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Pose Observers for Unmanned Air Vehicles
S. Brás

Abstract—This paper addresses the design and discrete time
implementation of nonlinear observers for the estimation of
position and attitude in 3D with application to Unmanned Air
Vehicles. A continuous time nonlinear observer on SE(3) is
derived that uses inertial measurements and ranges between a set
of beacons mounted in a fixed location in an inertial frame and
a receiver array installed on the vehicle frame. The estimation
errors are shown to converge exponentially fast to the desired
equilibrium points in the presence of bias in the rate gyros. An
observer discrete time implementation is proposed that resorts to
recent geometric numeric integration results suitable for solving
ODEs on SO(3). Simulation results for oscillatory trajectories
of the vehicle are presented to assess the performance of the
continuous time observer versus that obtained with the discrete
time implementation.

I. INTRODUCTION

Attitude and position estimation is a classical problem
often subject to new advances and enriching insights, despite
its wide historical background. Among a large diversity of
estimation techniques, nonlinear observers stand out as a
promising approach often endowed with stability results.

Research on the problem of deriving a stabilizing law for
systems evolving on manifolds, namely SO(3) and SE(3), can
be found in [5], [7], [12], [15], [22], that provide important
guidelines for observer design, due to the realized discussion
on the topological characteristics and limitations for achieving
global stabilization on the SO(3) manifold.

In many applications it is desired to design observers based
only on the rigid body kinematics. These observers have the
advantage of that kinematics is an exact description of the
physical quantities involved, requiring however, a larger num-
ber of sensors [25], [26], [27], [1]. In [14], an asymptotically
stable attitude observer on SO(3) is derived using attitude
and biased angular velocity readings. The nonlinear attitude
observer proposed in [24], is formulated using the quaternion
representation, to obtain global exponentially convergence to
the origin given attitude measurements and biased inertial
readings. In these references the observer is assuming that
a perfect attitude information, rotation matrix or quaternion,
is available, obtained by pre-processing information such as
image based features, landmark measurements, and vector
readings. However, this is not considered in the observer
design and it can compromise its stability.

The development of numeric integration methods that pre-
serve geometric properties, has witnessed in last fifteen years
a remarkable progress, and particular emphasis was placed by
the scientific community on integration methods for integration
of differential equations evolving on a Lie group. These
methods were originally proposed by Crouch and Grossman
in [6], and the general order conditions computed in [20]. In
[17] the author construct generalized Runge-Kutta methods for

integration of differential equations evolving on Lie groups,
where the computations are performed in the Lie algebra,
which is a linear space. More recently, in [4, 19], authors
derive the order conditions for commutator free Lie group
methods, to overcome some of the problems associated with
the computation of commutators.

In this work, an attitude and position nonlinear observer is
proposed. The observer integrates measurements from inertial
sensors, accelerometers and rate gyros, with ranges provided
by an acoustic positioning system. The latter is composed
by an ultrasonic beacon array assumed fixed in the inertial
frame and an acoustic receiver array installed on the vehicle.
The range data supplied by the acoustic positioning system
is processed resorting to a standard spherical interpolation
technique that provides the positions of the beacons in vehicle
frame, and the position of the receivers in the inertial frame.
By exploiting sensor information, a stabilizing feedback law
is proposed and the exponential convergence to the origin
of the estimation errors is shown. Using recent results from
numerical analysis, an observer discrete time implementation
is proposed, and its performance illustrated in simulation.

The paper is structured as follows. In Section II, the
attitude and position estimation problem is introduced. The
sensors considered to equip the vehicle are described and some
geometric relation are introduced. In section III the attitude
and position observers are proposed, and their properties
are highlighted. In Section IV some recent algorithms for
numeric integration in SO(3) are described. A low complexity
discrete time implementation of the observer is presented
in Section V, and in Section VI simulations illustrate and
compare the performance of the observer and its discrete
time approximation. Concluding remarks and future work are
presented in Section VII.

NOMENCLATURE

The used notation is rather standard. The set of real
n × m matrices is denoted as M(n,m) and M(n) := M(n, n).
The set of skew-symmetric, orthogonal, and special or-
thonormal matrices are respectively denoted as K(n) :={
K ∈ M(n) : K = −KT

}
, O(n) :=

{
U ∈ M(n) : UT U = I

}
,

SO(n) := {R ∈ O(n) : det R = 1}. The n-dimensional sphere
and ball are described by S(n) :=

{
x ∈ Rn+1 : xT x = 1

}
and

B(n) :=
{
x ∈ Rn+1 : xT x ≤ 1

}
, respectively. The time depen-

dence of variables will be omitted in general, but explicitly
denoted where consider necessary.

II. PROBLEM FORMULATION

This section, introduces the sensor suite used in the at-
titude and position observer. The rigid body kinematics are
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Fig. 1. Frames and navigation system configuration.

described by

˙̄R = R̄(ω̄)∧,
˙̄p = v̄ − (ω̄)∧p̄,

˙̄v = ā + R̄T Lḡ − (ω̄)∧v̄,

where R̄ is the shorthand notation for the rotation matrix
from body frame {B} to the local inertial frame {L}, ω̄ is the
rigid body angular velocity expressed in {B}, p̄, and v̄ are
the position and velocity of the rigid body with respect to
local {L} expressed in {B}, respectively, Lḡ is the gravitational
acceleration expressed in {L}, ā is the specific force applied to
the vehicle expressed in {B}, and (x)∧ is the skew symmetric
matrix defined by the vector x ∈ R3 such that (x)∧y = x × y,
y ∈ R3.

The rigid body angular velocity is measured by a rate gyro
sensor triad, corrupted by a constant bias term

ωsensor = ω̄ + b̄ω,

and a triaxial accelerometer measures the specific force, which
is the difference between the vehicle acceleration Ba and the
gravitational acceleration Bḡ, both in expressed in body frame,

ā := asensor = Ba − Bḡ.

