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INTRODUCTION
OUTLINE

1 Introduction
Mission Scenario
Range-Only Simultaneous Localization and Mapping
Proposed Solution
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INTRODUCTION
MISSION SCENARIO

Autonomous vehicle missions
with no absolute positioning
available.

Sensor Suite
I Angular rates: IMU
I Linear velocity: visual

odometry
I Distance to beacons:

acoustic/radio receiver

Problem Statement
Design a navigation filter in the space of sensors using the
available sensor suite.
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INTRODUCTION
RANGE-ONLY SIMULTANEOUS LOCALIZATION AND MAPPING

Definition

I The problem of navigating a vehicle in an unknown
environment, by building a map of unknown landmarks
by measuring distances and using this map to deduce its
location, without the need for a priori knowledge of
location.

RO-SLAM details

I No need for data association algorithms as the ranging
signals are tagged.

I Problem: landmark initialization
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INTRODUCTION
PROPOSED SOLUTION

I Landmark initialization is one of the main issues.

I Some works use trilateration techniques on the first
instants that a landmark is observed to obtain a first
estimate to insert in the filter.

I Our solution solves this problem by introducing global
convergence and stability results rooted in source
localization

P. Batista, C. Silvestre, and P. Oliveira.
Single range aided navigation and source localization: Observability and
filter design.
In Systems & Control Letters, vol. 60, no. 8, pp. 665–673, 2011.

Lourenço , Batista, Oliveira, Silvestre, and Chen Sensor-based GAS RO-SLAM 4/25



Introduction RO-SLAM Filter Simulation Experiments Conclusions

SENSOR-BASED RO-SLAM FILTER
OUTLINE

2 Sensor-based RO-SLAM Filter
Overview
Nonlinear System Dynamics
Observability Analysis
Filter Design
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SENSOR-BASED RO-SLAM FILTER
OVERVIEW

I Coordinate frames
I {I} – Inertial reference frame
I {B} – Body-fixed frame

I Body-fixed frame defined by
I Ip ∈ R3 – Vehicle position
I R ∈ SO(3) – Rotation matrix from
{B} to {I}

I Landmarks
I Ipi ∈ R3 – Landmark position in {I}
I pi ∈ R3 – Landmark position in {B}

B
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NONLINEAR SYSTEM DYNAMICS
DEFINITIONS

Landmark sets

LO Set of visible landmarks
LU Set of non-visible landmarks
L Set of all landmarks: L = LO ∪ LU

Measured quantities

‖pi‖ Ranges to sensor-based landmarks
v Linear velocity of the body-fixed frame
ω Angular velocity
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NONLINEAR SYSTEM DYNAMICS
NONLINEAR SYSTEM

I A nonlinear system is designed:
ṗi(t) = −S [ω(t)]pi(t)− v(t)
v̇(t) = 0
ri(t) = ‖pi(t)‖
yv(t) = v(t)

(NLS)

I Problem: the output is nonlinear!
I Proposed solution: augment the state to include the

nonlinear observation:
xLi(t) := pi(t)
xV(t) := v(t)
xRi(t) := ‖xLi(t)‖

(AS)
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ṗi(t) = −S [ω(t)]pi(t)− v(t)
v̇(t) = 0
ri(t) = ‖pi(t)‖
yv(t) = v(t)

I Problem: the output is nonlinear!

I Proposed solution: augment the state to include the
nonlinear observation:

xLi(t) := pi(t)
xV(t) := v(t)
xRi(t) := ‖xLi(t)‖

Lourenço , Batista, Oliveira, Silvestre, and Chen Sensor-based GAS RO-SLAM 7/25



Introduction RO-SLAM Filter Simulation Experiments Conclusions

NONLINEAR SYSTEM DYNAMICS
NONLINEAR SYSTEM

I A nonlinear system is designed:
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NONLINEAR SYSTEM DYNAMICS
AUGMENTED NONLINEAR SYSTEM

I The augmented system dynamics are

ẋLi(t) = −S [ω(t)] xLi(t)− xV(t), i ∈ L
ẋV(t) = 0

ẋRj(t) = −yT
v (t) y−1

Rj
(t) xLj(t), j ∈ LO

ẋRk(t) = −yT
v (t) x−1

Rk
(t) xLk(t), k ∈ LU

y(t) =
[
yT

v (t) yR1(t) · · · yRNO
(t)
]T

I There is nothing in the dynamics imposing the state
constraint xRi(t) := ‖xLi(t)‖.

