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Abstract— A non-iterative methodology for the interpolation
and regularization of multidimensional sampled signals with
missing data resorting to Principal Component Analysis is intro-
duced. Based on unbiased estimators for the mean and covariance
of signals, the Principal Component Analysis is performed and
the signal is interpolated and regularized. The optimal solution
is obtained from a weighted least mean square minimization
problem, and upper and lower bounds are provided for the mean
square interpolation error. This solution is a refinement to the
previously introduced method in [19], where three extensions
are exploited: i) mean substitution for covariance estimation,
ii) Tikhonov regularization method and, iii) dynamic principal
components selection. The resulting method will be applied to
bathymetric data, acquired at sea in the passage between the
islands of Faial and Pico, Azores. Based on the properties of the
least squares solution, an estimate for the reconstruction error
is proposed, allowing for the assessment on the performance of
the overall method even in the case where the original signal
is not known. The results obtained pave the way to the use of
the proposed framework in a number of sensor fusion problems,
in the presence of missing data. In control systems, there are a
number of situations where we face the challenge of controlling a
system from an incomplete signal obtained through sensors. The
application of the interpolation based on PCA to Kalman filtering
represents a starting point of improvement on the control over
an unreliable communication channel. An exploratory empirical
assessment was performed to determined the impact of such
strategy on Kalman filtering. A number of adaptations to the
method proposed in the first part of this work were conducted,
which includes the development of recursive estimators for the
mean and covariance in order to obtain a recursive framework of
the reconstruction with PCA. This work opens the door to future
analysis in greater depth and formality. For each situation were
conducted performance assessment studies where conducted in
several situations.

Index Terms— Principal Components Analysis - Missing Data
- Reconstruction - Regularization - Bathymetric Data - Kalman
Filtering

I. INTRODUCTION

The problem of interpolation of multidimensional sampled
signals with missing data is central in a series of engineering
problems. Autonomous robotic surveying [22], underwater
positioning, remote sensing, digital communications (subject
to bursts of destructive interferences), estimation and control
in networked systems, and computer vision (when occlusions
occurs) are a few of a multitude of examples where data is
not available at uniform temporal/spatial rates.

The scientific community has been active for long time
in solving interpolation and reconstruction problems, see [2],
[4], [14], [33] and the references therein for an in-depth
repository of available techniques. Iterative methods such as P-
G algorithm [7], [20], [21] and the EM algorithm [24] are the
most commonly used. However, the iterative characteristics of
these methods, with the correspondent computational burden,
the restricted domain of application to bandlimited signals,
and the low convergence rates verified, preclude its use in a
number of relevant applications.

Primarily motivated by a terrain based navigation problem
for underwater autonomous robotic activities [22], [18], this
paper extends previous work presented in [19], where a new
methodology was proposed for the interpolation of signals
with missing data, that departed from the aforementioned
approaches. In this work a non-iterative methodology for the
regularized interpolation of multidimensional sampled signals
with missing data based on PCA is proposed. Resorting to
unbiased estimators for the mean and covariance of multidi-
mensional signals, corrupted by zero-mean noise, the Principal
Component Analysis is straightforward to be computed. The
signal interpolation is tackled in the components space, for-
mulating a weighted least squares minimization problem with
known optimal solution. Moreover, based on PCA properties
corrected upper and lower bounds (relative to [19]) for the
mean square interpolation error and the interval of validity
of the proposed method are provided. Relative to the basic
solution previously proposed in [19], three refinements are
exploited:

i. mean substitution,
ii. Tikhonov regularization and,

iii. dynamic principal components selection.
It is important to remark that not only the interval of validity
of the resulting methods are extended but also outperform the
basic one.

It is nowadays common the widespread use of ASCs, ROVs,
and AUVs in a number of missions at sea, see [23] and
references therein. Those robotic vehicles carrying powerful
computers, mass storage media, and state-of-the-art sensors
and transducers, have endowed the scientists with tools that
can collect massive quantities of data on relevant marine
quantities.

