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Abstract

Most of the existing algorithms for multiple target
tracking are composed of fixed structure multiple
models. Observing the recent advances on the al-
gorithms for single target tracking, it should also be
expected that the multiple target tracking algorithms
evolve from the fixed structure to the variable struc-
ture multiple models. The main contribution of this
paper is the proposal of a new algorithm capable of
tracking multiple targets based on a variable structure
multiple model, the likely model-set, and on the joint
probabilistic data filter. It is discussed how the vari-
able structure approach can improve the tracking of
targets moving close to each other by accentuating
their possible different motions.

Keywords: Target Tracking, Multiple Model Estima-
tion, Data Association

1 Introduction

The problem of target tracking dates back as far as
the eighteenth century, with the first attempts to de-
termine the orbits of visible planets. More recent
work, in the early 1960s, was developed mainly for
military purposes, such as ballistic missile defense,
battlefield situational awareness and orbital vehicle
tracking. Nowadays, an ever-growing number of civil-
ian target tracking applications are emerging, ranging
from traditional applications such as air traffic con-
trol and building surveillance to emerging applications
such as supply chain management and wildlife track-
ing.

The ubiquitous Kalman Filter (KF) [?] is the most
widely used filtering technique and is the basis for
most of the more complex target tracking estimators.
The KF is an optimal single target tracker in the pres-
ence of initial state and measurements uncertainties,
if there is not target motion uncertainty nor measure-
ment origin uncertainty (terms defined in [?]).

The Multiple Model (MM) estimation methods are the
main stream approach in single target tracking (STT)
under target motion uncertainty and in the absence
of measurement origin uncertainty. Basically, these
methods resolve the target motion uncertainty by us-
ing multiple models at a time for a maneuvering tar-

get, being able to explain a larger number of target
motions at each time.

The Multiple Target Tracking (MTT) problem extends
the single target tracking scenario to a situation where
the number of targets may not be known and varies
with time, leading to the presence of measurement
origin uncertainty in addition to the target motion un-
certainty. Besides the need to estimate the targets
current state, the identities of the targets may need to
be known. The usual method to solve this problem
is to assign a single target tracker to each target and
use a data association technique to assign the correct
measurement to each target.

The remainder of this paper is outline as follows.
Some basic concepts necessary to understand the al-
gorithms described are presented in section ??. In
section ??, the MTT problem is described and di-
vided in two subproblems, commonly studied, the
STT problem and the Data Association (DA) prob-
lem, discussed in sections ?? and ??, respectively.
In sections ?? and ??, a common and the new MTT
algorithms, respectively, are described and their per-
formance compared in section ??. In section ??, the
conclusions are draw and the future research pur-
posed.

2 Basic Concepts

In this paper the terms target mode and target model
will be used to address two different realities, as intro-
duced [?]. This definition is important for nomencla-
ture purposes on this paper. The target mode refers
to the true target behavior or target motion. The target
model is a mathematical usually simplified descrip-
tion of the of the target motion with a certain accuracy
level. The tracking estimators are based on the target
models, which are the known mathematical descrip-
tion of the target motion, and not on the true target
modes.

The system mode at a given time k is represented by
sk while the event that model j is in effect at time k is
expressed by m(j)

k

4
= {sk = m(j)}. Here, it is consid-

ered that the models in target tracking algorithm are
a subset of the total mode set Sk, i. e., the models
have perfect accuracy but cannot explain all the tar-
get modes/motion behaviors.
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The sequence of modes, and consequently the se-
quence of turn rates, is modeled as a Markov chain,
which means that at each time step k its value may
either jump or stay unchanged with transition proba-
bility, for a homogeneous Markov chain, defined by

P{s(j)
k+1|s

(i)
k } = P{ωk+1 = ωj |ωk = ωi}

= πij,k = πij ∀i, j, k. (1)

The target model can be casted as a Markov Jump-
Linear System (MJLS), i. e., a linear system whose
parameters evolve with time according to a finite state
Markov chain. The discrete-time general representa-
tion of a hybrid system, where the discrete system
components have a first order {sk}-dependance, can
be described by the discrete target model

xk+1 = Fk(sk)xk +Gk(sk)wk(sk), wk ∼ N (0, Qk).
(2)

The sensory system has only discrete-time parame-
ters and does not depend on the mode state, thus it
will be simply defined by the equation

zk = Hkxk + vk, vk ∼ N (0, Rk). (3)

In the case of multiple target scenario the sensory
gives a vector containing multiple measurements.

3 Multiple Target Tracking

In the MTT problem the number of targets may not
be known and can also be variable variable with time.
Moreover, the measurements obtained are also not
known, since they can be originated from any of the
targets. False alarms or measurements originated
from clutter are an extra source of complexity in realis-
tic applications. Thus, the MTT problem is composed
of the following subproblems:

1. STT: addresses the problem of tracking a single
target. In the previous chapter tracking a ma-
neuvering target using multiple models has been
shown to be highly effective. As studied ear-
lier the STT estimates the positions of a target
based on noisy observations of the target and
with some prior regarding the target and sensor
characteristics;

2. DA: usually consists in ensuring that the correct
measurement is given to each STT tracker so
that the trajectories of each target can be accu-
rately estimated.