The acoustic positioning system gives the range from each of
the beacons to the acoustic receivers installed on the vehicle.
Using a spherical interpolation method [23], is possible to
obtain the position of the receivers in local frame {L}, or the
position of the beacons in the body frame {B}, b̄i. In this work
the latter is adopted, and the position of one of the receivers
that is set as the origin of {B}, represented as Lp̄ in coordinate
frame {L}. These vectors satisfy the relationship,

b̄i = R̄T Lx̄i − R̄T Lp̄, (1)

where i = 1, ..., n, n is the number of beacons, and Lx̄i is the
position of the i-th beacon in {L}. The relationship (1) can
be expressed in matrix from as B̄ = R̄T X − R̄T Lp̄1T

n , where
B̄ :=

[
b̄1 ... b̄n

]
, X :=

[
Lx̄1 ...

Lx̄n

]
, B̄,X ∈ M(3, n) and

1n := [1 ... 1]T .

The local frame is defined as an inertial frame installed in
the centroid of beacons. Therefore, the vectors Lx̄i, i = 1, ..., n,
illustrated in Fig. 1, verify

n∑

i=1

Lx̄i = 0.

The objective of the present work is to exploit the informa-
tion provided by the sensor suite, by deriving a position and
attitude observer that combines the inertial measurements with
ranges between a beacon array and a receiver array.

III. OBSERVER SYNTHESIS

Fig. 2. Cascaded observer, composed by the attitude and the position
observers.

The proposed observer is designed to match the rigid body
dynamics and, as illustrated in Fig. 2, it results in a cascaded
composition, where the attitude and angular velocity estimates,
from the attitude observer, are fed into the position observer.
In this section the attitude and position observers are presented
and their properties derived. It is shown that the attitude and
angular velocity bias errors converge exponentially fast to the
origin and that the position observer is globally exponentially
stable.

A. Attitude Observer

The attitude observer considered in this section estimates the
rotation matrix by exploiting angular velocity measurements
available from rate gyros, and angular position data obtained
from the receiver array installed in the vehicle. Based on
previews work see [25], [26], and references therein, the
proposed observer estimates the orientation of the rigid body
by computing the kinematics

˙̂R = R̂(ω̂)∧, (2)

where R̂ is the estimated attitude, and ω̂ is the feedback
term that compensates for the estimation errors. Whereas the
angular velocity measurements, ωsensor are used directly in
the observer term ω̂, the beacons positions in frame {B}, b̄i,
are introduced by means of a convenient linear coordinate
transformation.

The attitude error is defined as R̃ := R̂R̄T and its dynamics
are given by ˙̃R = R̃(R̄(ω̂ − ω̄))∧. The error matrix R̃ can be
parameterized in Euler angle-axis by a rotation vector λ ∈ S(2)
and by a rotation angle θ ∈ [0 π], yielding the formulation [18]
R̃ = rot(θ, λ) :=cos(θ)I + sin(θ)(λ)∧ + (1 − cos(θ))λλT .
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Consider the transformation of the positions of the beacons
defined as

Bū j :=
n−1∑

i=1

ai j

(
b̄i+1 − b̄i

)
, j = 1, ..., n − 1.

This linear combination can be expressed in matrix form as
BŪ := B̄DXAX , where DX :=

[
01×n−1
In−1

]
−

[
In−1

01×n−1

]
and AX := [ai j].

The representation of the transformation in frame {L}, is given
by UX := R̄ BŪX =

[
Lū1 ...

Lūn−1

]
, and the representation

using the estimate transformation is defined as BÛ := R̂ UX =[
Bû1 ...

Bûn−1

]
.

Proposition 1. If H := XDX has full rank, there is a non
singular matrix AX ∈ M(n), such as, UXUT

X = I.

Proof: Take the SVD decomposition of H = USVT where
U ∈ O(3), V ∈ O(3), S =

[
diag(s1, s2, s3) 03×(n−3)

] ∈ M(3, n),
and s1 > s2 > s3 > 0 are the singular values of H. Any
AX given by AX = VA blkdiag(s−1

1 , s−1
2 , s−1

3 ,B)VT
A , where B ∈

M(n − 3) is non singular and VA ∈ O(n), produces UXUT
X =

HAXAT
XH = UVT

AVAUT = I.
1) Unbiased Angular Velocity Measurement: Let b̄ω = 0,

and consider the candidate Lyapunov function

VR =
1
2

n−1∑

i=1

||Bûi − Būi||2 = tr
[
(I − R̃)UXUT

X

]
=

1
4
||I − R̃||2λT Pλ = (1 − cos(θ))λT Pλ,

(3)

where P := tr(UXUT
X)I − UXUT

X ∈ M(3). Choosing AX , such
that, UXUT

X = I, the candidate Lyapunov function (3) takes the
form

VR = tr
[
(I − R̃)

]
=

1
2
||I − R̃||2 = 2(1 − cos(θ)). (4)

The Lyapunov function VR measures the error between
transformed and the actual position of the beacons, that is
given by

∣∣∣∣∣∣Bûi − Būi

∣∣∣∣∣∣ , i = 1, ..., n − 1. The estimated position
of the beacons under which zero observation error is obtained
(VR = 0) corresponds to the correct attitude estimate, R̃ = I,
and is stated in the following lemma. For the proof of
Lemma 1, the reader is referred to [26].

Assumption 1. The positions of the beacons are not colinear,
i.e. rank(X) ≥ 2.

Lemma 1. The Lyapunov function VR has a unique global
minimum (at R̃ = I) if and only if Assumption 1 is verified.

If rank(X) = 2 the conditions of Proposition 1 are not
satisfied by the Assumption 1. However, in Appendix A it is
shown how one can still obtain a full rank matrix by generating
the direction orthogonal to the columns of X.

The derivative of the candidate Lyapunov function (4) is

V̇R = sT
ω (ω̂ − ω̄) , (5)

where sω := R̄T (R̃−R̃T )∨ = 2 sin(θ)R̄Tλ and (.)∨ is the unskew
operator, such that,

(
(a)∧

)∨
= a, a ∈ R3.

In order to VR be a Lyapunov function, a convenient attitude
feedback law is defined

ω̂ = ω̄ − Kωsω,Kω ∈ R+. (6)

The feedback law (6), yields the autonomous attitude error
system

˙̃R = KωR̃(R̃T − R̃). (7)

The derivative of Lyapunov function (5) together with the
feedback law (6) results in

V̇R = −Kω||sω||2 = −Kω4 sin2(θ), (8)

which is negative semi-definite, so one can infer that the
Lyapunov function decreases along the system trajectories.
The Lyapunov function invariant set is given by

IR = {R̃ ∈ SO(3) : R̃ = I ∨ R̃ = rot(π, λ), λ ∈ S(2)},
so for any initial condition with θ = π, the system will not
converge to the desired state θ = 0. However θ = π is a zero
measure set and, as shown in next theorem, for every other
initial conditions the attitude error converges exponentially fast
to the origin. The proof of this theorem is presented in [26]
and references therein.

