Monocular 3D Positioning and Tracking Systems

Tiago Gaspar

President of the jury
Professor Mário Figueiredo

Members of the jury
Professor Jorge Dias
Professor José Santos-Victor
Prof. João Rodrigues
Prof. Jacinto Nascimento
Prof. Paulo Oliveira

July 20, 2015
Motivation

\[x(t) = ? \]

...using measurements provided by one or more sensors, at fixed locations or at moving platforms, to estimate the state of a moving object, which is usually composed of its position, velocity, and sometimes acceleration.
Motivation

Positioning and tracking systems have several applications

- Security and surveillance
- Trajectory determination
- Air traffic control
- Human-computer interaction
- Location-based services
Motivation

Outdoors: NAVSTAR-GPS, GLONASS, Galileo

FAIL (multipath & attenuation)

Main approaches:
- Infrared
- Ultrasound
- Radio frequency
- Computer Vision

Applications:
- Industry
- Hospitals
- Houses
- Shopping malls
- Underwater

Cons:
- Computational power
- Extraction of information

Pros:
- Passive
- Diversity of information
- Cameras everywhere
- Cheap

A reliable solution for indoor positioning is yet to be found...
Motivation

Vision-based 3D positioning systems with static cameras

Stereo systems

Monocular systems with known target dimensions

Monocular systems with unknown target dimensions

SOLVED
(Triangulation / Epipolar constraint)

SOLVED
(Range and bearing)

NOT SOLVED
(Bearing only)

With this work we want to answer the question:

What can be done in terms of 3D positioning when a single static camera is used and there is no information about (either the dimensions or the shape of) the target?
Main Contributions

Architecture for monocular 3D positioning and tracking systems

Extension to multi-camera configurations

H_2 adaptive filter for 3D positioning of targets with an unstable model

Monocular depth estimation for 3D positioning of targets with unknown dimensions

Synchronization of independently moving cameras

Positioning strategies for marine mammals moving at the ocean surface
Monocular 3D Positioning and Tracking

System Architecture

Calibration

PTZ Camera

Target Segment. (Snakes)

Tracking System

Estimates
- Position
- Velocities
- Acceleration

Camera control

\[\begin{pmatrix} \hat{p}, \hat{v}, \hat{a}, \hat{\omega} \end{pmatrix} \]
System Architecture

Target Model

3D Planar Constant-Turn Model

\[
\dot{a}(t) = -\omega^2 v(t) + d(t)
\]

Assumptions:
- constant speed
- constant angular velocity
- angular and linear velocity vectors are orthogonal to each other

The target moves in a plane orthogonal to the angular velocity vector, the maneuver plane.

The target can span the 3D space.

\[
\omega \quad \text{- angular speed}
\]
\[
v(t) \quad \text{- linear velocity}
\]
\[
a(t) \quad \text{- linear acceleration}
\]
System Architecture

Tracking System

Center of the target image

Target model:

Distance of the target to the origin of the world reference frame
(target dimensions & visual looming strategy)

Parameter dependence of EKFs, each one associated with a different angular speed (intricate dependence)

• the individual estimates are combined using a weighted sum (with the \textit{a posteriori} hypothesis probabilities of each model as weights)
System Architecture

Experimental Results

System description
- Creative WebCam Live! Motion
- Easily identifiable target
- Manual ground truth calibration
- Sampling interval: 0.5 sec

Estimation error

Position error: $\sigma = 55.8 \text{ mm}$
Velocity error: $\sigma = 8.29 \text{ mm/s}$
Acceleration error: $\sigma = 1.20 \text{ mm/s}^2$
System Architecture

Experimental Results

Model identification

Model-Based vs Model-Free
(double integrator)

![Graph showing model identification and state error norm comparison](image)

- Model-based (MB) error norm: $\sigma_{MB} = 0.14$
- Model-free (MF) error norm: $\sigma_{MF} = 0.34$

29/07/15
Monocular 3D Positioning and Tracking
The system that we proposed achieves accuracies on the order of a few centimeters, but assumes that the dimensions of the target are known.

This is very restrictive!

What can be done when no information about the dimensions of the target is available?
Monocular Depth Estimation

Depth of field (of a camera with a given focus value):
- distance between the farthest and nearest planes, with respect to the camera, whose points appear with a satisfactory definition in the image, according to a given criterion
- lenses are unable to simultaneously focus planes at different depths

Gaussian lens formula

\[z = \frac{fv}{v - f} \]

Several strategies:
- zoom [Ma and Olsen, JOSA 90]
- iris [Ens and Lawrence, PAMI’93]
- focus [Pentland, PAMI’87]

(Thin lens model)
Monocular Depth Estimation

How to find the camera focus value that sharply focuses the target?

Define a quantity that depends on the amount of blur that “corrupts” the boundary of the target.