3.1 Single Target Tracking

In the problem of single target tracking there are two
main approaches: 1) Single Model (SM) based track-
ing and 2) MM based tracking. The first approach is

quite simplistic and it is only applicable if the target
mode is time invariant and known, which for most of
the true life applications is unfeasible due to motion
uncertainty. The second approach addresses this is-
sue by using more than one model to describe the
target motion.

In the SM based tracking approach there is one single
filter based on a unique model. The function of this el-
emental filter is to reduce the effect of the various dis-
turbances (system and measurement noises) on the
state estimate, based on the known target mode and
measurements data. The Kalman Filter [?] is one of
this algorithms. On the other hand the MM algorithms
use a set of models as possible candidates to de-
scribe the target at each time step k. This means that
at each time instant the MM algorithms run a bank of
elemental filters each based on a unique model in the
set, and then compute the overall estimate based on
all the estimates of each model.

Most existing MM algorithms have a fixed structure,
i. e., they have a fixed model set at all times. How-
ever these fixed structure MM (FSMM) algorithms
have little more room for improvement, since they
have been exhaustively studied and improved over
for the last decades. In an attempt to break away
from the fixed structure a new force has been applied
into the development of MM estimation with variable
structure (VSMM), i.e, with a variable set of models.
This approach intends to overcome the FSMM algo-
rithms especially for problems involving many struc-
tural modes.

3.1.1 The Fixed Structure Multiple Models: Inter-
acting Multiple Model algorithm

The Interacting MM (IMM) estimator was originally
proposed by Bloom in [?]. It is one of the most cost-
effective class of estimators for a single maneuvering
target. The IMM has been receiving special atten-
tion in the last few years, due to its capability of being
combined with other algorithms to resolve the multiple
target tracking problem.

This algorithm has two fundamental assumptions i)
the true mode sequence {sk} is Markov, i. e., the
mode evolves accordingly to the memoryless random
process described by P{s(j)

k+1|s
(i)
k } = πij,k ∀i, j; ii)

the true mode s at any time has a mode space S that is
time invariant and identical to the time-invariant finite
model set M used (i.e., Sk = M, ∀k).

To account the model history or model sequence, the
following variable is defined

mk,l = {m(i1,l), . . . ,m(ik,l)}, l = 1, . . . , (N)k (4)

where ik,l is the model index at time k from history l
and 1 ≤ ik,l ≤ N ∀k.
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As the size of model sequence increases exponential
with time ((N)k), a exponentially increasing number of
filters are needed to optimally estimate the state thus
making the optimal solution not viable. Suboptimal
approaches are commonly and successfully adopted
generally consisting in only keeping a limited number
of model sequences associated with the largest prob-
abilities, discard the rest, and normalize the mode
probability to ensure it sum is equal to unity.

The sequence of events consisting of the true tar-
get mode sequence, sk = {s1, . . . , sk}, and the
correspondent matching models sequence, m(ik) =
{m(i1), . . . ,m(ik)}, m(in) ∈ M, through time k, is de-
noted as

{sk = m(ik)} = mk
(ik) = mk

i1,...,ik

= {mk−1
(ik−1)

,mik
k } (5)

where mk−1
(ik−1)

is a parent sequence and mik
k is the

last element. For simplicity the notation mk
(ik) ∈ M

will be replaced by ik = 1, . . . , Nk.

Using Baye’s formula, the probability of model i is cor-
rect given measurement data up to time step k, is
given by the recursion

µ
(i)
k

4
= P{m(i)|zk} = P{m(i)|zk, zk−1}

=
p[zk|zk−1,m(i)]P{Mi|zk−1}

p[zk|zk−1]

=
p[zk|zk−1,m(i)]µ(i)

k−1∑
j

p[zk|zk−1,m(j)]µ(j)
k−1

(6)

where p[zk|zk−1,m(i)] is the likelihood function of
model m(i), which under Gaussian assumption is
given by

L
(i)
k

4
= p[zk|m(i), zk−1] assume= N (z̃(i)

k ; 0, S(i)
k ) (7)

where z̃(i)
k and S(i)

k are the residual and its covariance
from the elemental filter matched to model m(i).

Also of interest, is the definition of the mode transition
probability, which given the Markov property, can be
written as

P{mk−1
(i) ,m

(j)
k } = P{mi

k−1,m
j
k}
4
= πji (8)

The base state estimator under the same assump-
tions at time k is given by

x̂k|k = E[xk|zk] =
(N)k∑
ik=1

E[xk|mk
(ik), z

k]P{mk
(ik)|z

k}

=
(N)k∑
j=1

x̂
(ik)
k|k µ

k
(ik) (9)

which has an exponential increasing number of terms
reveling the impracticability of the optimal approach.