Theorem 1. The close loop system (7) has a exponentially
stable point at R̃ = I, for any initial condition R̃(t0) in the
attraction region RA = {R̃ ∈ SO(3) : R̃ = rot(θ, λ), |θ| < π, λ ∈
S(2)}, and the trajectory satisfy

||R̃(t) − I|| ≤ kR||R̃(t0) − I||e−γR(t−t0), (9)

where kR = 1 and γR = Kω(1 + cos(θ(t0)))

2) Biased Angular Velocity Measurement: The existence of
bias in the measures of the rate gyros implies that

ωsensor = ω̄ + b̄ω,

where bias is consider to be constant, i.e. ˙̄bω = 0.
The Lyapunov function is augmented to consider the exis-

tence of bias

Vb = 2(1 − cos(θ)) +
1

2Kbω
||b̃ω||2,

where Kbω ∈ R+, b̃ω := b̂ω − b̄ω, and b̂ω is the estimated bias
in angular velocity measurements. Its derivative is given by

V̇b = sT
ω(ω̂ − ω̄) +

1
Kbω

˙̃bT
ωb̃ω. (10)

The augmented attitude feedback law is

ω̂ = ωsensor − b̂ω − Kωsω = ω̄ − b̃ω − Kωsω, (11)

where Kω ∈ R+. Applying the feedback law (11) to the
Lyapunov function (10) and defining

˙̃bω = ˙̂bω := Kbωsω, (12)

the Lyapunov function derivative is given by V̇b = −Kω||sω||2.
Considering the feedback law (11) and the differential

equation (12), the closed loop attitude error dynamics results
in

˙̃R = −KωR̃(R̃ − R̃T ) − R̃(R̄b̃ω)∧

˙̃bω = KbωR̄(R̃ − R̃T )∨
(13)

Global asymptotic stability of the origin is precluded by
topological limitations associated with the estimation error
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R̃ = rot(π, λ) [2]. In the next lemma the boundedness of
estimation errors is shown and used to provide sufficient
conditions that exclude convergence to the equilibrium points
satisfying R̃ = rot(π, λ).

Lemma 2. The estimation errors x̃b = (R̃, b̃ω) are bounded to
any initial condition that verifies

1
Kbω
||b̃ω(t0)||2

4(1 + cos(θ(t0)))
< 1 (14)

Proof: Let Ωρ = {x̃b ∈ Db : Vb ≤ ρ}. As the Lyapunov
function (4) is a weighted distance from the origin, ∃γ ||x̃b||2 ≤
γVb and Ωρ is a compact set. V̇b ≤ 0 implies that any trajectory
that starts in Ωρ remains in Ωρ. So, ∀t≥t0 ||x̃b(t)||2 ≤ γVb(x̃b(t0))
and the state is bounded.

The gain condition (14) is equivalent to Vb(x̃b(t0)) < 4. The
invariance of Ωρ implies that Vb(x̃b(t)) ≤ Vb(x̃b(t0)), and so
2(1 + cos(θ)) ≤ Vb(x̃b(t0)) < 4 and consequently ∃θmax : θ(t) ≤
θ(t0) < θmax∀t≥t0 .

Exploiting the results derived for LTV systems in [13],
Theorem 2 establishes the exponential convergence of the
system (13) states to the desired equilibrium point.

Theorem 2. Assuming ω̄ bounded and to any initial condition
that satisfies the gain condition (14), the attitude error and
the bias estimation error converge exponentially fast to the
equilibrium point (R̃, b̃ω) = (I, 0).

Proof: Using the analysis tool for LVT parameterized
systems [13], the system (13) in the form ẋb = f (t, xb)xb can
be rewritten as ẋ? = A(λ, t)x?. The parameter λ is related with
the initial conditions of the system (13). The solutions of the
systems ẋb = f (t, xb)xb and ẋ? = A(λ, t)x? are identic if the
initial state is the same, i.e. x?(t0) = xb(t0).

It will be used a coordinate transformation like the one pro-
posed in [24]. Let the attitude error be given by q̃q = sin

(
θ
2

)
λ,

so the close loop dynamic is

˙̃qq =
1
2

Q(q̃)(−R̄b̃ω − 4Kωq̃qq̃s)

˙̃bω = 4KbωR̄T QT (q̃)q̃q,

(15)

where Q(q̃) := q̃sI + (q̃q)∧, q̃ = [q̃T
q q̃s]T , q̃s = cos

(
θ
2

)
, and

˙̃qs = −2Kωq̃T
q q̃qq̃s − 1

2 q̃T
q b̃ω.

Let xq := (q̃q, b̃ω), xq ∈ Dq and Dq := B(3)×R3, and define
the system (15) in domain Dq = {xq ∈ Dq : Vb < 4}. The
set Dq corresponds to the interior of the Lyapunov surface, so
is well defined, and is positively invariant. The condition (14)
implies that the initial state is contained in Dq.

Let x? := (q̃q?, b̃ω?) and Dq := R3 × R3, and define the
linear time-varying system

ẋ? =

[A(t, λ) BT (t, λ)
−C(t, λ) 03×3

]
x?, (16)

where λ ∈ R+
0 ×Dq, and the submatrices are described by

A(t, λ) =
[−2Kωq̃s(t, λ)Q(q̃(t, λ))

]
,

B(t, λ) =

[
−1

2
R̄T QT (q̃(t, λ))

]
,

C(t, λ) =
[
−4R̄T QT (q̃(t, λ))

]
,

and q̃(t, λ) represents the solution of (15) with initial condition
λ = (t0, q̃(t0), b̃ω(t0)).

The matrices A(t, λ), B(t, λ), and C(t, λ), are bounded and
the system is well defined [11, pag. 626].