There is a problem central to all information acquired during
the survey missions: data is not available at uniform temporal
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and spatial rates. Other domains where this phenomena occurs
are remote sensing, digital communications (subject to bursts
of destructive interferences), estimation and control in net-
worked systems, and computer vision (when occlusions occur),
just to name a few. Thus, the problem of interpolation of
multidimensional sampled signals with missing data is central
in a series of applications.

The proposed method is applied to bathymetric data ac-
quired during tests at sea. Based on estimators for the mean
and covariance of signals corrupted by zero-mean noise, the
PCA decomposition is performed and the signal is interpolated
and regularized. The optimal solution is obtained from a
regulated weighted least mean square minimization problem,
and not only upper and lower bounds are provided, but also an
estimate of the mean square interpolation error is introduced.
This solution exploits the refinements found adequate for the
problem at hand. The generalization of the proposed method
to other multidimensional signals, such as magnetometers and
gradiometers, is immediate.

The passage between the islands of Faial and Pico is
probably the best-known shallow-water area in the Azores. A
number of studies using mechanically scan and sidescan sonars
[23] and multibeam sonars [16], [28] have already covered the
main aspects of seabed morphology and character, resulting in
a good knowledge of the general distribution of the different
bottom types and features. The Espalamaca-Madalena ridge
is one of those structures of great interest for the marine
geologists and was selected to test the capabilities of the sensor
fusion technique central to this work. The results obtained pave
the way to the use of the proposed framework in a number
of sensor fusion problems, in the presence of missing data.
Ultimately, this method aims at overcoming the limitations
faced today in marine data fusion problems.

Nowadays, control theory and communication channels
have been come across in a wide range of situations. Let us
consider the example of controlling a vehicle based on the
position and velocity estimated from a network sensor, whose
communications relays on a channel where measurements are
lost or suffer such delay that are considered lost [12], [31].
Thus, a number of questions arises, namely, the minimum rate
of arrival of observations that guaranties a stable control, and
the performance degradation that occurs from the absence of
measurements.

Previous studies concerning this problem were conducted
in [8], [13], [17], [32]. Even so, in [26], we find a theoretical
supported analysis of the existence of a limit of absent
observations for which the state estimation error covariance
converges, within the discrete-time framework. Additionally,
upper and lower bounds of the expected error covariance were
found resorting to the state estimation with Kalman filtering
[1], [6]. This is a recursive estimator which is widely used in
a number of applications.

Motivated by the high applicability of the problem and
the requirement to obtain a better performance, the goal of
the work developed is to assess the impact of including a
reconstruction tool to mitigate the unreliable communication
channel, as an effort to eliminate the setbacks produced by the
discontinue arrival of measurements. This tool resorts to the

interpolation and regularization of multidimensional signals
based on PCA, which corresponds to the focus of the work in
this dissertation. The Kalman filtering embraces the recursive
framework, for which the PCA interpolator was not taken into
consideration. Therefore, a large part of work is devoted to the
required adaptations. A major modification is the introduction
of recursive estimators for the mean and covariance of discrete
stochastic signals.

II. INTERPOLATION USING PCA
The purpose of this section is to describe a methodology,

supported on PCA, allowing the interpolation of multidimen-
sional sampled signals with missing data, corrupted by zero
mean noise, based on the following assumption, central to the
rest of this work:

Assumption II.1:

The missing information on the multidimensional sam-
pled signals are negligible and the available samples,
in a number greater than to the selected number of
principal components, are representative of the original
signal.

A. Mean and Covariance Estimators with Missing Data

New estimators are proposed to account for missing data
and an indicator index l is introduced, on which is applied the
same stacking operation as in the multidimensional signals.

The index li(j), j = 1, . . . , N is set to 1 if the jth

component of signal xi is available and zero otherwise. In
the latter, the component x(j) is also set to zero, without loss
of generality. The estimators for the mean and covariance of
multidimensional signals with missing data are now presented.