The IMM simplifies the optimal approach by keeping
only N filters, i. e., only N hypotheses, thus

x̂k|k =
N∑
j=1

E[xk|m(j)
k , zk]P{m(j)

k |z
k}

=
N∑
j=1

x̂
(j)
k|kµ

k
(j) (10)

where the posterior mode-sequence probability is de-
fined by

µk(ik) = P{mk
(ik)|z

k} (11)

and the posterior mode probability under the funda-
mental assumptions by

µ
(j)
k = P{m(j)

k |z
k}. (12)

Under the assumptions defined above, the base state
estimate is unbiased with covariance given by

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)′|zk]

≈
N∑
j=1

[E[(xk − x̂(j)
k|k)(xk − x̂(j)

k|k)′|zk]+

(x̂k|k − x̂
(j)
k|k)(x̂k|k − x̂

(j)
k|k)′]P (m(j)

k |z
k)

=
N∑
j=1

[P (j)
k|k + (x̂k|k − x̂

(j)
k|k)(x̂k|k − x̂

(j)
k|k)′]µ(j)

k . (13)

The simplification from equation (??) to equation (??)
and from the first to the second line in the above equa-
tion, reflects the approximation that the past zk−1 can
be explained entirely by a model-set of size N . Thus
at time step k−1 there are only N estimates x̂(i)

k−1|k−1

(∀mi ∈ M) and the associated covariances P (i)
k−1|k−1

which approximately summarize the past zk−1. This is
one of the key features of the IMM algorithm resulting
in a low computational complexity and still providing
excellent state estimates. The probability of a model
mi being correct is given by ??. Combining the model
probability with the conditioned-model estimates the
overall state estimate is given by

x̂k|k =
∑
i

x̂
(i)
k|kµ

(i)
k (14)

with an overall state covariance given by

Pk|k =
∑
i

P
(i)
k|k[(x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)′]µ(i)

k . (15)

The input of each filter matched to model i consists
in a mixture of the estimates x̂(i)

k−1|k−1 with the mixing

3



probabilities µj|ik−1, i. e.,

x̄
(i)
k|k = E[xk−1|zk−1,m

(i)
k ]

=
N∑
j=1

x̂
(j)
k−1|k−1P{m

(j)
k−1|z

k−1,m
(i)
k }

=
N∑
j=1

x̂
(j)
k−1|k−1µ

j|i
k−1 (16)

where the estimate x̂
(i)
k−1|k−1 is computed by the KF

based on model mi and mixing probabilities µj|ik−1 are
given by

µ
j|i
k−1 = P{m(j)

k−1|z
k−1,m

(i)
k } =

πjiµ
(j)
k−1∑

i πjiµ
(j)
k−1

. (17)

The complete description of IMM algorithm cycle is in
table ??. The final combination step (step 4) is not
part of the recursive algorithm but a final mixture for
output purposes.

3.1.2 The Variable Structure Multiple Models:
Likely Model-Set algorithm

The only fundamental assumption valid to the VSMM
algorithms is: i) the true mode s is Markov. Thus to
guarantee that no track loss occurs a perfect match
between the modes and models at all the time should
be assured by the model-set adaptation, i. e., {sk ∈
Mk} ∀k. The optimal VSMM estimator, as described
in [?] and [?], is also computationally unfeasible. At
each time k, there is a new possible mode set Sk
which is the union of the state dependent mode set at
time k, i. e., Sk = {S(1)

k , . . . ,S(n)
k } that can be variable

sized depending on the previous possible mode set
Sk−1 and the target’s maneuvering restrictions. Thus
the set of possible mode sequences through time k,
defined as Sk = {S1, . . . ,Sk}, grows exponentially.
Most of the applicable VSMM algorithms replace the
set of possible mode sequences at time k by one, and
hopefully the best, model-set sequence Mk.

Defining En as a set of the models in Mk−1 that are
allowed to switch to the new model m(n), i. e.,

En = {ml : ml ∈Mk−1, πln 6= 0}. (18)

The initial state of the filter based on mn can be ob-
tained by

x̄
(n)
k−1|k−1 = E[xk|m(n)

k ,Mk−1, zk−1]

=
∑
ml∈En

E[xk−1|m(l)
k−1,M

k−2, zk−1]

P{m(l)
k−1|m

(n)
k ,Mk−1}

=
∑
ml∈En

x̂
(l)
k−1|k−1µ

l|n
k−1 (19)

where the sequence at time k of sets of the total
model-set is Mk = {M1, . . . ,Mk} and

µ
l|n
k−1 = P{m(l)

k−1|m
(n)
k ,Mk−1} =

πjiµ
(j)
k−1∑

mj∈En πjiµ
(j)
k

.

(20)
The assignment of initial model probabilities for new
models follows the same logic

P{m(n)
k−1|M

k−1, zk−1} =∑
mj∈En

P{m(n)
k |m

(j)
k−1}P{m

(j)
k−1|M

k−1, zk−1}. (21)

Analyzing the equations (??), (??) and (??) it is clear
the similarity with the IMM algorithm. This leads to
the recursive variable structure version of the IMM
algorithm called Variable Structure Interacting Multi-
ple Model (VSIMM) presented in table ??. Note that
the model transition probability πij regards the total
model-set and not only the current active model-set.