If the parameterized system is λ-UGES, then the system
(15) is uniformly exponentially stable in Dq [13, pag.14-15].
The parameterized system verifies the assumptions of [13]:

1) As ω̄ is bounded, the elements of B(t, λ), and

∂B(t, λ)
∂t

=

[
−1

2
( ˙̄RT QT (q̃(t, λ)) + R̄T QT ( ˙̃q(t, λ)))

]
,

are bounded, so there is bM , such as,

max
λ∈R+

0×Dq,t≥0

{
||B(t, λ)|| ,

∣∣∣∣∣
∣∣∣∣∣
∂B(t, λ)
∂t

∣∣∣∣∣
∣∣∣∣∣
}
≤ bM ,

where ||.|| is the induced Euclidean norm of matrices.
2) The matrices

P(t, λ) = 8KbωI, Q(t, λ) = 32Kbω q̃2
s(t, λ)KωI,

are positive definite, and satisfy

P(t, λ)BT (t, λ) = CT (t, λ)

−Q(t, λ) = AT (t, λ)P(t, λ) + P(t, λ)A(t, λ) + Ṗ(t, λ)

and also satisfy the symmetry conditions, and the exis-
tence of qm, qM , pm and pM , such as,

qmI ≤ Q(t, λ) ≤ qMI,
pmI ≤ P(t, λ) ≤ pMI,

with qm = 32KωKbω cos2
(
θmax

2

)
, qM = 32KωKbω , pm =

pM = 8Kbω .
The system (16) is λ-UGES if and only if B(t, λ) is λ-

uniformly persistently exciting [13]. In order to guarantee that,
the sufficient condition B(τ, λ)BT (τ, λ) ≥ αBI is shown for
αB > 0 independently of τ and λ.

B(τ, λ)BT (τ, λ) =

(
−1

2
R̄T QT (q̃)

) (
−1

2
R̄T QT (q̃)

)T

=
1
4
R̄T QT (q̃)Q(q̃)R̄
↓

1
4

yT R̄T QT (q̃)Q(q̃)R̄y =
1
4

(||y||2 − (yT R̄q̃q)2)

≥ ||y||
2

4
(1 − ||q̃q||2)

≥ ||y||
2

4

(
1 − sin2

(
1
2
θmax

))

≥ ||y||
2

4
cos2

(
1
2
θmax

)

= ||y||2cθ,

where cθ := 1
4 cos2

(
1
2θmax

)
. Then B(τ, λ)BT (τ, λ) ≥ cθI and

persistency of excitation condition is satisfied. Consequently,
the parameterized system (16) is λ-UGES, and the nonlinear
system (15) is exponentially stable in the domain Dq.
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B. Position Observer

This section derives the position observer based on the
IMU acceleration measurements, position readings obtained
from range data, and on the attitude observer estimates. The
dynamics of the position and velocity estimates are described
by

˙̂p = v̂ − (ω∗)∧p̂ + sp,

˙̂v = ā + R̂T Lḡ − (ω∗)∧v̂ + sv,

where sp and sv are the feedback terms that compensate for
the estimation errors, and ω∗ is an estimate of the angular
velocity obtained from the attitude observer.

Defining the position and velocity errors as p̃ := p̂ − p̄ and
ṽ := v̂ − v̄, respectively, their dynamics are given by

˙̃p = ṽ − (ω∗)∧p̃ − (ω̃)∧p̄ + sp, (17)

˙̃v =
(
R̂ − R̄

)T Lḡ − (ω∗)∧ṽ − (ω̃)∧v̄ + sv, (18)

where ω̃ := ω∗ − ω̄.
1) Unbiased Angular Velocity Measurement: Assuming

that unbiased angular velocity, ω̄ is available and ω∗ := ω̄.
The feedback laws are obtain by setting sp and sv as

sp = −Kp

(
p̂ − R̂T Lp̄

)
(19)

sv = −Kv

(
p̂ − R̂T Lp̄

)
, (20)

where Lp̄ is the position of the origin of {B}, relatively to {L},
expressed in {L}.

The dynamics of the position and velocity errors are ob-
tained by replacing (19) and (20), into the errors derivatives
(17) and (18), respectively, and can be written as

˙̃p = ṽ − (ω̄)∧p̃ − Kp

(
p̂ − R̂T Lp̄

)
(21)

˙̃v =
(
R̂ − R̄

)T Lḡ − (ω̄)∧ṽ − Kv

(
p̂ − R̂T Lp̄

)
. (22)

By applying a convenient Lyapunov transformation it can
be shown that the position observer is globally exponential
stable. This is formally stated in Theorem 3.

Assumption 2. For any γp > 0, there is kp > 0, such that the
vehicle position satisfy

||p̄(t)|| ≤ kpeγp(t−t0).

Notice that in practice, this assumption is not restrictive, due
to the fact that it is trivially verified by physical constraints,
not only by the actuators saturation, but also by the intrinsic
limitation imposed by the speed of light.

Theorem 3. Consider b̄ω = 0. Let the vehicle position p̄
satisfy Assumption 2 and the conditions of Theorem 1 be
verified. Then the estimation errors converge exponentially
fast to the equilibrium point (R̃, b̃ω, p̃, ṽ) = (I, 0, 0) for any
(p̃, ṽ) ∈ R3 × R3. Also, if R̄ and b̄ω are known, the origin of
(21, 22) is globally exponentially stable.

Proof: Since R̃ = R̂R̄T and p̃ = p̂ − p̄, then

p̂ − R̂T Lp̄ = p̃ + R̄T Lp̄ − R̂T Lp̄

= p̃ +
(
R̄T − R̄T R̃T

)
Lp̄

= p̃ + R̄T
(
I − R̃T

)
R̄p̄.

Consider the Lyapunov transformation R̄ applied to vectors
p̃ and ṽ. Notice that R̄ is a Lyapunov transformation as it is
nonsigular, R̄ and ˙̄R are continuous, and R̄ and R̄−1 are limited.
The dynamics of the transformed system are given by

d
dt

(R̄p̃) = R̄ṽ − KpR̄p̃ − Kp

(
I − R̃

)
R̄p̄ (23)

d
dt

(R̄ṽ) =
(
R̃T − I

)
Lḡ − Kvp̃ − Kv

(
I − R̃

)
R̄p̄, (24)

that can be rewritten in condensed form as

ξ̇ = Aξ + u, (25)

where ξ =
[ R̄ 03×3

03×3 R̄
]

x, with x =
[
p̃ ṽ

]T , A =
[ −KpI3×3 I3×3
−KvI3×3 03×3

]
,

and u =

[ −Kp(I−R̃)R̄p̄
−Kv(I−R̃)R̄p̄+(R̃T−I)T Lḡ

]
. The system (25) is linear time

invariant and for Kp > 0 and Kv > 0, A is Hurwitz, therefore
the system is stable.