Lemma 1: Given a set of M signals xi, i = 1, . . . , M , with
associated indexes li, the auxiliary vector of counters c =∑M

i=1 li, and C =
∑M

i=1 lilTi :
i) the estimator for the jth component of the ensemble mean

is

mx(j) =
1

c(j)

M∑

i=1

li(j)xi(j), j = 1, . . . , N ; (1)

ii) the estimator for the covariance element Rxx(j, k), j, k =
1, . . . , N , given yi(j) = xi(j) − li(j)mx(j), can be
computed from

Rxx(j, k) =
1

C(j, k)− 1

M∑

i=1

li(j)li(k)yi(j)yi(k). (2)

Proof: It resorts only to basic signal processing tools and
is omitted here (see [9] and [10] for details).

B. Solution to the Interpolation Problem

To solve the interpolation problem central to this paper,
consider that each signal xi is obtained from the original signal
ri due to missing data, verifying the relation

xi = Liri, (3)



3

x

r
~

r

y

w

z

L
- mx

- L mx

+ mx

U
T
(.)

U(.)

Equation (2)

A
ss

u
m

p
ti

o
n
 3

.1

v~
v

~ ~

~

~

Fig. 1. Diagram describing the interpolation of sampling signals with missing
data.

where Li ∈ RN×N is a diagonal matrix, filled with the
indicator index li. The interpolation operation is formulated as
finding r̃i that minimizes the weighted l2 norm of the error.
However, due to the existence of missed samples, it is only
possible to compute the estimation error on the components
of the signal which are known. Thus, the correct form of
formulating the problem is to consider only the interpolation
error for the available elements.

Lemma 2: Considering the original signal ri, from which
there is only available a signal with samples indexed by Li, the
optimal interpolated signal r̃i (in the minimum error energy
sense) can be obtained solving the weighted least mean square
problem

min
r̃i∈RN

‖Li(r̃i − ri)‖22,W, (4)

where the solution based on PCA is given by

ṽi = (ŨT LiWLiŨ)−1ŨT LiWyi. (5)
Proof: Given that a minimum energy estimation error

problem can be formulated and solved as a weighted least
mean square error optimization, (4) is written as

min
ṽi∈Rn

‖Li(Ũṽi + mx)− Liri‖22,W =

= ‖LiŨṽi + Limx − Liri‖22,W,

resorting to the approximated PCA projection r̃i = Ũṽi+mx.
Through the relations xi = Liri and yi = xi − Limx, the
following minimization is then obtained

min
ṽi∈Rn

‖LiŨṽi − yi‖22,W.

This is a weighted version of a linear least square problem,
for which a well-known solution exists, resulting in (5), where
the relations LLT = L and LT = L were used.

From the previous assumption, the principal components
can be computed with negligible degradation, and the signal
can finally be reconstructed using the relation

r̃i = Ũṽi + mx. (6)

The relations among the underlying signals are depicted in
Fig. 1. Note that the aforementioned assumption can be
interpreted as a change on the focus of the data from sample
rates to the amount of information available.

According to optimal stochastic minimization techniques
[11], the knowledge on the stochastic process characteristics
allows for the optimal choice of the weight

W = R−1
xx . (7)

Nevertheless, the covariance matrix is estimated from an
incomplete data set, which may lead to numerical problems
when performing the inverse. Next, an approximated and more
robust numerical solution is proposed.

Lemma 3: The inverse, W, of a covariance matrix Rxx,
which characterizes a stochastic process with principal com-
ponents Ũ, can be obtained approximately and with no explicit
computation of the inverse by,

W̃ = ŨΛ̃−1ŨT , (8)

where Λ̃ ∈ Rn×n is the diagonal matrix, whose kth diagonal
element is λk and contains the first n principal components.

Proof: The covariance matrix can be decomposed as

Rxx = UΛUT ,

where Λ ∈ RN×N is the diagonal matrix, whose kth di-
agonal element is λk and contains all N eigenvalues. An
approximation of the covariance matrix is obtained using the
approximated PCA [15], i.e.

R̃xx = ŨΛ̃ŨT .

Consider now the hypothesis that the inverse of the approxi-
mated covariance matrix is obtained from R̃−1

xx = ŨΛ̃−1ŨT .
If the hypothesis corresponds in fact to the approximated
inverse of the covariance matrix, the relation RxxR̃−1

xx = Ĩ,
where Ĩ ∈ RN×N is approximately the identity matrix, must
be verified by the following equation,

RxxR̃−1
xx = UΛUT ŨΛ̃−1ŨT .