Also included in the VSMM task of MM estimation
given a model-set is the fusion of two MM estimation.
This situation arises when after obtaining the MM es-
timation for a model-set M1 the model-set adaptation
algorithm decides to add to it a new set of models M2.
The efficient solution is to add the new set in the cur-
rent cycle avoiding repeating the already performed
computation, this is achieved by having two distinct
MM estimators and a fusion algorithm. Both MM es-
timators have the same model-set history Mk−1 but a
different active model sets M1 and M2 characterized
by

{x̂(i)
k|k, P

(i)
k|k, L

(i)
k , µ

(i)
k }mi∈Ml

l = {1, 2} (22)

which can be computed, for instance, by a cycle of
the VSIMM [Ml,Mk−1] algorithm (table ??).

The optimal MM estimator based on the model set
Mk = M1 ∪ M2 and the common model-set history
Mk−1 is given by

x̂k|k =
∑

mi∈Mk

x̂
(i)
k|kµ

(i)
k (23)

Pk|k =
∑

mi∈Mk

P
(i)
k|k[(x̂k|k − x̂

(i)
k|k)

(x̂k|k − x̂
(i)
k|k)′]µ(i)

k (24)

where

µ
(i)
k

4
= P{m(i)

k |M
k = M1 ∪M2,Mk−1, zk}

=
µ

(i)
k|k−1L

(i)
k∑

m(j)∈Mk
µ

(j)
k|k−1L

(j)
k

. (25)

If there are common models in M1 and M2, i. e., M1∩
M2 6= ∅,extra computation is needed to calculate the
value of the model probability µ(i)

k .
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Table 1: One Cycle of IMM Algorithm.

1. Model-conditioned reinitialization (∀mi ∈ M) :
Predicted model probability: µ(i)

k|k−1
=

P
j πjiµ

(j)
k−1

Mixing probabilities: µ
j|i
k−1 = πjiµ

(j)
k−1/µ

(i)
k|k−1

Mixing estimate: x̄
(i)
k−1|k−1

=
P
j x̂

(j)
k−1|k−1

µ
j|i
k−1

Mixing covariance: P̄
(i)
k−1|k−1

=
P
j [P

(j)
k−1|k−1

+ (x̄
(i)
k−1|k−1

− x̂(j)
k−1|k−1

)(x̄
(i)
k−1|k−1

− x̂(j)
k−1|k−1

)′]µ
j|i
k−1

2. Model-conditioned filtering (∀mi ∈ M) :
Predicted state: x̂

(i)
k|k−1

= F
(i)
k−1x̄

(i)
k−1|k−1

Predicted covariance: P
(i)
k|k−1

= F
(i)
k−1P̄

(i)
k−1|k−1

(F
(i)
k−1)′ +Q

(i)
k−1

Measurement residual: z̃
(i)
k = zk −H

(i)
k x̂

(i)
k|k−1

Residual covariance: S
(i)
k = H

(i)
k P

(i)
k|k−1

(H
(i)
k )′ +R

(i)
k

Filter gain: K
(i)
k = P

(i)
k|k−1

(H
(i)
k )′(S

(i)
k )−1

Update state: x̂
(i)
k|k = x̂

(i)
k|k−1

+K
(i)
k z̃

(i)
k

Update covariance: P
(i)
k|k = P

(i)
k|k−1

−K(i)
k S

(i)
k (K

(i)
k )′

3. Model probability update (∀mimi ∈ M) :
Model likelihood: L

(i)
k

assume
= N (z̃

(i)
k ; 0, S

(i)
k )

Model probability: µ
(i)
k =

µ
(i)
k|k−1L

(i)
kP

j µ
(j)
k|k−1L

(j)
k

4. Estimate fusion:
Overall estimate: x̂k|k =

P
i x̂

(i)
k|kµ

(i)
k

Overall covariance: Pk|k =
P
i[P

(i)
k|k + (x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)′]µ

(i)
k

The Likely Model-Set (LMS) [?] algorithm belongs to
the family of active model set of the VSMM algo-
rithms. Its basis is to use a subset of the total model
set as the active set for any given time. The total
model set is finite and can be determined offline, prior
to any measurements. The active or working model-
set is determined adaptively. On the LMS algorithm
this is achieved by implementing a simple rule of: 1)
discarding the unlikely models; 2) keeping the signifi-
cant models; and 3) activating the models adjacent to
the principal models.

The adjacency of models is determined by wether one
model is allowed to switch to another, if so, the first
model is adjacent to the second one. By an appro-
priated setting of parameters, the number of princi-
pal models at any given time can be small and the
number of unlikely models as large as needed. This
means that the number of active models at time step
k can be much smaller than the total model set lead-
ing to a computational complexity saving and possibly
to an improvement in estimation.

The LMS algorithm can be decomposed in

1. Model-set adaptation: i) Model classification:
Identify each model in Mk−1 to be unlikely (if its
probability is below the threshold t1) , principal (if
its probability exceeds the threshold t2) or signifi-
cant (if its probability is between t1 and t2); and ii)
Model-set adaptation: Obtain Mk by deleting all
the unlikely models and by activating all the mod-
els adjacent from any principal models in Mk−1.