The input vector ||u|| verifies

||u|| ≤ Kp

∣∣∣∣
∣∣∣∣
(
I − R̃

)
R̄p̄

∣∣∣∣
∣∣∣∣ + Kv

∣∣∣∣
∣∣∣∣
(
I − R̃

)
R̄p̄

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣
(
R̂ − R̄

)T Lḡ
∣∣∣∣
∣∣∣∣

≤
∣∣∣∣∣∣R̃ − I

∣∣∣∣∣∣
(
(Kp + Kv)||p̄|| + ||Lḡ||

)
.

From Theorem 1 and using Assumption 2, it is possible to
write

||u(t)|| ≤ kue−γu(t−t0),

where ku = 2
∣∣∣∣∣∣R̃(t0) − I

∣∣∣∣∣∣ max
{
(Kp + Kv)kp, ||Lḡ||

}
and

γu = γR − γp.
The transformed state ξ(t) satisfies

||ξ(t)|| = eA(t−t0)||ξ(t0)|| +
∫ t

t0
eA(t−τ)u(τ)dτ.

The stability of the origin implies that there exists ka, γa > 0
such that ||eAt || ≤ kae−γat [11]. And the application of this
inequality yields

||ξ(t)|| ≤ kae−γa(t−t0)||ξ(t0)|| + kaku

∫ t

t0
e−γa(t−τ)−γu(τ−t0)dτ

= kae−γa(t−t0)||ξ(t0)|| + kaku
e−γu(t−t0) − e−γa(t−t0)

γa − γu

≤ kae−γa(t−t0)||ξ(t0)|| + kaku

|γa − γu|e
−min{γu,γa}(t−t0)

≤ 2 max
{

ka||ξ(t0)||, kaku

|γa − γu|
}

e−min{γu,γa}(t−t0).

Concatenating the attitude and the transformed position
estimation errors as x f :=

(
R̃ − I, ξ

)
and using the inequalities

||x f || ≤ ||R̃ − I||+ ||ξ|| and ||R̃ − I|| ≤ ||x f ||, ||ξ|| ≤ ||x f ||, results in
the exponential bounds

||x f (t)|| ≤ kmax||x(t0)||e−γmin(t−t0),

where kmax = 2 max
{
kR, 2ka,

4kakR
|γa−γu | max

{
(Kp + Kv)kp, ||Lḡ||

}}

and γmin = min
{
γa, γR − γp

}
. Hence, the trajectories of the

system (7, 25) converge exponentially fast to (I, 0). The fact
that ||ξ(t)|| = ||x(t)|| bears the exponential convergence of
cascaded observer (7,21, 22).

If, R̄ is known, then u(t) = 0 and the origin of (25) is
globally exponentially stable by the properties of linear time-
invariant systems.
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2) Biased Angular Velocity Measurement: In this section
it is assumed that the angular velocity measurements are
corrupted by bias and it is required to use an estimate of ω̄,
defined as

ω∗ := ωsensor − b̂ω = ω̄ − b̃ω. (26)

The feedback laws are those defined in (19) and (20). Using
equations (17), (18), (19), (20) and the definition (26), the
position and velocity error dynamics are given by

˙̃p = ṽ − (ω∗)∧p̃ + (b̃ω)∧p̄ − Kp

(
p̂ − R̂T Lp̄

)
(27)

˙̃v =
(
R̂ − R̄

)T Lḡ − (ω∗)∧ṽ + (b̃ω)∧v̄ − Kv

(
p̂ − R̂T Lp̄

)
. (28)

The statement of Theorem 4, guarantees the exponential
convergence of position and velocity estimation errors.

Assumption 3. For any γv > 0, there exist kv > 0, such that
vehicle position and velocity satisfy

||v(t)|| ≤ kveγv(t−t0).

As in Assumption 2, and due to similar reasons, this
assumption is not restrictive.

Theorem 4. Consider the presence of bias in angular velocity
measurements. Let Assumption 3 and the conditions of Theo-
rem 2 be satisfied. Then the estimation errors converge expo-
nentially fast to the equilibrium point (R̃, b̃ω, p̃, ṽ) = (I, 0, 0, 0)
for any initial condition satisfying (14) and (p̃, ṽ) ∈ R3 × R3.
Also, if R̄ and b̄ω are known, the origin of (27, 28) is globally
exponentially stable.

Proof: Notice that p̂ − R̂T Lp̄ = p̃ + R̄T
(
I − R̃T

)
R̄p̄, and

consider the Lyapunov transformation R∗ applied to vectors p̃,
and ṽ, where Ṙ∗ = R∗(ω∗)∧. The dynamics of the transformed
system are given by

d
dt

(R∗p̃) = R∗ṽ − KpR∗p̃ + R∗b̃ωp̄ − KpR∗R̄T
(
I − R̃

)
R̄p̄

d
dt

(R∗ṽ) = R∗
(
R̃T − I

)
Lḡ − KvR∗p̃ + R∗b̃ωv̄ − KvR∗R̄T

(
I − R̃

)
R̄p̄,

which can be rewritten in matrix form as

ξ̇ = Aξ + u (29)

where ξ =
[ R∗ 0

0 R∗
]

x, with x =
[
p̃T ṽT

]T
, A =

[ −KpI I
−KvI 0

]
, and

u =

[ R∗b̃ωp̄−KpR∗R̄T (I−R̃)R̄p̄

R∗b̃ωv̄−KvR∗R̄T (I−R̃)R̄p̄+R∗(R̂−R̄)T Lḡ

]
. The system (29) is linear

time invariant and for Kp > 0 and Kv > 0 the matrix A is
Hurwitz, therefore the system is stable.

From Theorem 2 is known that for Kbω large enough, there
are kR, kb, γR, γb > 0 such that

∣∣∣∣∣∣R̃(t) − I
∣∣∣∣∣∣ ≤ kR

∣∣∣∣∣∣R̃(t0) − I
∣∣∣∣∣∣ e−γR(t−t0)

∣∣∣∣∣∣b̃ω(t)
∣∣∣∣∣∣ ≤ kb

∣∣∣∣∣∣b̃ω(t0)
∣∣∣∣∣∣ e−γb(t−t0).

