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Guidelines 

>Structure Health Monitoring (SHM) 

Set of actions aimed at the detection and diagnosis of 
abnormal situations during the exploration of major civil 
engineering works of art in order to keep the security and 
the reduction of maintenance and inspection costs .

It is necessary the installation, in the works of art 
monitored, a large number of sensors according to the 
established observation plan.
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Guidelines 

>Structure Health Monitoring (SHM) 
…
However the sensors, due to its nature and to the harsh 
environmental conditions that they are subject to, are 
subject to faults that in the last instance can compromise 
the quality of the indispensable information for an effective 
security control. 

oNote: in a metrological sense, the sensor is a device used in the 
measuring process that it’s directly affected by the measurand and 
according to a predetermined law generates a related signal related to 
its value.
 In the context of this paper it is used a broader sense of the term 
sensor, comprising all the elements in the measuring chain.



9 / 94IST :: Advanced Control Systems 2012/2013

Guidelines 

>It is hoped that this study can contribute to the 
future development of innovative measurement 
Fault Tolerant Sensor Networks   applied to Civil 
Engineering Structures; witch may have potential 
application in the Structure Health Monitoring 
systems. 
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Model Based FDI

>Fault

“In the context of an industrial application, a fault is 

perceived as a non-permitted deviation of a characteristic 

property that leads to failure of the system or 

manufacturing facility to fulfill the purpose for which it 

was designed “
[Isermann, 1997]
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Sensor Validation

>Sensor Validation
“The fault detection and diagnosis (FDI) when applied to 
sensors is usually designated as sensor validation ” 
[Fortuna et al., 2007]

“Almost all the techniques of fault detection and diagnosis 
(FDI) described in the literature can be applied to sensor 
validation ” [Fortuna et al., 2007].



17 / 94IST :: Advanced Control Systems 2012/2013

Sensor Validation

>Sensor Validation

However, although less frequently, other name is also 

common in the literature regarding this topic, and is 

referred as signal validation [Jabloński, Barszcz & Bielecka, 

2011; Fantoni et al., 2003] 
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Sensor Validation

>As in FDI at the process level, in the validation of 
sensors, one can compare the results of 
measurements of the system sensors with 
mathematical models that describe the static and 
dynamic relationships between the measured, 
supported in the techniques fault detection based 
on models, and the possibility, in the event of a 
fault to provide an estimate (during a finite time 
window) of the missing measurements. 
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Sensor Validation

>However, using this approach, care must be taken 
to distinguish errors in the sensors from faults in 
the process or control system. 
>A failure in the process may result in abnormal 
readings from the sensors, the developed 
algorithms may report a faulty sensor. 
>The use of a higher layer in the diagnostic system 
must consider this situation
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General Method - Development of the Model

>A mathematical model is developed for the system 
based on physical information and statistical data.
>This model can be static or dynamic, linear or 
non-linear, continuous or discrete and deterministic 
or stochastic.
>The input and the output variables of the system 
are clearly defined and all the relevant parameters 
are identified.
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General Method - Development of the Model

> The model describes the behavior of the system 
under normal operating conditions. 

>It also specifies the statistics of the measurement 
noise in the output variables
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General Method – Residual Generation

>The residual signal or the innovation process is 
defined as the difference between the actual system 
output and the expected output based on the model 
and the previous output data. 
>The latter is generated directly by the model if the 
system is deterministic or by a statistical filter if the 
system is stochastic, i.e. subject to random inputs 
and variations.
> It is called the innovation process since it 
represents the new information brought by the 
latest observation. 
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General Method – Residual Generation

>Under normal conditions, the error signal is 
"small" and corresponds to random fluctuations in 
the output since all the systematic trends are 
eliminated by the model. 

>However, under faulty conditions, the error signal 
is "large" and contains systematic trends because 
the model no longer represents the physical system 
adequately.
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Statistics of the residual signal under normal 
conditions

>In deterministic systems, the random fluctuations 
in the residual signal are due to measurement noise 
in the output variables. Their statistics are obtained 
as part of the system description in the modelling 
step. 
>In stochastic systems, the statistics of the error 
signal are obtained from the filter which is used to 
predict the output of the system. 
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Statistics of the residual signal under normal 
conditions

>For linear dynamic systems with Gaussian random 
inputs, a Kalman filter generates both the residual 
signal and its statistics. 

It is known that under normal conditions, the residual 
signal or the innovation process is a zero mean Gaussian 
white noise process 
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Outlier Detection via limit value checking

>Given the statics of the residual signal under 
normal conditions, a univariate statistical approach 
to limit sensing can be used to determine the 
thresholds for each generated residual
>These thresholds define the boundary limits, and 
a violation of these limits would indicate a outlier in 
the actual system output.
>This approach is typically employed using a 
Shewart control chart 
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Sensor fault detection via hypothesis testing

>The problem of sensor fault detection is easily 
formulated as a problem in Hypothesis Testing

by regarding the normal operation of the system as the 
null hypothesis. 
The actual residual signal from the system is tested 
against this hypothesis at a certain level of significance. 
For example, if the system is described by a set of linear 
differential equations and a Kalman filter is used to 
generate the innovation process, the null hypothesis 
consists of testing the innovation process for normality, 
zero mean, whiteness and a given covariance 
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Isolation of the sensor fault

>If a fault is detected in the system, the present 
model for the system may no longer apply.
>In order to diagnose the fault it may be necessary 
to develop a new model for the system. 