Considering algebraic properties and the orthogonality of both
U and Ũ, the above expression is equivalent to

RxxR̃−1
xx = ŨΛ̃ŨT ŨΛ̃−1ŨT = ŨΛ̃Λ̃−1ŨT = ŨŨT = Ĩ.

Therefore is possible to conclude that,

W̃ = R̃−1
xx = ŨΛ̃−1ŨT .

It is important to remark that the approximation is more
accurate as the number of components increases. In the limit
case where all principal components are used, UUT = I,
meaning that W̃ = W.

A complexity analysis to the proposed methods previ-
ously introduced revealed that the underlying complexity is
O(ηJN2M). This is a consequence of the application of (5)
to the unknown samples, therefore it depends on the amount
of missing samples. Note that the matrix ŨT LiWLiŨ to be
inverted has dimension n × n, presenting reduced computa-
tional complexity, given the choice of n << N . Interestingly
enough, this result can be interpreted as a generalization of
the classical Yen interpolator [33] and the minimax-optimal
interpolators [4].
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C. Lower and Upper Bounds

In order to evaluate the quality of the signal’s interpolation,
the variance of the interpolation error per signal sample, σ2,
is defined as,

σ2 ≡ E[‖r̃− r‖]
N − 1

. (9)

Scaling the bounds to a per sample basis, leads to the result

η

∑N
i=n+1 λi

N − 1
≤ σ2 ≤ η

∑N
i=1 λi

N − 1
. (10)

A simple validation on the bounds for certain values of η can
be made. Consider the extreme case where η = 0, i.e. there is
no missing samples. The bounds for this case are both null,
which is correct because no interpolation error is present and
consequently, a null value for σ2 is obtained. Now consider
the case η ≈ 1, which means that almost no samples of the
signal are available and the interpolation will correspond to
the signal’s variance as stated in the upper bound for high
levels of η.

Assumption II.1 can be interpreted as providing conditions
when the interpolation is well posed or when the correspond-
ing numerical tools can be applied. The number of samples
available are required to be greater than to the selected number
of principal components, i.e. N(1− η) > n. This leads to the
following validity interval deduced from Assumption II.1,

0 ≤ η <
N − n

N
. (11)

Interestingly enough, no limitation on the amount of missing
data was found for the application of the method.

III. EXTENSIONS TO THE INTERPOLATION SOLUTIONS

In this section, refinements to the solutions proposed in
Section II and in [19] are presented.

A. Mean Substitution Method

When dealing with the estimation of covariance based on
missing data, several method are available [9]. An important
group of such methods corresponds to the techniques that
represents no extra computational complexity. A classical tech-
nique is the mean substitution method. The missing sample
on the jth component of the ith variable is replaced by the
corresponding component of the mean, i.e. the missing value
xi(j) is filled with the value mx(j). Although originally the
data set has missing samples, due to the replacement of the
missing samples by the mean, the estimator which do not
account for missing data are now applicable.

B. Dynamic Principal Components Selection

Consider now the case when Assumption II.1 is not verified,
i.e. the available samples are less than or equal to the assigned
number of principal components n. Under this situation,
the solution to the minimization problem is ill-conditioned
resulting a violation on the validity interval given by (11). An
alternative approach is suggested next, to be applied to those
cases. The number of components used for the computation

of the minimizing solution is set to the nearest integer below
the current number of available samples.

As a result of this procedure, the proposed reconstruction
algorithm is extended to any amount of missing samples.
Assumption II.1. is always verified, given the adjustment
on the principal components used relative to the existing
information. Note that the lower and upper bounds in (10)
remain valid throughout the whole interval η ∈ [0, 1[.

C. Tikhonov Regularization

A commonly used technique is the Tikhonov regularization,
for which a well-known solution exists [29]. With the purpose
of ensuring a suitable reconstruction of the signal, it is desired
a smooth transition between the available and the recovered
samples. To satisfy this requirement, a regularization term can
be added to the reformulated minimization problem. The first
order difference matrix D =∈ R(N−1)×N and the auxiliary
matrix Li ∈ RN×N , which is a diagonal matrix filled with
the complementary values of the indicator index li, i.e.