The input vector ||u|| verifies the following inequality

||u|| ≤ ||b̃ω|| (||p̄|| + ||v̄||) +
∣∣∣∣∣∣R̃ − I

∣∣∣∣∣∣
(
(Kp + Kv)||p̄|| + ||Lḡ||

)
.

Using the fact that ||p̄(t)|| and ||v̄(t)|| satisfy respectively As-
sumption 2 and Assumption 3, it can be shown that

||u(t)|| ≤ kue−γu(t−t0),

where ku = 4 max
{
kb max

{
kp, kv

}
||b̃ω(t0)||, kR max

{
(Kp + Kv)kp, ||Lg||

}
||R̃(t0) − I||

}

and γu = min
{
γb −max

{
γp, γv

}
, γR − γp

}
, that is positive since

γp and γv can be made as small as desired by Assumption 2
and Assumption 3. The transformed state ξ(t) satisfies

||ξ(t)|| = eA(t−t0)||ξ(t0)|| +
∫ t

t0
eA(t−τ)u(τ)dτ,

and by [11] the stability of the origin implies that there exists
ka, γa > 0 such that ||eAt || ≤ kae−γat, therefore the subsequent
inequality holds

||ξ(t)|| ≤ kae−γa(t−t0)||ξ(t0)|| + kaku

∫ t

t0
e−γa(t−τ)−γu(τ−t0)dτ

= kae−γa(t−t0)||ξ(t0)|| + kaku
e−γu(t−t0) − e−γa(t−t0)

γa − γu

≤ kae−γa(t−t0)||ξ(t0)|| + kaku

|γa − γu|e
−min{γu,γa}(t−t0)

≤ 2 max
{

ka||ξ(t0)||, kaku

|γa − γu|
}

e−min{γu,γa}(t−t0).

Concatenating the attitude and transformed position estimation
errors as x f :=

(
R̃ − I, b̃ω, ξ

)
and using the inequalities ||x f || ≤

||R̃ − I|| + ||b̃ω|| + ||ξ|| and max{||R̃ − I||, ||b̃ω||, ||ξ||} ≤ ||x f ||, an
exponential upper bound is given by

||x f (t)|| ≤ kmax||x f (t0)||e−γmin(t−t0),

where kmax = 3 max
{
kR, kb, 2ka,

8kakb max{kp ,kv}
|γa−γu | ,

8kakR max{(Kp ,Kv)kp ,||Lg||}
|γa−γu |

}
,

and γmin = min
{
γa, γb −max

{
γp, γv

}
, γR − γp

}
.

Hence, the trajectories of the system (13,29) converge
exponentially fast to the origin. The fact that ||ξ(t)|| = ||x(t)||
bears the exponential convergence of cascaded observer (13,
27, 28).

If R̄ and b̄ω are known, then u(t) = 0 and the origin of
(29) is globally exponentially stable by the properties of linear
time-invariant systems.

C. Feedback Terms as Explicit Functions of Sensors Readings

One important advantage of the derived observers, is that
the feedback terms can be written as explicit functions of
the sensor readings. For both position observers the feedback
terms are given by

sp = −Kp

(
p̂ − R̂Lp̄

)

sv = −Kv

(
p̂ − R̂Lp̄

)
.

For the unbiased angular velocity attitude observer the feed-
back term is given by

ω̂ = ωsensor − Kωsω,

and for the observer that estimates the bias present in angular
velocity measurements, can written as

ω̂ = ωsensor − b̂ω − Kωsω.

The vector Lp̄ is computed directly from range measure-
ments using a spherical interpolation algorithm. The depen-
dence of sω on the sensor readings, was derived in [26,
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Theorem 9]. In the case of rank(X) ≥ 3

sω =

n∑

i=1

(
R̂T XDXAXei

)
×

(
B̄DXAXei

)
,

where AX is such that UXUT
X = I, UX = R̄ŪDXAX and ei is

the unit vector along the i-th axis. In the case of rank(X) = 2

sω =

n∑

i=1

(
R̂T HaAXaei

)
×

(
B̄aAXaei

)
,

where

Ha =
[
XDX XDXei × XDXe j

]
, i , j

B̄a =
[
B̄DX B̄DXei × B̄DXe j

]
, i , j,

and AXa is such that UXaUT
Xa = I, with

UXa := HaAXa.

IV. NUMERIC INTEGRATION ON SO(3)

Many dynamic systems described by differential equations
have some properties that are preserved in time, like energy,
linear and angular momentum, and algebraic constraints on
the solution. Typically, these restrictions force the solution of
the differential equations to evolve in specific manifolds. The
classical numerical integration algorithms were designed to
work in Rn and naturally do not preserve some of the desired
properties.

A particular case corresponds to the set of all rotation
matrices, termed the Special Orthogonal group, and denoted
by SO(3). Any matrix R of this group has the properties

RRT = I3×3 (30)
det(R) = 1, (31)

which are not preserved by the classical numerical integration
algorithms like Runge-Kutta methods. In fact it can be shown
that Runge-Kutta integration techniques do not preserve poly-
nomial invariants, like determinant of degree n, with n ≥ 3 [8,
Theorem IV.3.3]. To overcome this issue there is the possibility
of parameterize the rotation matrix.

The two commonest rotation matrix parameterizations are
Euler angles, and quaternions. The first, has three independent
parameters but suffers from singularities which is not desirable
in applications like the one targeted in the present paper.
The second, has no singularities, but requires the use of
four parameters and presents an extra constrain on the norm.
This forces, when using classical integration algorithms, a
quaternion normalization at each integration step.

This section presents three numerical algorithms designed
for right-invariant differential equations of the form Ẏ =

A(t,Y)Y , evolving on Lie Groups, namely the Crouch-
Grossman Method [6], the Munthe-Kaas Method [16] and the
Commutator-Free Lie Group Method [4]. These methods can
be applied to differential equations on SO(3) and naturally
preserve the properties (30) and (31). An application of these
methods to multi-body dynamics evolving in SE(3) can be
found in [21]. The accuracy of these techniques is indicated
by the order condition, see [8] for further details.