I The state dependences on the visible ranges state and the
velocity state are replaced by the corresponding output.
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OBSERVABILITY ANALYSIS
OUTLINE

Nominal nonlinear 

system

Augmented 
nonlinear system

Transformed LTV 
system

Observability 
analysis

Globally 
asymptoticaly 
stable observer

LTV-like nonlinear 
system
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Discard non-visible landmarks and ranges{
ż(t) = A(t)z(t)
y(t) = Cz(t)

(LTV)

Lyapunov transformation:
χ(t) = diag (R(t), I3, 1) z(t){

χ̇(t) = A(t)χ(t)
y(t) = Cχ(t)

(TLTV)
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OBSERVABILITY ANALYSIS
OBSERVABILITY OF THE LTV SYSTEM

Theorem 1
Consider the (LTV) system and let T := [t0, tf ]. If there exist three
instants {t1, t2, t3} ∈ T such that the linear velocity of the vehicle
expressed in the inertial frame is linearly independent in those
instants, i.e., det

([Iv(t1)
Iv(t2)

Iv(t3)
])
6= 0, and all the ranges

are within [Rm,RM], both positive, then the system is observable in
the sense that, given the system output {y(t), t ∈ T }, the initial
condition z(t0) is uniquely defined.
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OBSERVABILITY ANALYSIS
OBSERVABILITY OF THE LTV SYSTEM (CONT.)

Sketch of the proof.

I System (LTV) is observable if the observability Gramian
associated with (A(t),C) is invertible;

I Lyapunov transformation maintains observability
properties;

I Proof by contraposition: assume the non-observability of
the system (TLTV) which implies the non-invertibility of
the observability Gramian W(t0, tf ) that cannot hold if the
conditions of the theorem apply.

I W(t0, tf ) is invertible in T , yielding the system (LTV)
observable.
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OBSERVABILITY ANALYSIS
OBSERVABILITY OF THE LTV SYSTEM (CONT.)

I First condition (simplified 2-D
version)

Ip(t1)

Landmark

Ip(t2)

Ip(t3)

Iv(t1)

Iv(t2)

I Second condition
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OBSERVABILITY ANALYSIS
EQUIVALENCE OF THE LTV AND THE NONLINEAR SYSTEMS

Theorem 2
Consider the LTV system (LTV) and the original nonlinear system
(NLS). If the conditions of Theorem 1 hold, then

(i) the state of the original nonlinear system and that of the LTV
system are the same and uniquely defined, provided that the
invisible landmarks are discarded. Furthermore the constraints
expressed by (AS) become naturally imposed by the dynamics;
and

(ii) a state observer with uniformly globally asymptotically stable
error dynamics for the LTV system is also a state observer for
the underlying nonlinear system, retaining the same error
dynamics properties.
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OBSERVABILITY ANALYSIS
EQUIVALENCE OF THE LTV AND THE NONLINEAR SYSTEMS

Theorem 3
The pair (A(t),C) is uniformly completely observable if there exist
δ > 0 and α∗ > 0 such that, for all t ≥ t0, it is possible to choose a set
of instants {t1, t2, t3} ∈ Tδ, with Tδ := [t, t + δ], for which the linear
velocity of the vehicle in the inertial frame respects∣∣det

([Iv(t1)
Iv(t2)

Iv(t3)
])∣∣ > α∗.

Sketch of the proof.

The proof follows steps similar to the proof of Theorem 1, but
considering uniform bounds for all t ≥ t0 and intervals
[t, t + δ].
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OBSERVABILITY ANALYSIS
CONVERGENCE AND STABILITY

I Following the approach of:

P. Batista, C. Silvestre, and P. Oliveira.
Single Range Aided Navigation and Source Localization:
observability and filter design.
Systems & Control Letters, 60(8):665–673, August 2011.