Li = I− Li, (12)

are considered.
Lemma 4: Considering the original signal ri, from which

there is only available a signal with samples indexed by Li,
the optimal interpolated and regularized signal r̃i, given the
auxiliary matrices D ∈ R(N−1)×N and Li ∈ RN×N , can be
obtained solving the weighted least mean square problem with
two terms expressed as

min
ṽi∈Rn

‖Li(r̃i − ri)‖22,W + ‖αD(Liri + Lir̃i)‖22, (13)

with the solution that can be obtained resorting also to the
PCA decomposition as

ṽi = (ŨT LiWLiŨ + α2ΓT Γ)−1(ŨT LiWyi − α2ΓT ∆),
(14)

where Γ ≡ DLiŨ is the regularization matrix, ∆ ≡ D(yi +
mx), and α is a regularization parameter.

Proof: The minimization problem in (13), including the
specified regularization term, can be written as in Lemma 2,

min
ṽi∈Rn

‖LiŨṽi − yi‖22,W + ‖αD(Liri + Lir̃i)‖22,

which can be rewritten, using the relation r̃i = Ũṽi +mx, as

min
ṽi∈Rn

‖LiŨṽi−yi‖22,W +‖αDLiŨṽi+αD(Liri+Limx)‖22.

Considering that Liri +Limx = yi +mx and the definitions
of Γ and ∆ above, this minimization problem results in the
compact form

min
ṽi∈Rn

∥∥∥∥∥
(
LiŨ
αΓ

)
ṽi −

(
yi

−α∆

)∥∥∥∥∥

2

2,W

.

Solving the previous least mean square problem, leads to

ṽi =

[(
LiŨ
αΓ

)T (
LiŨ
αΓ

)]−1 (
LiŨ
αΓ

)T (
yi

−α∆

)
.
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In order to accomplish an expression in a standard form, the
following statements are necessary,

(
LiŨ
αΓ

)T

= ( ŨT Li αΓT ),

(
LiŨ
αΓ

)T (
LiŨ
αΓ

)
= ŨT LiLiŨ + α2ΓT Γ,

and
(
LiŨ
αΓ

)T (
yi

−α∆

)
= ŨT Liyi − α2ΓT ∆.

When applied to the presented solution, it follows,

ṽi = (ŨT LiLiŨ + α2ΓT Γ)−1(ŨT Liyi − α2ΓT ∆),

and since is considered the weighted least mean square prob-
lem, the solution is presented in (14).

The regularization parameter acts as a scaling factor involv-
ing the least square term and the regularization term of the
minimization problem. For α = 0, equation (14) reduces to the
unregulated least squares solution presented in (5). A number
of advantages associated to the application of a regularization
technique can be delineated;

i) more adequate results are obtained, accordingly to the
choice of the regularization term, which privileges suit-
able solutions;

ii) the unregulated solution of equation (5) may result in an
amplification of the corresponding interpolation error, in
case of severe lack of samples, leading to an inaccurate
result;

iii) there is no significative increment on the computational
complexity, as the matrix (ŨT LiWLiŨ + α2ΓT Γ) to
be inverted, preserves the dimension of the unregulated
solution.

IV. ERROR ESTIMATE FOR PCA INTERPOLATOR

When applying the interpolation method to a signal where
samples are missing, there is no possibility to determine the
interpolation error without knowing the original signal. How-
ever, in what follows, a technique is introduced that indirectly
computes an estimate of the variance of the interpolation error
for each estimated sample, as defined in (9).

A. Error Estimate Computation

Central to the work developed in this chapter are the
following lemmas for the interpolation error estimation with
PCA. The results are presented for the regulated solutions from
Lemma 4, respectively.