The Crouch-Grossman Method (CG), presented in [6] is
described by the following generic algorithm

Y (i) = Exp(Tai,i−1K(i−1))...Exp(Tai,1K(1))Yk−1

K(i) = A
(
tk−1 + Tci,Y (i)

)

Yk = Exp(TbsK(s))...Exp(Tb1K(1))Yk−1.

(32)

where T is the integration period, and Exp(.) the exponential
map in SO(3) that can efficiently computed using the so-called
Rodrigues Formula

Exp((ω)∧) =


I, if ||ω|| = 0,

I +
sin(||ω||)
||ω|| (ω)∧ +

sin2
( ||ω||

2

)

||ω||2
2

(
(ω)∧

)2 , if ||ω|| , 0.

(33)
The interested reader can find the coefficients, a(.), b(.), and

c(.), for CG method, up to the sixth order in [9, 20, 10].
With Munthe-Kaas Method (MK) [16], coefficients for

standard Runge-Kutta methods can be used. This method is
implemented by the following algorithm

Θ(i) = T
i−1∑

j=1

ai jF( j)

Y (i) = Exp
(
Θ(i)

)
Yk−1

F(i) = Dexp-1
(
Θ(i)

)
A

(
tk−1 + Tci,Y (i)

)

Θ = T
s∑

i=1

biF(i)

Yk = Exp(Θ)Yk−1,

(34)

where Dexp-1(.) is the inverse of the differential of the ex-
ponential map, which in SO(3) can be computed through the
explicit formula [21]

Dexp-1((ω)∧) =


I, if ||ω|| = 0,

I − 1
2 (ω)∧ − ||ω|| cot

( ||ω||
2

)
−2

2||ω||2
(
(ω)∧

)2 , if ||ω|| , 0.
(35)

Finally the Commutator-Free Lie Group Method (CF), pre-
sented in [4], is given by the algorithm

Y (i) = Exp


s∑

j

Ta[k]
i j K( j)

 ...Exp


s∑

j

Ta[1]
i j K( j)

 Yk−1

K(i) = A
(
tk−1 + Tci,U(i)

)

Yk = Exp


s∑

j

Tb[k]
j K( j)

 ...Exp


s∑

j

Tb[1]
j K( j)

 Yk−1.

(36)

The coefficients of this method for the third and the fourth
orders can be found in [21]. The coefficients for second order
were not found in literature.

The application of the third order coefficients from [21,
Table II(a)] results in

Y (1) = Yk−1, K(1) = A
(
tk−1,Y (1)

)

Y (2) = Exp
(T

3
K(1)

)
Yk−1, K(2) = A

(
tk−1 +

T
3
,Y (2)

)

Y (3) = Exp
(

2T
3

K(2)
)

Yk−1, K(3) = A
(
tk−1 +

2T
3
,Y (3)

)

Yk = Exp
(
− T

12
K(1) +

3T
4

K(3)
)

Exp
(T

3
K(1)

)
Yk−1.
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It is possible to save the computation of some of the exponen-
tials by reusing exponentials previously computed. Therefore,
for third order method one can have

Yk = Exp
(
− T

12
K(1) +

3T
4

K(3)
)

Y (2)

saving the computation of one exponential map and one matrix
multiplication.

Also in the fourth order case savings are possible. One can
implement this method by using the coefficients presented in
Table II(b) from [21]:

Y (1) = Yk−1, K(1) = A
(
tk−1,Y (1)

)

Y (2) = Exp
(T

2
K(1)

)
Yk−1, K(2) = A

(
tk−1 +

T
2
,Y (2)

)

Y (3) = Exp
(T

2
K(2)

)
Yk−1, K(3) = A

(
tk−1 +

T
2
,Y (3)

)

Y (4) = Exp
(
−T

2
K(1) + K(3)

)
Y (2), K(4) = A

(
tk−1 + T,Y (4)

)

Yk = Exp
(
− T

12
K(1) +

T
6

K(2) +
T
6

K(3) +
T
4

K(4)
)

Exp
(T

4
K(1) +

T
6

K(2) +
T
6

K(3) − T
12

K(4)
)

Yk−1.

The analysis of complexity of each of these methods up to
the fourth order, is presented in Table I.

TABLE I
Complexity of each step of CG, MK e CF, for the second, third and fourth

orders.

operation Expa Dexp-1b mmultc

CG 2nd order 3 0 3
MK 2nd order 2 1 3
CG 3rd order 6 0 6
MK 3rd order 3 2 5
CF 3rd order 3 0 3
CG 4th order 15 0 15
MK 4th order 4 3 7
CF 4th order 5 0 5

a exponential map
b inverse of differential of exponential map
c 3×3 matrix multiplication

V. OBSERVER DISCRETE TIME IMPLEMENTATION

This section presents a discrete time implementation of the
pose observer proposed in Section III. This implementation
will be obtained by applying the discrete time integration
methods discussed in Section IV to the observer continuous
time dynamics. The integration method selected to obtain the
discrete time implementation should be the most adequate to
guarantee that the latter approximates conveniently the original
continuous time observer. During the selection procedure one
has to take into account the quality of the sensor suite,
the desired sampling rate and the computational resources
available. In general, higher order methods will lead to better
approximations involving a higher computational costs. How-
ever, the quality of the results obtained will be always limited
by the quality of data sets available from the sensor suite.

A. Numeric Integration of the Attitude Observer

The attitude observer dynamics is composed by two differ-
ential equations. One that evolves in SO(3), (2), and another
in R3, (12). The first can be integrated resorting to one of
the methods proposed in Section IV, and the second to any
classical numeric integration technique.

The equation (2) of observer dynamics it is not in the
general form Ẏ = A(t,Y)Y , although a equivalent equation
in the desired form can be obtained by transposing (2) which
gives (

˙̂R
)T

=
(
R̂(ω̂)∧

)T ⇔ ˙̂RT = −(ω̂)∧R̂T .

Notice that in the present case ω̂ is independent of R̂ allowing
for a substantial simplification of the integration algorithms.