2. MM estimation given a model-set i) Model-
set sequence conditioned estimator: Obtain at
least one MM estimative using VSIMM algorithm
based on the previous model-set Mk−1 and a
new model-set. The new and required model-
set has all the models in Mk−1 minus the unlikely
ones. The optional new model-set contains all
the models adjacent from the principal models if
they were not in the new and required model-set;
and ii) Fusion of two MM estimators (if existing):
Obtain the optimal estimation by fusing two MM
estimators using equations (??) and (??).

The LMS algorithm described in table ?? has AND
logic, i. e., a model is deleted only if its probability
is both below the threshold t1 and not among the K
largest. The AND logic guarantees performance and
relaxes computation.

3.2 Data Association

As described earlier, to tackle the MTT it is required
to solve first the DA problem. Usually the method
to solve MTT is to assign a STT to each target and
use a DA technique to assign the correct measure-
ment to each target. Numerous techniques have been
developed to resolve the measurement origin uncer-
tainty, such as the Nearest Neighbour Standard Fil-
ter [?], the Joint Probabilistic Data Association Filter
(JPDAF) [?], described below, and the Multiple Hy-
pothesis Tracking Filter [?].
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Table 2: One Cycle of VSIMM [Mk,Mk−1] Algorithm.

1. Model-conditioned (re)initialization (∀mi ∈ Mk):
Predicted model probability: µ(i)

k|k−1
=

P
mj∈Mk−1

πjiµ
(j)
k−1

Mixing weight: µ
j|i
k−1 = πjiµ

(j)
k−1/µ

(i)
k|k−1

Mixing estimate: x̄
(i)
k−1|k−1

=
P
mj∈Mk−1

x̂
(j)
k−1|k−1

µ
j|i
k−1

Mixing covariance: P̄
(i)
k−1|k−1

=
P
mj∈Mk−1

[P
(j)
k−1|k−1

+ (x̄
(i)
k−1|k−1

− x̂
(j)
k−1|k−1

)(x̄
(i)
k−1|k−1

−

x̂
(j)
k−1|k−1

)′]µ
j|i
k−1

2. Model-conditioned filtering (∀mi ∈ Mk) :
Predicted state: x̂

(i)
k|k−1

= F
(i)
k−1x̄

(i)
k−1|k−1

Predicted covariance: P
(i)
k|k−1

= F
(i)
k−1P̄

(i)
k−1|k−1

(F
(i)
k−1)′ +Q

(i)
k−1

Measurement residual: z̃
(i)
k = zk −H

(i)
k x̂

(i)
k|k−1

− v̄(i)
k

Residual covariance: S
(i)
k = H

(i)
k P

(i)
k|k−1

(H
(i)
k )′ +R

(i)
k

Filter gain: K
(i)
k = P

(i)
k|k−1

(H
(i)
k )′(S

(i)
k )−1

Update state: x̂
(i)
k|k = x

(i)
k|k−1

+K
(i)
k z̃

(i)
k

Update covariance: P
(i)
k|k = P

(i)
k|k−1

−K(i)
k S

(i)
k (K

(i)
k )′

3. Model probability update (∀mi ∈ Mk):
Model likelihood: L

(i)
k

assume
= N (z̃

(i)
k ; 0, S

(i)
k )

Model probability: µ
(i)
k =

µ
(i)
k|k−1L

(i)
kP

mj∈Mk
µ
(j)
k|k−1L

(j)
k

4. Estimate fusion:
Overall estimate: x̂k|k =

P
mi∈Mk x̂

(i)
k|kµ

(i)
k

Overall covariance: Pk|k =
P
mi∈Mk [P

(i)
k|k + (x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)′]µ

(i)
k

3.2.1 Joint Probabilistic Data Association Filter

Assume that there are targets r = {1, . . . , T}. At
each time step k there are total n measurements z(j)

k

(z(j)
k ∈ Zk = {z1

k, . . . , z
nk
k }), only nk ≤ n of this mea-

surements are considered valid.

A measurement z(j)
k is validated if and only if at least

one target r it lies inside the validation gate Gk(r).
The validation gate of a target r is taken to be the
same for all models in M and chosen as the largest of
them. The validation gate for each target r is given by

Gk(r) = {y(j)
k = z

(lj)
k : [z(lj)

k − ẑ(ir),(r)
k|k−1 ]′

(S(ir),(r)
k )−1[z(lj)

k − ẑ(ir),(r)
k|k−1 ] ≤ γ} (26)

where ir is the index of the model in the model set
corresponding to the largest residual covariance, i. e.,

ir := argmaxi∈M det(S(i)
k ). (27)

Also, γ is an appropriated threshold, S
(ir),(r)
k =

H
(ir)
k P

(ir),(r)
k|k−1 (H(ir)

k )′ + R
(ir)
k is the largest model-

conditioned residual covariance for the target r and
ẑ

(ir),(r)
k|k−1 = H

(ir)
k x̂

(ir),(r)
k|k−1 is the correspondent predicted

measurement.

Ideally the value chosen for γ should allow the IMM-
JPDAF to work as T isolated IMM algorithms when
the targets are far apart. The set of validated mea-
surements is denominated Yk = {y1

k, . . . , y
nk
k } with

nk ≤ n.