I Since the pair (A(t),C) is uniformly completely
observable, a Kalman filter for system (LTV) has GAS
error dynamics.

B. Anderson.
Stability properties of Kalman-Bucy filters.
Journal of the Franklin Institute, 291(2):137-144, 1971.

I The state of the nonlinear system (NLS) is the same as that
of sytem (LTV).

I The observer for (LTV) is also a GAS observer for (NLS).
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SENSOR-BASED RO-SLAM FILTER
FILTER DESIGN

Discrete dynamics
I Forward Euler discretization
I Rotation of a landmark from instant k to k + 1 done using

RT
k+1Rk = exp (−S [ωk]Ts)

Predict Step
I Non-visible landmarks and ranges are propagated in open

loop.
I Standard discrete LTV Kalman filter prediction equations.

Update Step
I Standard LTV Kalman filter update equations

Lourenço , Batista, Oliveira, Silvestre, and Chen Sensor-based GAS RO-SLAM 16/25



Introduction RO-SLAM Filter Simulation Experiments Conclusions

SIMULATION RESULTS
OUTLINE

3 Simulation Results
Simulation Parameters
Resulting map
Landmark Estimation Results
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SIMULATION RESULTS
SIMULATION PARAMETERS

Environment

I 16m×16m×3m map with
20 random landmarks

Measurement noise
I σω = 0.05 ◦/s
I σv = 0.03 m/s
I σr = 0.03 m

Algorithm Parameters
I State covariance Q = Ts diag

(
10−3I3N, 10−2I3, 10−5IN

)
I Observation covariance R = 10−3 diag

(
I3, INO

)
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SIMULATION RESULTS
RESULTING MAP

I The trajectory designed to respect observability conditions
and ensure sufficient excitation in all directions.
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SIMULATION RESULTS
LANDMARK ESTIMATION RESULTS
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EXPERIMENTAL RESULTS
OUTLINE

4 Experimental Results
Setup
Resulting map
Ground Truth Data
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EXPERIMENTAL RESULTS
SETUP

Instrumented AscTec Pelican
quadrotor

I Crossbow Cricket acoustic/radio
receiver

I Microsoft Kinect facing down for
visual odometry

I Microstrain 3DM-GX3-25

Environment
I Crossbow Cricket constellation of 7

beacons
I VICON motion capture system

for ground truth
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EXPERIMENTAL RESULTS
SETUP

Cricket Beacon 
Constellation

VICON Motion 
Capture

Cricket Receiver

Inertial 
Measurement Unit

Microsoft Kinect

RO-SLAM Algorithm

Least Squares

SURF

Radio and 
acoustic pulses

Point Extraction+Depth Pointcloud

3-D points

RGB

Linear velocity

Ranges

2-D features

z-1

Ground Truth

Angular rates
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H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool
Speeded-Up Robust Features (SURF)
Computer Vision and Image Understanding, 110(3):346-359,
2008.

J. Neira and J.D. Tardós
Data assoc. in stoch. mapp. using the joint comp. test
IEEE Transactions on Robotics and Automation,
17(6):890-897, 2001.
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EXPERIMENTAL RESULTS
RESULTING MAP
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I Trajectory was not
sufficiently rich in the
vertical direction.

I The velocity
measurements from the
visual odometry are
noisy, which can make
the direction appear
observable.
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EXPERIMENTAL RESULTS
GROUND TRUTH DATA
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CONCLUSIONS & FURTHER WORK

Conclusions
I Novel RO-SLAM algorithm was designed, analysed and

validated through simulated and experimental tests.

I Formal proof of stability and convergence of the sensor-based
filter for a nonlinear system was obtained through state
augmentation.

I Theoretical observability results establish a constructive basis
for trajectory design.

Recent and further work
I Necessary conditions for observability of the original nonlinear

system have been found.

I Extension of the algorithm to make use of the full capabilities of
a sensor network (sensor-to-sensor ranging) is an interesting
point of research.
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THE END.

Thank you.
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