈S

∑
i∈Cj

{
utij(fij(x)−dij)2 +

1

utij

}
+

1

2

∑
j∈S

∑
i∈Bj

{
vtij(gij(x)−dij)2 +

1

vtij

}
, (F.1)

where fij , gij and utij , v
t
ij are defined in (3.12) and (3.23). The inequality ΩL(x) ≤ ΓtL(x)

follows from

ΓtL(x)− ΩL(x) =
1

2

∑
j∈S

∑
i∈Cj

{
utij(fij(x)− dij)2 +

1

utij
− 2|fij(x)− dij |

}
+

1

2

∑
j∈S

∑
i∈Bj

{
vtij(gij(x)− dij)2 +

1

vtij
− 2|gij(x)− dij |

}
=

1

2

∑
j∈S

∑
i∈Cj

{√
utij |fij(x)− dij | −

1√
utij

}2

+
1

2

∑
j∈S

∑
i∈Bj

{√
vtij |gij(x)− dij | −

1√
vtij

}2
≥ 0.

(F.2)

It is easy to check that ΩL(xt) = ΓtL(xt), so ΓtL(x) has the properties of a true majoriza-

tion function for the iterate xt. Now the same technique used in (3.13) is applied to
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majorize (F.1) by a convex quadratic function of x, yielding

ΩL(x) ≤ 1

2

∑
j∈S

∑
i∈Cj

{
utij
(
f2
ij(x)− 2dijfij(x

t)− 2dij〈∇fij(xt), (x− xt)〉+ d2
ij

)
+

1

utij

}
+

1

2

∑
j∈S

∑
i∈Bj

{
vtij
(
g2
ij(x)− 2dijgij(x

t)− 2dij〈∇gij(xt), (x− xt)〉+ d2
ij

)
+

1

vtij

}
.

(F.3)

As before, equality holds for x = xt, so the right-hand side of (F.3) is still a valid

majorization function. Discarding constant terms the weighted MM iteration (3.24)

results.



Appendix G

Derivation of CRLB for Sensor

Network Localization

The log of the joint conditional pdf for the SLAT problem is (up to an additive constant)

logf(d|x) = − 1

2σ2

∑
j∈S

∑
i∈Cj

(‖xi − ej‖ − dij)2 +
∑
j∈S

∑
i∈Bj

(‖ai − ej‖ − dij)2

 , (G.1)

where, similarly to x, d denotes the concatenation of all range measurements. Let us

define matrices Mij and Nj that extract individual positions or their differences from

the vector of concatenated coordinates1 x as follows

Mijx = xi − ej , Njx = −ej . (G.2)

Thus, (G.1) is rewritten as

log f(d|x) = − 1

2σ2

∑
j∈S

∑
i∈Cj

(‖Mijx‖ − dij)2 +
∑
j∈S

∑
i∈Bj

(‖ai + Njx‖ − dij)2

 . (G.3)

1If sensor positions xi and target positions ej are concatenated into vector x according to the order
x1, . . . ,xn, e1, . . . , em, the selection matrices are explicitly given by

Mij =
[
zTi ⊗ I2 −vTj ⊗ I2

]
, Nj =

[
02×2n −vTj ⊗ I2

]
,

where vector zi ∈ Rn has 1 in the i-th component and zeros elsewhere, and similarly for vj ∈ Rm.

113



Appendix G. Derivation of CRLB for Sensor Network Localization 114

The first derivative of (G.3) with respect to x is

∇x log f(d|x) =− 1

σ2

∑
j∈S

∑
i∈Cj

(‖Mijx‖ − dij)
MT

ijMijx

‖Mijx‖

+
∑
j∈S

∑
i∈Bj

(‖ai + Njx‖ − dij)
NT
j (ai + Njx)

‖ai + Njx‖

 .

(G.4)

The second derivative of (G.3) with respect to x is

∇2
x log f(d|x) =− 1

σ2

∑
j∈S

∑
i∈Cj

{
MT

ijMijxxTMT
ijMij

‖Mijx‖2

+
‖Mijx‖ − dij
‖Mijx‖

(
MT

ijMij −
MT

ijMijxxTMT
ijMij

‖Mijx‖2

)}

+
∑
j∈S

∑
i∈Bj

{
NT
j (ai + Njx)(ai + Njx)TNT

j

‖ai + Njx‖2
+
‖ai + Njx‖ − dij
‖ai + Njx‖(

NT
j Nj −

NT
j (ai + Njx)(ai + Njx)TNT

j

‖ai + Njx‖2

)}}
.

(G.5)

The Fisher information matrix, Fx, is obtained by taking the negative expected value

of (G.5) with respect to ranges as [71]

Fx = −Ed{∇2
x log f(d|x)} =

1

σ2

∑
j∈S

∑
i∈Cj

MT
ijMijxxTMT

ijMij

‖Mijx‖2

+
∑
j∈S

∑
i∈Bj

NT
j (ai + Njx)(ai + Njx)TNT

j

‖ai + Njx‖2

 .