The presented geometric numerical integration algorithms
require the knowledge of the function ω̂(t) in instants between
sampling times. Different sampling and computation strategies
can be adopted to obtain an approximation of this function
using methods such as polynomial interpolation of the sampled
data. In the present case, as the target was the implementation
using tactical grade inertial sensors and the use of limited
computational resources, the selected method was the linear
interpolation of ω̂ in the interval [(k − 1)T, kT ] that is

ω̂(t) ≈
(
ω̂(kT ) − ω̂(kT − T )

T

)
(t − (kT − T )) + ω̂(kT − T ). (37)

The linear interpolation adopted for ω̂ limits the order of
the integration technique as the maximal precision is achieved
for second order methods and an increase on the order of
the method will not impact on the precision of the result.
Table II shows the number of operations required in each
step of second order CG and MK methods, and third order
CF method. From the table it can be concluded that all three
integration techniques present similar complexity being the
MK a little less computationally expensive. For this reason
was selected to implement equation (2).

TABLE II
Complexity in each step for CG, MK and LC methods.

operation Exp Dexp-1 mmult
CG 2nd order 2 0 2
MK 2nd order 1 1 2
CF 3rd order 2 0 2

Finally, the discrete time implementation of equation (12)
was obtained by using a second order Adams-Moulton Method,
see [3] for further details. This selection was done based on
similar arguments as those used for (2). The resulting attitude
observer numerical integration algorithm can be summarized
as

b̂ω k = b̂ω k−1 +
T
2

(
Kbωsω k + Kbωsω k−1

)

F(1) = −ω̂(kT − T )∧

Θ(2) =
T
2

F(1)

F(2) = −Dexp-1
(
Θ(2)

)
ω̂

(
kT − T

2

)∧

R̂T
k = Exp

(
T F(2)

)
R̂T

k−1.
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Since this is an implicit algorithm a numeric technique like
the Fixed-Point Method should be run at in each integration
step.

B. Numeric Integration of the Position Observer
The numerical integration of the differential equations as-

sociated to the position observer, (27) and (28) both in R3,
was performed by resorting to a second order Adams-Moulton
Method. The resulting numerical integration algorithm is de-
scribed as follows

gp k = v̂k − (ω̂k)∧p̂k − Kp(p̂k − R̂T
k

Lp̄k)

p̂k = p̂k−1 +
T
2

(
gp k + gp k−1

)

gv k = āk + R̂T
k

Lḡ − (ω̂k)∧v̂k − Kv(p̂k − R̂T
k

Lp̄k)

v̂k = v̂k−1 +
T
2

(gv k + gv k−1) .

As this is implicit algorithm it is also required to use a numeric
method at each integration step.

VI. SIMULATIONS

In this section, simulation results obtained for the contin-
uous time observer and for its discrete time implementation
are presented and discussed. In the simulation the sampling
frequency of the observer discrete time implementation was
set to 50 Hz. Five beacons were placed in the mission scenario
located at Lx̄1 = [20 20 20]T m, Lx̄2 = [−20 − 20 20]T m,
Lx̄3 = [20 − 20 − 20]T m, Lx̄4 = [−20 20 − 20]T m, and
Lx̄5 = [0 0 0]T m. The acoustic receivers installed in body
frame were placed in Br1 = [0 0 0]T m, Br2 = [0.5 0 0]T m,
Br3 = [0 0.5 0]T m, and Br4 = [0 0 0.5]T m. The vehicle tra-
jectory is characterized by oscillatory acceleration and angular
velocity with frequency 1/2 Hz.

The feedback gains were set to Kω = 2, Kbω = 2, Kp = 2,
and Kv = 2. Notice that The gains Kω, Kbω , Kp, and Kv,

verify the condition (14), that is
1

Kbω
||b̃ω(t0)||2

4(1+cos(θ(t0))) ≈ 0.065 < 1.
The initial errors were assumed as p̃(t0) = [3 3 3]T m,
ṽ(t0) = [1 1 1]T ms−1, θ(t0) = 135 π

180 rad, and bω(t0) =
π

180 [5 5 5]T rads−1, the initial bias estimates were set to zero
in all three channels.

Figures 3 and 4 illustrate the estimation errors of the con-
tinuous time observer and of its discrete time implementation.
The quality of the observer’ discrete time implementation
can be inferred from Figures 5 and 6 where a detail of the
differences between the estimates produced by the continuous
time observer and those obtained with the discrete time
implementation are depicted.

VII. CONCLUSIONS

In this work, a nonlinear attitude and position observer using
inertial sensor measurements and ranges to acoustic beacons,
was derived. The observers have a cascade topology. The
attitude observer was extended to estimate the existence of
static bias in angular velocity measurements. It was proved the
exponentially fast convergence to the origin of the estimation
errors. The feedback laws were shown to be explicit functions
of the sensor readings. A method to obtain a discrete time
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implementation of the attitude observer using recent results
from numeric integration in Lie groups was proposed, and a
discrete implementation of the attitude and position observers
was obtained. Simulations results illustrate the convergence
to the origin of the estimation errors and the quality of the
proposed discrete time implementation.

Future work will focus on the implementation and validation
of the proposed algorithm in a real time architecture onboard
an Unmanned Aerial Vehicle.

Appendix A
Beacons Positions Augmentation

Assumption 1 establishes that rank(X) ≥ 2 which, given
that H = XDX , is equivalent to rank(H) = rank

([
H 0

])
:=

rank
(
X

[
DX 1n

])
= rank(X) ≥ 2. However, the coordinate

transformation of Proposition 1 requires that H is full rank.
If rank(X) = 2, it is possible to augment matrix H to
produce Ha such that rank(Ha) = 3. Taking two linearly
independent columns of H, Lhi and Lh j, the augmented matrix
is given by Ha =

[
H Lhi × Lh j

]
, which is full rank. Defining

UXa := HaAXa, by the steps of the proof of Proposition 1
there is AXa ∈ M(n + 1) nonsingular such that UXaUT

Xa = I,
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Fig. 5. Difference of attitude and angular velocity bias estimates
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Fig. 6. Difference of position and velocity estimates

as desired. The cross product is commutable with coordinate
transformations, (RT Lhi) × (RT Lh j) = RT (Lhi × Lh j), so the
representation of the augmented matrices in body coordinates
is simply given by BŪXa = R̄T UXa and BÛXa = R̂T UXa. The
modified observer is obtained by replacing UX , H and AX by
UXa, Ha and AXa.
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