The key to the JPDAF algorithm is the definition of
the marginal events θjr and the evaluation of their the
conditional joint probabilities. A marginal association
event θjr is said to be effective at time k when a vali-
dated measurement y(j)

k is associated with a target r,
i.e., y(j)

k ∈ Gk(r). A joint association event Θ happens
when a set of marginal events holds true simultane-
ously, i. e.,

Θ =
nk⋂
j=1

θjrj (28)

where rj is the index of the target to which the mea-
surement y(j)

k is associated with.

The validation matrix is given by

Ω = [ωjr], j ∈ {1 . . . nk} and r ∈ {1 . . . T} (29)

where ωjr is a binary variable indicating whether mea-
surement j lies in the validation gate of target r in
event Θ.

Based on the validation matrix Ω, a association event
Θ may be represented by the matrix

Ω̂ = [ω̂jr], j ∈ {1 . . . nk} and r ∈ {1 . . . T} (30)

where

ω̂jr =

{
1 if θjr ⊂ Θ
0 otherwise

. (31)

A feasible association event is one where each mea-
surement has only one true source, i.e.,

∑N
r=0 ω̂jr =

6



Table 3: One Cycle of LMS Algorithm.

1. Increase the time counter k by 1. Run the VSIMM [Mk,Mk−1] cycle.
2. Classify all the models mi’s in Mk to be principal (i.e., µik > t2), unlikely (i.e., µik < t1) or significant (i.e., t1 ≥
µik ≤ t1). Let the set of unlikely models be Mu. If there is neither unlikely nor principal model, output x̂k|k, Pk|k
and {µ(i)

k }m(i)∈Mk
, let Mk+1 = Mk and go to step 1.

3. If there is no principal model, then let Ma = ∅ and got to step 4. Otherwise, identify the set Ma of all models
adjacent to any principal model. Find the set of new models Mn = Ma

T
M̄k (where M̄k is the complement of Mk

and the union set Mk := Mn
S

Mk.
Then

• Run VSIMM [Mn,Mk−1] cycle, where Mn is the set of new and only new models.

• Fusion: Calculate the estimates, error covariances, and mode probabilities for the union set Mk:

µ
(i)
k =

µ
(i)
k|k−1

L
(i)
kP

mj∈Mk µ
(j)
k|k−1

L
(j)
k

, ∀mi ∈ Mk

x̂k|k =
X

mi∈Mk

x̂
(i)
k|kµ

(i)
k

Pk|k =
X

mi∈Mk

P
(i)
k|k[(x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)′]µ

(i)
k

where the estimates {x̂(i)
k|k}, error covariances {P (i)

k|k}, likelihoods {L(i)
k }, and predicted probabilities {µ(j)

k|k−1
}

were obtained in the above VSIMM [Mk,Mk−1] and VSIMM [Mn,Mk−1] cycles.

4. Output x̂k|k, Pk|k and {µ(i)
k }m(i)∈Mk

.
5. If there is no unlikely model, go to step 1; otherwise, identify the discardable set Md = Mu

T
M̄a, that is, the set of

unlikely models that are not adjacent from any principal model.
6. Eliminate the models in Md from Mk that have the smallest probability such that Mk has at least K models, that is,

let the likely-model set be Ml = Mk −Mm, where Mm is the set of models in Md with smallest probabilities such
that Ml has at least K models.

7. Let Mk+1 = Ml and go to step 1.

1 ∀j (where r = 0 indicates the measurement is a
false alarm, originated from clutter for instances) and
where at most one measurement is originate from
each target δr :=

∑nk
j=0 ω̂jr ≤ 1 (∀r ∈ {1, . . . , T})

,also called target indicator. Other important indi-
cators using the permutation matrix information are
the binary measurement association indicator, given
by τj :=

∑N
r=1 ω̂jr, with j = {1, . . . , nk} which indi-

cates whether the validated measurement y(j)
k is as-

sociated with a target in event Θ; and the number of
false alarms (unassociated measurements) given by
φ =

∑nk
j=1[1− τj ].

The marginal association probability is the sum of the
probabilities of the joint association events given that
measurement j belongs to target r

βjr =
∑
Θ

P{Θ|zk}ω̂jr[Θ],

j = 1, . . . , nk r = 1, . . . , T (32)

where, assuming Gaussian distribution for the resid-
ual,

P{Θ|zk} =
1
c

φ!
V φ

nk∏
j=1

{N (y(j)
k ; ẑrj , Srj )}τj

T∏
r=1

(P rD)δr (1− P rD)1−δr (33)

where c is a normalization factor, V is the volume lim-
ited by the validation gate, rj is the index of the target
that measurement j is associated with and P rD is the
probability of detection of target r.

In table ??, the full description of the model-
conditioned JPDAF algorithm is presented. In order to
demonstrate the use of the JPDAF algorithm in solv-
ing the DA problem it is incorporated with the filtering
process of the IMM or of the VSIMM, which in turn are
based on the Kalman filtering process. Besides the
DA steps, the state covariance update step has also
novelty: its last term is a positive semidifinite matrix
which increases the update covariance and the un-
certainty of the state estimation due to incorrect mea-
surements.
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Table 4: Model-conditioned JPDAF Algorithm.