Since a failure in the process may result in abnormal 
readings from the sensors, the developed algorithms may 
report a faulty sensor. 
As stated before the use of a higher layer in the 
diagnostic system must consider this situation. 

>These subsequent procedures are beyond the 
scope of this paper 
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Linear Dynamic Systems

>Application
Systems describable by a set of linear difference 
equations. 
Continuous-time linear systems can be treated in the 
same way.
Static systems can be regarded as special cases of the 
dynamic systems.
The approach can also be carried over to nonlinear 
dynamic systems 
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Linear Dynamic Systems

State Dynamics:

Measurements:

With time index 

Where

   is a     state vector (stochastic sequence non-white)
   is a     measurement vector
   is a     white plant noise
   is a     white measurement noise
   is a        state-transition matrix
   is a        noise distribution matrix

and

   is a       output matrix.

x (t+1)=A(t )x(t)+L(t )ξ(t )

z (t+1)=C (t+1) x(t+1)+θ(t+1)

t=0,1,2 , ...
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Linear Dynamic Systems

The more general case of correlated 
plant noise and correlated measurement 
noise can be reduced to the above case 
by augmenting the state vector 
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Linear Dynamic Systems - Model

>This consists of identifying matrices 

>and the order n of the system under normal 
operating conditions. 
>It is mostly done by using a combination of 
physical information and statistical data on the 
system.

The various methods for system identification and model 
validation are useful at this stage 

A(t ) , L(t) ,Ξ(t) ,C (t) ,Θ(t)
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LDS - Generation of the innovation 
sequence

 ( ) ( ) ( )ttztztr |1ˆ11 +−+=+
where ( )ttz |1ˆ +  denotes the unbiased minimum variance 

estimate of  ( )1+tz  given the sequence of past 

measurements up to ( )t , i.e. based on the set 

( ) ( ) ( ){ }tzzz ,...,2,1  
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LDS - Generation of the innovation 
sequence

>If it is assumed that all the system parameters and 
statistics are known exactly, the innovation sequence can 
be generated by a Kalman filter of the following form 
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LDS - Generation of the innovation 
sequence
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LDS - Generation of the innovation 
sequence

1) On-Line Calculations 
 
Initialization (t=0): 

( ) ( )[ ]00|0ˆ xx Ε=  
Predict Cycle: 

( ) ( ) ( )ttxtAttx |ˆ|1ˆ =+  
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LDS - Statistics of the innovation sequence
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LDS - Statistics of the innovation sequence
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LDS - Outlier Detection via limit value 
checking

>Given the statics of the Standardized Innovation 
Sequence, generated by the Kalman Filter, the 
upper and lower thresholds on the Shewart Chart 
can be set. 
>Therefore at the 0.27 per cent significance level, 
the measurement           is classified as outlier 
whenever

∣ηi (t+1)∣>3
zi (t+1)
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LDS - Sensor fault detection via hypothesis 
testing

>Different kinds of faults can develop in the 
system. Some of these are:

bias errors in instruments,
noisy instruments,
change in system parameters,
change in level of input noise,
change in the structure of the system, etc. 

>All these faults make the standardized innovation  
          , depart from their zero mean, unit variance 
and whiteness properties.

η (t+1)
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests

Several methods can be applied for detecting departures 
from normality.  In frequencist statistics statistical 
hypothesis testing, data are tested against the null 
hypothesis that it is normally distributed. 
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Anderson-Darling test

oThe A2 Empirical distribution function statistics may be used with 
small sample sizes 5 ≤ n ≤ 25 . Very large sample sizes may reject 
the assumption of normality with only slight imperfection. The 
computation differs based on what is known about the distribution.

Case 1: The mean and the variance are both known.
Case 2: Both the mean and the variance are unknown 
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Anderson-Darling test

oAlthough the parameters are known, the second case is considered 
because [Stephens,1974] claimes that the test becomes better when 
the parameters are computed from the data, even if they are known. 
oIn Case 2 the parameters can be estimated as

∑
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Anderson-Darling test

oThe values of the innovation sequence are then standardized 
according to the estimated parameters

oThe standardized Innovation Sequence          in case 1 or          in 
case 2 is then sorted from low to high.