If the PSF is a constant intensity disk, then the exact model for the cost function is a parabola.
Monocular Depth Estimation

System architecture

Depth filtering strategies
- Second-order complementary filter
- LPV observer

29/07/15
Monocular 3D Positioning and Tracking 15
Monocular Depth Estimation

Experimental Results

System description

- AXIS 215 PTZ
 - maximum focal length: 45.6 mm (aperture: F2.7)
- Easily identifiable target
- Manual ground truth calibration
- Sampling interval: 1.2 sec

System performance

![Graphs showing experimental results for depth estimation and error.

29/07/15
Monocular 3D Positioning and Tracking
Monocular Depth Estimation

Experimental Results

3D Positioning System
The use of depth estimation strategies for targets with unknown dimensions widens the domain of applicability of the 3D positioning system.

However, there is still an important disadvantage: the MMAE-EKF does not have convergence guarantees...

What can be done to obtain a 3D positioning system with convergence guarantees?
H₂ Adaptive Filter

Overview

Target 3D model

\[\dot{x}(t) = F(\omega)x(t) + Bd(t) \]

Typical approaches

- Multiple models [Li and Jilkov, TAES’05]
- Nonlinear filtering [Li and Jilkov, SPIE’04]
- Model-free [Bar-Shalom et al., 2001]
H₂ Adaptive Filter

Parameter Identifier

3D Planar Constant-Turn Model:

\[\alpha = -\omega^2 \]

\[\dot{a}(t) = \alpha v(t) + d(t) \]

Linear relation in the unknown parameter

Gradient projection method

- \(\alpha \leq 0 \)
- derive convergence guarantees
H₂ Adaptive Filter

Design and Convergence

Filter structure

\[
\dot{x}(t) = F(\omega(t))x(t) + L(y_m(t) - Cx(t))
\]

P. I. Filter gain

within a given interval

Filter design

Find the gain that minimizes the maximum of the H₂ norm of the systems obtained from the disturbances to the position error, when the extremes of the interval are considered.

Convergence guarantees

For bounded velocities and noise, and for some persistency of excitation conditions, the errors of both the parameter identifier and the H₂ filter

- Converge to 0 exponentially fast
- Are bounded after the transient
- Absence of noise
- Presence of noise

29/07/15

Monocular 3D Positioning and Tracking
H₂ Adaptive Filter

Simulation Results

System specifications
- continuous-time simulations (1 PTZ camera)
- observation noise (uniformly distributed)
 - target center: [-10, 10] pixel
 - target depth: [-1, 1] m

System performance
- comparison with an EKF (augment the state with the angular speed)

Straight line trajectory experiment (ω = 0.1 rad/s)

![Position error norm vs time graph](chart.png)

- Measurements
- H₂ Adaptive Filter
- EKF
H₂ Adaptive Filter

Simulation Results

Trajectory with 3 different angular speeds

Simulation Results

Real Parameter Identification

0 0.1 0.2 0.3 0.4 0.5
rad./s

0 50 100 150 200 250 300
time [s]
The proposed positioning architecture is particularly appropriate for indoor applications, in which the target is usually within a small distance from the camera.

How to deal with outdoor applications, in which the target is usually further away from the camera and it is difficult to put a (e.g. GPS) receiver on it?
GPS/AHRS Aided Application

Problem Statement

Goal: estimate the state (position and velocity) of a marine mammal over time
- UAV instrumented with
 - GPS: UAV position
 - AHRS (Attitude and Heading Reference System): UAV orientation
 - PTZ camera: center of the image of the target

The distance from the target to the camera is not measured, but we know that the target moves on a plane (ocean surface)
GPS/AHRS Aided Application

Filtering Approach

Models:
- Target: 2D Horizontal Constant-Turn Model with Known Turn Rate
- UAV: 3D kinematic model (suits different types of aircrafts)
- Camera: pinhole model

Nonlinear problem
(nonlinear observation equation and unknown angular speed)

Isolated KF
1) Transform measurements into linear functions of the target state
2) Design a time-invariant KF for the state of the target
3) MMAE (unknown angular speed)

Joint KF
1) Augment the state of the system with the state of the UAV
2) Transform measurements into linear functions of the system state
3) Design a time-varying KF for the augmented state
4) MMAE (unknown angular speed)
GPS/AHRS Aided Application

Simulation Results

Setup description
- discrete-time simulations: T = 0.2 s
- target and process noise
- Baram Process
- EKF
- Measurement sets
- augments GPS with AHRS
- target
- camera
- angular
- UAV and ground

Performance comparison (occlusions)

\[(\hat{x}_b, \hat{y}_b) \quad [RMSE = 25.12 \text{ m}] \\
\text{Isolated Iter} \quad [RMSE = 2.41 \text{ m}] \\
\text{Joint Iter} \quad [RMSE = 2.19 \text{ m}] \\
\text{EKF} \quad [RMSE = 6.95 \text{ m}] \\

\[x_b - \hat{x}_b \quad [x_b, y_b] \quad [RMSE = 5.12 \text{ m}] \]
The presented algorithms are mostly appropriate for monocular systems. A natural next step is their extension to multi-camera configurations.