For all targets r, (r ∈ {1 . . . T}):
Model-conditioned joint probabilistic data association filtering (∀mi ∈ M and j = {1, . . . , nk}) :
Predicted state: x̂

(i),(r)
k|k−1

= F
(i)
k−1x̄

(i),(r)
k−1|k−1

Predicted covariance: P
(i),(r)
k|k−1

= F
(i)
k−1P̄

(i),(r)
k−1|k−1

(F
(i)
k−1)′ +Q

(i)
k−1

Measurement validation: Find y(j)
k ∈ Gk(r)

Association probability: βjr =
P

Θ P{Θ|zk}ω̂jr[Θ]

Measurement residual: z̃
(ji),(r)
k = y

(j)
k −H(i)

k x̂
(i),(r)
k|k−1

Weighted measurement residual: z̃(i),(r)
k =

Pnk
j=1 βjr z̃

(ji)
k (r)

Residual covariance: S
(i),(r)
k = H

(i)
k P

(i),(r)
k|k−1

(H
(i)
k )′ +R

(i)
k

Filter gain: K
(i),(r)
k = P

(i)
k|k−1

(r)(H
(i)
k )′(S

(i),(r)
k )−1

Update state: x
(i),(r)
k|k = x

(i),(r)
k|k−1

+K
(i),(r)
k z̃

(i),(r)
k

Update covariance: P
(i),(r)
k|k = P

(i),(r)
k|k−1

− (
Pnk
j=1 βjr)K

(i),(r)
k S

(i),(r)
k (K

(i),(r)
k )′ +

K
(i),(r)
k [

Pnk
j=1 βjr z̃

(ji),(r)
k (z̃

(ji),(r)
k )′ − z̃(i),(r)

k (z̃
(i),(r)
k )′](K

(i),(r)
k )′

3.3 Interacting Multiple Model Joint Probabilistic
Data Association Filter

The novelty regarding the classic IMM in table ?? ap-
pears in the filtering step (step 2) which is replaced
by the model-conditioned JPDAF Algorithm in table
??, where the marginal association probability is in-
troduced in the computation of the weighted measure-
ment residual and on each local estimative off the
state covariance. Thus to prevent redundancy the al-
gorithm table description will be omitted.

3.4 Likely Model-Set Joint Probabilistic Data As-
sociation Filter

This algorithm was elaborated as we believe that the
evolution of the MTT algorithms will necessary pass
by the VSMM. The improvement that these algorithms
can bring to the MTT algorithms performance are the
direct consequence of the improvement on they have
already brought to STT problem. Furthermore, by
having different model-sets associated with each tar-
get, the DA performance can be improved.

The new algorithm combines two previous described
approaches in this paper: the LMS algorithm and
JPDAF algorithm. Analogously, to the IMM-JPDAF,
this algorithm will be named LMS-JPDAF. The first
step in the description of this new algorithm is the
redefinition of the VSIMM algorithm, into a VSIMM-
JPDAF, i. e., an algorithm that combines the JPDAF
with the variable structure IMM algorithm. This algo-
rithm appears as an empirical variable structure adap-
tation of the IMM-JPDAF and is described in table ??.

In relation to the DA problem, in this algorithm it is
solved regarding only the active model-set at each
time instant, reducing the computational burden and
making it easier to determine which measurement
is associated with each target. For each cycle of

the LMS-JPDAF, the DA association problem should
only be solved once, thus there is the need to de-
fine an adapted VSIMM-JPDAF, which will be named
VSIMM-JPDAF*. The VSIMM-JPDAF* will be run
whenever there are newly activated models and uses
the association probability β previously calculated.
This algorithm is also described in table ??.

The LMS-JPDAF algorithm has exactly the same
structure as the LMS algorithm described in table
??, only the steps regarding the VSIMM (or VSIMM
[Mn,Mk−1]) algorithm are replace by the VSIMM-
JPDAF [Mk,Mk−1] (or VSIMM-JPDAF* [Mn,Mk−1])
cycle.

4 Performance Evaluation

The target is considered to be described by a con-
stant turn model [?] or a constant velocity model [?]
depending on its current angular velocity ω. The sen-
sor is a RADAR and is considered to be placed at the
origin of the Cartesian axis, i. e., is placed in the co-
ordinates (x, y) = (0, 0), and the sensor coordinate
system is polar providing in each measurement the
range r and the bearing θ of the target. Following [?],
it is possible to linearize the sensor measurements in
Cartesian coordinates regarding that rσ2

θ

σr
< 0.4 and

σθ < 0.4 rad [?], where σθ and σr are the angle and
range uncertainties, respectively.

The mean value of a total of 30 simulations was used
to compute the results presented below. The example
has a fixed number of targets (two) and no clutter. The
two targets cross each others paths once, and for that
single time a target-measurement association switch
occurs. Target 1 has a fixed angular velocity whereas
target 2 has a variable angular velocity.