(G.6)

The CRLB matrix in (3.28) is taken as the inverse of Fx.
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Derivation of CRLB for Sensor

Network Localization with

Unknown Turn-Around Time or

Transmit Power

H.1 TOA based with Unknown Turn-Around Time

The log of the joint conditional pdf for the TOA based cooperative sensor network

localization problem with unknown turn-around time is (up to an additive constant)

logf(d|S,T) = − 1

2σ2

∑
j∈S

∑
i∈Bj

(dij − Tj − 2‖ai − sj‖)2 +
∑
j∈S

∑
i∈Cj

(dij − Tj − 2‖si − sj‖)2

 ,

(H.1)

where S, T and d are the concatenation of all target positions, their unknown turn

around times (converted to distance) and distance measurements, respectively. The

Fisher information matrix1,

FTOA =


Fxx Fyx FTx

Fxy Fyy FTy

FxT FyT FTT

 , (H.2)

1The generalization to three-dimensional space is straightforward.
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is obtained by taking the negative expected value of the second derivative of (H.1) with

respect to S and T [71], where

Fxx =

 γ{
∑

k∈Bj
(akx−sjx)2

‖ak−sj‖2 +
∑

k∈Cj
2(skx−sjx)2

‖sk−sj‖2 } , i = j

−γ 2(sjx−six)2

‖sj−si‖2 , i 6= j

Fyy =

 γ{
∑

k∈Bj
(aky−sjy)2

‖ak−sj‖2 +
∑

k∈Cj
2(sky−sjy)2

‖sk−sj‖2 } , i = j

−γ 2(sjy−siy)2

‖sj−si‖2 , i 6= j

Fyx =

 γ{
∑

k∈Bj
(aky−sjy)(akx−sjx)

‖ak−sj‖2 +
∑

k∈Cj
2(sky−sjy)(sky−sjy)

‖sk−sj‖2 } , i = j

−γ 2(sjy−siy)(sjx−six)
‖sj−si‖2 , i 6= j

FxT =

 −ρ{
∑

k∈Bj
(akx−sjx)
‖ak−sj‖ +

∑
k∈Cj

(skx−sjx)
‖sk−sj‖ } , i = j

ρ
(sjx−six)
‖sj−si‖ , i 6= j

FyT =

 −ρ{
∑

k∈Bj
(aky−sjy)
‖ak−sj‖ +

∑
k∈Cj

(sky−sjy)
‖sk−sj‖ } , i = j

ρ
(sjy−siy)
‖sj−si‖ , i 6= j

FTT =

{
1
σ2 {
∑

k∈Bj 1 +
∑

k∈Cj 1} , i = j

0 , j 6= i

and γ = 4
(σ)2

, ρ = 2
(σ)2

. The CRLB for this problem is taken as the inverse of FTOA.

H.2 RSS based with Unknown Transmit Power

The log of the joint conditional pdf for the RSS based cooperative sensor network local-

ization problem with unknown transmit power is (up to an additive constant)

logf(q|S,P) = − 1

2σ2

∑
j∈S

∑
i∈Bj

(Pij − Pj − 10βlog10(‖ai − sj‖))2

+
∑
j∈S

∑
i∈Cj

(Pij − Pj − 10βlog10(‖si − sj‖))2

 ,

(H.3)

where S, P and q are the concatenation of all source positions, their unknown transmit

powers and RSS measurements, respectively. The Fisher information matrix,

FRSS =


Fxx Fyx FPx

Fxy Fyy FPy

Fxp FyP FPP

 , (H.4)
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is obtained by taking the negative expected value of the second derivative of (H.3) with

respect to S and P as [71] where

Fxx =

 γ{
∑

k∈Bj
(akx−sjx)2

‖ak−sj‖4 +
∑

k∈Cj
(skx−sjx)2

‖sk−sj‖4 } , i = j

−γ (sjx−six)2

‖sj−si‖4 , i 6= j

Fyy =

 γ{
∑

k∈Bj
(aky−sjy)2

‖ak−sj‖4 +
∑

k∈Cj
(sky−sjy)2

‖sk−sj‖4 } , i = j

−γ (sjy−siy)2

‖sj−si‖4 , i 6= j

Fyx =

 γ{
∑

k∈Bj
(aky−sjy)(akx−sjx)

‖ak−sj‖4 +
∑

k∈Cj
(sky−sjy)(sky−sjy)

‖sk−sj‖4 } , i = j

−γ (sjy−siy)(sjx−six)
‖sj−si‖4 , i 6= j

FxP =

 ρ{
∑

k∈Bj
akx−sjx
‖ak−sj‖2 +

∑
k∈Cj ,j<k

skx−sjx
‖sk−sj‖2 } , i = j

−ρ sjx−six
‖sj−si‖2 , i<j

FyP =

 ρ{
∑

k∈Bj
aky−sjy
‖ak−sj‖2 +

∑
k∈Cj ,j<k

sky−sjy
‖sk−sj‖2 } , i = j

−ρ sjy−siy
‖sj−si‖2 , i<j

FPP =

{
1
σ2 {
∑

k∈Bj 1 +
∑

k∈Cj ,j<k 1} , i = j

0 , j 6= i

and γ = (10β)2

(ln10σ)2
, ρ = 10β

ln10σ2
. The CRLB for this problem is taken as the inverse of

FRSS.
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[52] P. Oğuz-Ekim, J. Gomes, J. Xavier, and P. Oliveira. Experimental evaluation

of simultaneous 3D localization of sensor nodes and tracking moving targets.

In Proceedings of The European Signal Processing Conference (EUSIPCO’12),

Bucharesth, Romania, August 2012.
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