Lemma 5: Consider the original signal ri and reconstructed
signal r̃i, obtained as the solution to the Tikhonov regulated
weighted least mean squares problem, based on PCA. For
the interpolation error ei = r̃i − ri, the error covariance can
be computed, without explicit information about the original
signal, as

R̃eiei = (Pi − I)Rxx(Pi − I)T + QiQT
i , (15)

where

Pi = ŨVi(ŨT LiWLi − α2ΓT DLi), (16)
Qi = α2ŨViΓT Dmx, (17)

and Vi = (ŨT LiWLiŨ + α2ΓT Γ)−1, (18)

for the sake of compactness.
Proof: From the relations depicted in Fig. 1 it follows

that:

ei = r̃i − ri = Ũṽi + mx −wi −mx = Ũṽi −wi.

Given the interpolation problem solution from (14) and yi =
Liwi leads to:

ei = ŨVi(ŨT LiWLiwi − α2ΓT ∆)−wi.

Using the relation ∆ = D(yi + mx), and organizing the
previous equation, is obtained,

ei = [ŨVi(ŨT LiWLi − α2ΓT DLi)− I]wi−
− ŨViα

2ΓT Dmx,

which can be written in a simplified form as

ei = (Pi − I)wi −Qi.

The covariance of ei, Reiei (note that E{ei} = 0), is
computed through

Reiei = E{eieT
i } =

= E{[(Pi − I)wi −Qi][wT
i (Pi − I)T −QT

i ]},
using the distribution property, the fact that both Qi and Pi are
deterministic and because E{wi} = E{ri−mx} = E{ri}−
mx = 0, it follows

Reiei = (Pi − I)E{wiwT
i }(Pi − I)T + E{QiQT

i } −
−(Pi − I)E{wi}QT

i −QiE{wT
i }(Pi − I)T

= (Pi − I)E{wiwT
i }(Pi − I)T + QiQT

i .

For the missing data problem, it is not possible to compute
the covariance of the original signal. However, there are
efficient estimators available, already introduced, that allow the
computation of an estimate of the covariance of the original
signal. Based on this assumption, E{wiwT

i } ' Rxx, with the
result

R̃eiei = (Hi − I)Rxx(Hi − I)T + BiBT
i .

Finally, the variance of the interpolation error of the jth

interpolated sample is determined resorting to the jth diagonal
element of Reiei . Thus, is guarantied that no information
about the original signal is required, due to the fact that all
information is included indirectly by Rxx. Despite this, the
error estimation covariance is dependent of the index i, which
departs to the fact that the interpolation error is influenced by
the missing data sequence, Li, that for obvious reasons varies
in function of i.
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V. PERFORMANCE ASSESSMENT AND RESULTS

After introducing the framework for interpolation based on
PCA, a performance evaluation is conducted. In Fig. 2 is
validated the estimation of the interpolation error based on
an 1D audio signal and 20 Monte Carlo experiments, while in
Fig. 3 a comparison is performed for the 1D interpolation with
the Papoulis-Gercheberg algorithm and the averaging method.
The same procedure is replied to a 2D signal, in this case a
8-bit gray image, in Fig. 4 and Fig. 5.

From the survey mission to the Espalamaca ridge, the
obtained data was processed so that the PCA interpolation
could be possible. Thus, resulting in the image depicted in
Fig. 6. After the reconstruction based on PCA, the data
is shown is Fig. 7. A comparison of the after and before
reconstruction is presented in Fig. 8 where both situations are
integrated in the same plot.

Finally, as an additional example, is evaluated the impact
of performing Kalman filtering in case of intermittent obser-
vations. A number of elements were added to the proposed
interpolator, namely, FILO stacking and recursive estimators
for the mean and covariance. A statistical analysis is depicted
for both stable and unstable systems in Fig. 9 and Fig. 10,
respectively.