The mean value of β for each of the algorithms is
shown in figure ??. From this example, its possi-
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Table 5: One Cycle of VSIMM-JPDAF and VSIMM-JPDAF* Algorithm.

For all targets r, (r ∈ {1 . . . T}):

1. Model-conditioned reinitialization (∀mi ∈ Mk) :
Predicted model probability: µ

(i),(r)
k|k−1

=
P
mj∈Mk−1

π
(r)
ji µ

(j),(r)
k−1

Mixing probabilities: µ
j|i,(r)
k−1 = π

(r)
ji µ

(j),(r)
k−1 /µ

(i),(r)
k|k−1

Mixing estimate: x̄
(i),(r)
k−1|k−1

=
P
j x̂

(j),(r)
k−1|k−1

µ
j|i,(r)
k−1

Mixing covariance: P̄
(i),(r)
k−1|k−1

= mj ∈ Mk−1[P
(j),(r)
k−1|k−1

+ (x̄
(i),(r)
k−1|k−1

− x̂
(j),(r)
k−1|k−1

)(x̄
(i),(r)
k−1|k−1

−

x̂
(j),(r)
k−1|k−1

)′]µ
j|i,(r)
k−1

2. Model-conditioned joint probabilistic data association filtering (∀mi ∈ Mk and j = {1, . . . , nk}) :
Predicted state: x̂

(i),(r)
k|k−1

= F
(i)
k−1x̄

(i),(r)
k−1|k−1

Predicted covariance: P
(i),(r)
k|k−1

= F
(i)
k−1P̄

(i),(r)
k−1|k−1

(F
(i)
k−1)′ +Q

(i)
k−1

* Measurement validation: Find y(j)
k ∈ Gk(r)

* Association probability: βjr =
P

Θ P{Θ|zk}wjr[Θ]

Measurement residual: z̃
(ji),(r)
k = y

(j)
k −H(i)

k x̂
(i),(r)
k|k−1

Weighted measurement residual: z̃(i),(r)
k =

Pnk
j=1 βjr z̃

(ji)
k (r)

Residual covariance: S
(i),(r)
k = H

(i)
k P

(i),(r)
k|k−1

(H
(i)
k )′ +R

(i)
k

Filter gain: K
(i),(r)
k = P

(i)
k|k−1

(r)(H
(i)
k )′(S

(i),(r)
k )−1

Update state: x
(i),(r)
k|k = x

(i),(r)
k|k−1

+K
(i),(r)
k z̃

(i),(r)
k

Update covariance: P
(i),(r)
k|k = P

(i),(r)
k|k−1

− (
Pnk
j=1 βjr)K

(i),(r)
k S

(i),(r)
k (K

(i),(r)
k )′ +

K
(i),(r)
k [

Pnk
j=1 βjr z̃

(ji),(r)
k (z̃

(ji),(r)
k )′ − z̃(i),(r)

k (z̃
(i),(r)
k )′](K

(i),(r)
k )′

3. Model probability update (∀mi ∈ Mk) :
Model likelihood: L

(i),(r)
k

assume
= N (z̃

(i),(r)
k ; 0, S

(i),(r)
k )

Model probability: µ
(i),(r)
k =

µ
(i),(r)
k|k−1L

(i),(r)
kP

j µ
(j),(r)
k|k−1 L

(j),(r)
k

4. Estimate fusion:
Overall estimate: x̂

(r)
k|k =

P
mi∈Mk x̂

(i),(r)
k|k µ

(i),(r)
k

Overall covariance: P
(r)
k|k =

P
mi∈Mk [P

(i),(r)
k|k + (x̂

(r)
k|k − x̂

(i),(r)
k|k )(x̂

(r)
k|k − x̂

(i),(r)
k|k )′]µ

(i),(r)
k

* These two steps are omitted on the VSIMM-JPDAF* algorithm.

ble to observe that the LMS-JPDAF provides a softer,
though longer, measurement and target association
switch. This provides a softer error, but also increases
this algorithm’s inertia to change.

The mean of the root squared error for the position
and velocity of each target for the 30 simulations is
shown in figure ??. Although the overall error is larger
for the LMS-JPDAF, specially at the beginning of the
simulation, the peak during the targets crossover and
data association switch is much smaller, since this is
the highest value of the error, the LMS-JPDAF can
be useful for applications where the error maximum
needs to be smaller.

5 Conclusions and Future Work

The LMS-JPDAF algorithm revealed to be a success-
ful MTT algorithm, but the assumptions made, re-
garding the false alarms, presence of clutter and the
number of detected targets, reduced drastically the
measurement origin uncertainty. Nevertheless, the
results were quite satisfactory. For the example ana-
lyzed the LMS-JPDAF algorithm surpassed the IMM-

JPDAF performance under measurement origin un-
certainty, although provided a worse STT when the
targets were far apart. The LMS-JPDAF algorithm
needs further study to make it a competitor of the
available MTT algorithms. It would be interesting to
analyze possible mathematical designs of the model
probability thresholds t1 and t2, since the algorithm
is quite sensitive to them, and study whether they
should be static or adaptive.
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