This requires that all the cameras are synchronized (the target is dynamic).

How to synchronize a set of cameras that track a moving object without using additional hardware?
Video Synchronization

Problem Description

Find frames correspondence

Cam 1

Cam 2
Video Synchronization

Previous Work

Features

Matching

Cameras

Static

• Caspi and Irani, PAMI’02
• Tresadern and Reid, BMVC’03

Independently Moving

• Tuytelaars and Van Gool, CVPR’04
• Meyer et al., BMVC’08

Non-Matching

• Wolf and Zomet, VMDS’02
• Caspi and Irani, PAMI’02

Most general and complex problem

SOLVED

NOT SOLVED
Video Synchronization

Algorithm Outline

Main idea: use the relative motion between two objects as clue for the synchronization

1. **Track features** in two rigid objects with independent motions
2. **Get their 3D motion** (apart from a scaling factor) w.r.t. each camera

3. **For each time delay** $\delta \in [-\Delta, \Delta]$, **find the constant rigid body transformation** (R, t) between the cameras in the initial time instant

4. **Choose the delay** that verifies $\delta^* = \arg \min_{\delta} E_m(\delta)$ associated with R

$E_m(\delta) = \min_{(q, t, \beta)} \mu_R E_R(\delta, q) + \mu_T E_T(\delta, q, t, \beta) + \mu_q (q^T q - 1)^2$

- μ_R, μ_T, μ_q: weights
- δ^*: vector with non-negative scaling factors
- q: unit quaternion
- R: Rotation
- T: Translation
- β: Unit quaternion

29/07/15

Monocular 3D Positioning and Tracking
Video Synchronization

Experimental Results

System description

- Regular cameras (29 fps)
- Small video sequences: 96 frames
- Delay in the interval [-10, 10] frames
- Ground truth: mark some frames with a photo-flash

Wolf and Zomet, in VMDS’02

Our method

\[E_w(\delta) \]

\[E_m(\delta) \]
Summary

Architecture for monocular 3D positioning and tracking systems based on a suboptimal nonlinear multiple-model adaptive estimator

Depth estimation methods for monocular target tracking and positioning
 • no information about the geometry of the target is required

Model-based H_2 adaptive filter for target tracking and positioning
 • convergence guarantees (hold even when the EKF diverges)

Positioning and tracking system for outdoor applications
 • particularly useful when placing a (e.g. GPS) receiver on the target is difficult or not recommended

Synchronization algorithm for independently moving cameras
 • first step towards the extension of the presented methods to multi-camera configurations
Summary

What can be done in terms of 3D positioning when a single static camera is used and there is no information about (either the dimensions or the shape of) the target?

It is possible to obtain full 3D position estimates, with convergence guarantees.
Directions for Future Research

Limitations:

- **Planar target model**: extension to nonplanar models, but does the gain in authenticity compensate for the additional complexity?
- **Slowly rotating target**: infer the shape of the target (e.g. structure from motion) and estimate its attitude
- **Continuous-time H_2 adaptive filter**: search for a discrete-time version that retains the convergence guarantees

Possible directions of research:

- Use 3D pose to help finding the direction of travel, [Fossati and Fua, ECCV’08]
- Multiple targets
- Extension to multi-camera configurations
- Video synchronization without retrieving the 3D motion of the objects
Publications

Journal

Under Review

Conference

Thank you.
System Architecture

Lens Distortion

Low cost PTZ camera
- Radial distortion (*barrel*)

Distortion compensation: straight lines must be preserved

![Diagram of undistorted and distorted lines with equation symbols and points labeled](image-url)
System Architecture

Target Model

Why this model?
- most targets move on a plane (e.g. people, animals)
- also adequate to track targets that span the 3D space
- based on basic kinematic relations (not particular for a given type of target)
- more complex models are usually highly nonlinear (poor performance with agile targets at low data rates)

3D trajectories considered by the model

In the absence of noise: \(\mathbf{d}(t) = 0 \)

- Straight line
- Parabola
- Circumference
- Ellipse
- Arbitrary 3D trajectory

In the presence of noise: \(\mathbf{d}(t) \neq 0 \)
System Architecture

Measurements

The target is segmented using active contours

Mean of the contour

Target center coordinates

Target dimensions
Visual looming strategy

Distance of the target to the origin of the world reference frame

29/07/15
Monocular 3D Positioning and Tracking
System Architecture

Multiple-Model Adaptive Estimator (MMAE)