VI. CONCLUSIONS

A new methodology to interpolate and regularize sampled
signals with missing data is presented, supported on estimates
from two efficient estimators for the mean and covariance
of the underlying signals. Three refinements to the basic
method in [19] are included with positive impact on the overall
performance:

i. mean substitution,
ii. Tikhonov regularization and,

iii. dynamic principal components selection.
These extensions naturally increased the numerical robust-
ness of the interpolation method and removed the original
limitations on the interval of validity, thus paving the way
to the application of the present methods to a number of
real problems in the interpolation of multidimensional signals.
Tight upper and lower bounds were presented and validated
through a series of tests, with improved performance when
compared with local averaging and the P-G methods. No
bandlimited nor Gaussian noise assumptions are required for
the signals and noise present, respectively. Sensitivity studies
on a series of parameters in the estimators revealed a graceful
degradation on the interpolation performance. Ultimately, the
application of the proposed methodology to data obtained
in a series of surveying missions at sea, with unmanned
underwater vehicles, is expected to be the key enabling tool
to tackle terrain based navigation problems with feature based
techniques [18].

A framework for reconstructing bathymetric data acquired
at sea tests was successfully introduced. The data processing
necessary for the reconstruction based on PCA was found and
employed on the survey performed at Espalamaca, Azores.
It included the integration of discretization of the surveyed
area and the LTP coordinate systems. Motivated by the

indispensable reconstruction quality assessment of the data
interpolation, estimators for the error were delineated and is
validated not only by a proof, but also in an evaluating exam-
ple of application. It represents a major contribution, which
complements the methodology of interpolation with PCA,
allowing off-line evaluation of the expected performance of
the tool. The work developed for the Espalamaca survey data
establishes an important vector of improvement in nowadays
data acquisition with state-of-the-art sensors and transducers
included in ASCs, ROVs, and AUVs for sea survey missions.

Also networked control systems, the subject of missing data
is a relevant matter under study. In a number of situations
we face the challenge of controlling a system from a incom-
plete signal obtained through sensors. The application of the
interpolation based on PCA on Kalman filtering represents a
starting point of improvement on the control over an unreliable
communication channel. An exploratory empirical assessment
was performed in order to determined the impact of such
strategy on Kalman filtering. It was successfully implemented
a recursive framework of the reconstruction with PCA where
a number of transformations were conducted, which includes
the development of recursive estimators for the mean and
covariance, where the no-stationarity was taken in consid-
eration by the incorporation of a forgetting factor. When
considering stable systems the PCA interpolation showed a
major improvement compared to previous methods. However,
if the system is unstable, the PCA reconstruction reveled to
be inadequate in such situations. Nonetheless, this work opens
the door to future analysis in greater depth and formality.
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Fig. 2. Error variance for the interpolation method with PCA, including the estimation of the error depicted in black, for η ∈ [0.02, 0.98], N = 25 and
n = 7. The error bars show the ± one standard deviation across the 20 runs for each η. For the regularized solutions α = 0.7η2.
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Fig. 3. 1D Signal interpolation SNR(r, r̃) for η ∈ [0.02, 0.98] with the PCA interpolation method (in cyan), the alternative methods and with no interpolation
applied (in black).
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Fig. 4. 2D Signal interpolation with the PCA interpolation method (lower row). In the upper row, the corresponding images with missing data for the interval
η ∈ {0.8, . . . , 0.98}.
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Fig. 5. 2D Signal interpolation SNR(r, r̃) for η ∈ [0.02, 0.98] with the PCA interpolation method (in cyan), the alternative methods, and with no
interpolation applied (in black).

Fig. 6. Data from the survey mission to the Espalamaca converted to a matrix layout. The origin is located at latitude 38.5379◦ and longitude −28.6097◦
with a resolution of 1254× 1536 for an area of H = 1779.6m height by W = 2180.8m width.

Fig. 7. Data with the PCA interpolation method, where N = 17 ∗ 17 = 289, n = 34 and αi = 0.1η2
i .
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Fig. 8. 3D visualization of the data interpolated with PCA for a portion of the surveyed area and the measurements previously to the grid discretization and
reconstruction (in black).
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Fig. 9. Limit over time of the mean covariance error, for a SISO stable system A = −0.5, over a set of missing observations ratios. The several approaches
are included, with the corresponding bounds (in black).
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Fig. 10. Limit over time of the mean covariance error, for a SISO unstable system A = −1.25, over a set of missing observations ratios. The several
approaches are included, with the corresponding bounds (in black).
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