 

( ) ( )( )rtrct r
ˆ1ˆ1ˆ 2

1

0
−+=+ −η

( )1+tη ( )1ˆ +tη
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Anderson-Darling test

 

A2=−N−
1
N ∑

i=1

N

[(2i−1)⋅ln (Φ(ηi))+((2N−i)+1)⋅ln (1−Φ(ηi))]

 is then calculated byA2

Φ(❑)Where             is the standard normal cumulative distribution function.
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Anderson-Darling test
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Anderson-Darling test

 

At the 5 per cent significance level, the null hypothesys is rejected whenever

A2
>2.492

A∗2
>0.787
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Cramér–von Mises criterion

oAs in the Anderson-Darling test the two cases of known and unknown 
parameters are considered. 

oThe test also follows the same procedure for the standardization and then 
performes the calculations on the sorted standardized Innovation Sequence.
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Cramér–von Mises criterion

 W2 is then calculated by
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Cramér–von Mises criterion
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A modified statistic is then calculated for Case 1

and Case 2
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Cramér–von Mises criterion

 

461.02
1 >∗W

126.02
2 >∗W

Then at the 5 per cent significance level, the null hypothesis is rejected whenever
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Tests of whiteness

oThe most important property of the innovation sequence is whiteness or 
independence at different time instants. Most of the tests of independence 
are based on the autocorrelation function  of a stationary process for lag
 k = 1, 2, … as follows:

o      is often estimated as
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Tests of whiteness

oUnder the null hypothesis,      , k=1, 2, … are asymptotically independent 
and normal with zero mean and covariance of I/N.

oThus they can be regarded as samples from the same normal distribution 
and must lie in the band                  more than 95 per cent of the times for 
the null hypothesis.

 

kĉ

n96.1±
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Tests of mean

oThese tests check whether the observed innovation sequence is zero mean 
or not.
oThe mean of the innovation sequence is estimated by

o Under the null hypothesis,  has a Gaussian distribution with zero mean 
and covariance 
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Tests of mean

oTherefore at the 5 per cent significance level, the null hypothesis is 
rejected whenever

 

NI96.1ˆ >η
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LDS - Sensor fault detection via hypothesis 
testing

>Normality Tests
Tests of covariance

oThe covariance of the innovation sequence is estimated as

oUnder the Under the null hypothesis,      has a WISHART Distribution. The 
trace of        has a Chi-Square distribution with (N-l)r degrees of freedom. 
Thus  can be tested for its null hypothesis covariance equal to an identity 
matrix.
oBoth the tests of mean and covariance assume that the innovation 
sequence is white. 

Therefore, it is important to test the innovation sequence for whiteness first, 
especially using tests which are invariant with respect to the mean and covariance of 
the distribution.
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Pratical Case Studie
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Pratical Case Studie
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Pratical Case Studie


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The dynamics of the system where described by :

The measurement model considered was:
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Pratical Case Studie

( )tξ )(tθ

( ) 16-8.6703E=Ξ t

( ) 8-2.729E=Θ t

For the intensities of Plant noise  and Measurement noise 

where considered the following values:
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Pratical Case Studie
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Pratical Case Studie

And the covariance matrices :

Σ p=1E-9[0.5202 0.0049
0.0049 0.0001]

Σ=1E-9[0.5104 0.0048
0.0048 0.0001]

S (t+1)=2.7810E-8



84 / 94IST :: Advanced Control Systems 2012/2013

Pratical Case Studie
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Pratical Case Studie
>Standardizing the innovation sequence and applying the 
defined threshold 225 outliers where detected witch is within 
the significance level since we have 0.22 per cent outliers 
(1E5 samples).
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Pratical Case Studie
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Pratical Case Studie
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Pratical Case Studie
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Pratical Case Studie

>Appling the normality tests the null hypotheses is 
rejected in all of them.

The best results where obtained for the Cramér–von 
Mises criterion with the parameters estimated from the 
data. NORMALITY TESTS RESULTS

NORMALITY

TEST

DATA

WITH

OUTLIERS

DATA

WITHOUT

OUTLIERS

NORMAL

DISTRIBUTION

5%
SIGNIF.

2A
3704.9 3738 0.4825 2.492

2∗A
112.99 19.106 0.5477 0.787

2
1

∗W
566.79 570.50 0.0976 0,461

2
2

∗W
16.575 2.7471 0.0438 0,126
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Pratical Case Studie
>Calculating the autocorrelation for the innovation sequence 
for the whiteness test, the null hypothesis is also rejected 

Since both the tests of mean and covariance assume that the innovation 
sequence is white. Therefore, the test sequence should be stopped. 
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Pratical Case Studie

>The higher layer in the diagnostic system must consider this situation. The 
subsequent procedures are beyond the scope of this paper
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Agenda

>Guidelines 
>Model Based FDI
>Sensor Validation
>General Method
>Linear Dynamic Systems Application
>Pratical Case Studie
>Final considerations 
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Final considerations

>A method for detecting faults in sensor networks 
based in the innovation sequence of a kalman filter 
was proposed.
>The proposed method was applied to a real world 
data measurement with successful results, since it 
could identify that the tested signal sensor data had 
a fault resulting from the interference of a 50Hz non 
linear noise.
>Subsequent work should consider multivariate 
statistical tests 
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Thank you for your attention!