Real

Unknown Plant

EKF \(\omega_1 \)

EKF \(\omega_2 \)

\cdots

EKF \(\omega_N \)

Posterior Probability Evaluator

\hat{x}^1 \rightarrow \Pi \rightarrow \hat{x}

\hat{x}^2 \rightarrow \Pi \rightarrow \hat{r}^1 \rightarrow \Pi \rightarrow \hat{x}

\hat{x}^N \rightarrow \Pi \rightarrow \hat{r}^N \rightarrow \Pi \rightarrow \hat{x}

\hat{r}^1 \rightarrow \Pi \rightarrow p^1 \rightarrow \Pi \rightarrow p

\hat{r}^2 \rightarrow \Pi \rightarrow p^2 \rightarrow \Pi \rightarrow p

\hat{r}^N \rightarrow \Pi \rightarrow p^N \rightarrow \Pi \rightarrow p

\text{MMAE-EKF}

\text{u}

\text{z}
System Architecture
Multiple-Model Adaptive Estimator (MMAE)

Design of the bank of EKFs

Division of the parameter set: use Baram Proximity Measure (BPM) for insight (nonlinear system with unstable target model)
- Linearized versions of the filter for several depths
- No convergence guarantees
System Architecture

Experimental Results

System description

- Creative WebCam Live! Motion
- Easily identifiable target
- Sampling interval: 0.5 sec
Monocular Depth Estimation

Cost function shape
- If the PSF is a constant intensity disk, then a parabola is the exact model for \(g(v_0) \)
- The illumination of the scene does not change the position of the cost function minimum

Camera parameters Vs Depth estimation accuracy
- the best aperture and zoom values are the ones that lead to:
 - Small depths of field
 - large aperture
 - large focal length \(\rightleftharpoons \text{ tradeoff } \) small focal length
 - Narrow cost function concavities

29/07/15
Monocular 3D Positioning and Tracking
Monocular Depth Estimation

Depth Filtering Strategies

Second-order complementary filter

- Depth from focus measurements at low frequencies
- Depth derivative (visual looming) at high frequencies

LPV observer

- Target depth dynamics written as a function of the measurements of the dimensions of the image of the target
- Parameter dependent system

UES (inequality on the gain of the observer)

- Mimics the natural frequency decomposition of the measurements
- Structure of a stationary KF (under some noise conditions)
Monocular Depth Estimation

Comparisons

Classical stereo

Monocular (state-of-the-art)

[Favaro and Soatto in PAMI 2005]

Relative RMSE

- Our method: 1.03%
- Favaro: 0.94%, but slower (3x)
Monocular Depth Estimation

Comparisons

Monocular depth estimation methods (static scenes and real data)

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE (%)</th>
<th>Depth range [m]</th>
<th>Real-time positioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentland</td>
<td>2.5</td>
<td>up to ~1</td>
<td>yes</td>
</tr>
<tr>
<td>Ens</td>
<td>1.3</td>
<td>0.8 to 0.95</td>
<td>no</td>
</tr>
<tr>
<td>Subbarao</td>
<td>2.3 to 20</td>
<td>0.6 to 5</td>
<td>yes</td>
</tr>
<tr>
<td>Favaro</td>
<td>~1</td>
<td>3 to 4</td>
<td>no</td>
</tr>
<tr>
<td>Krotkov</td>
<td>~1</td>
<td>1 to 3</td>
<td>no</td>
</tr>
<tr>
<td>Our method</td>
<td>~1</td>
<td>3 to 4</td>
<td>yes</td>
</tr>
</tbody>
</table>
H₂ Adaptive Filter

Problem Statement

Target dynamics

\[\dot{x}(t) = F(\omega)x(t) + Bd(t) \]

Consider:

- a target maneuvering in the 3D space according to the previous model
- measurements of the target position

Goal:

- design a state (position, velocity, and acceleration) estimator such that its error
 1. converges exponentially fast to zero in the absence of noise
 2. is bounded in the presence of noise

Assumptions:

- constant, unknown, and bounded angular speed
- bounded noise
- bounded linear velocity
\(\dot{x}(t) = \underbrace{F(\omega)x(t)}_{\text{MMAE approach}} + B_d(t) \)

- **Target dynamics (unstable and unknown)**
- **MMAE approach**
 - Performance degradation when the true plant is not within the set of plants
 - No convergence guarantees since the dynamics is unstable
- **Linear filter**
 - Biased unless the true angular speed is used
 - No convergence guarantees since the true angular speed is unknown
- **State augmentation**
 - Augment the state with the angular speed
 - No convergence guarantees since the system that results is highly nonlinear
GPS/AHRS Aided Application

Simulation Results

Angular speed estimates (occlusions)

Target position covariance (occlusions)
Video Synchronization

Independently Moving Cameras