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Single Pan and Tilt Camera
Indoor Positioning and Tracking System

Tiago Filipe Pires Gaspar

Abstract— This work addresses the study, design, analysis,
implementation, and validation in real time of an indoor posi-
tioning and tracking system. An inexpensive pan and tilt camera
based architecture is proposed, where three main modules can
be identified: one related to the interface with the camera,
supported on parameter estimation techniques; other, responsible
for isolating and identifying the target, based on advanced image
processing techniques, and a third, that resorting to nonlinear
dynamic system suboptimal state estimation techniques, performs
the tracking of the target and estimates its position, and linear
and angular velocities. The following original contributions can
be found: i) a new indoor positioning and tracking system
architecture; ii) a new lens distortion calibration method, that
preserves generic straight lines in images; iii) the use of subopti-
mal nonlinear multiple-model adaptive estimation techniques, for
the adopted target model, to tackle the positioning and tracking
tasks, and iv) the implementation and validation in real time of a
complex tracking system, based on a low cost single camera. To
assess the performance of the proposed methods and the resulting
architecture, a software package was developed. An accuracy of
20 cm was obtained in a series of indoor experimental tests, for a
range of operation of up to ten meter, under realistic conditions.

Index Terms— Indoor Positioning and Tracking Systems, Cam-
era Calibration, GVF Snakes, Multiple-Model Adaptive Estima-
tion, Single Camera Vision Systems.

I. INTRODUCTION

With the development and the widespread use of robotic
systems, localization and tracking have become fundamental
issues that must be addressed in order to provide autonomous
capabilities to a robot. The availability of reliable estimates is
essential to its navigation and control systems, which justifies
the significant effort that has been put into this domain, see
[11], [3] and [4].

In outdoor applications, the NAVSTAR Global Positioning
System (GPS) has been widely explored with satisfactory
results for most of the actual needs. Indoor positioning systems
based on this technology however face some undesirable
effects, like multipath and strong attenuation of the electro-
magnetic waves, precluding their use. Alternative techniques,
such as infrared radiation, ultrasounds, radio frequency, vision
has been successfully exploited as reported in detail in [11],
and summarized in [7].

The indoor tracking system proposed in this project uses
vision technology, since this technique has a growing domain
of applicability and allows to achieve acceptable results with
very low investment. This system estimates in real time the
position, velocity, and acceleration of a target that evolves in
an unknown trajectory, in the 3D world, as well as its angular
velocity. In order to accomplish this purpose, a new positioning
and tracking architecture is detailed, based on suboptimal

stochastic multiple-model adaptive estimation techniques. The
complete process of synthesis, analysis, implementation, and
validation in real time is presented.

This document is organized as follows. In section II the
architecture of the developed positioning and tracking system
is introduced, as well as the main methodologies and algo-
rithms developed. In section III the camera and lens models are
studied in detail. To isolate and identify the target, advanced
image processing algorithms are discussed in section IV, and
in section V, the used multiple-model nonlinear estimation
technique is introduced. In the last two sections, VI and VII,
experimental results of the developed system, and conclud-
ing remarks and comments on future work, respectively, are
presented.

II. SYSTEM ARCHITECTURE

Fig. 1. Tracking system architecture.

In this project a new indoor positioning system architecture
is proposed, based on three main modules: one that addresses
the interface with the camera, the second that implements
the image processing algorithms, and a third responsible for
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dynamic systems state estimation. The proposed architecture
is presented in Fig. 1, and is described next 1.

The extraction of physical information from an image
acquired by a camera requires the knowledge of its intrinsic
(A) and extrinsic (R and T) parameters, which are computed
during the initial calibration process. In this work, calibration
was preceded by an independent determination of a set of
parameters (K) responsible for compensating the distortion
introduced by the lens of the camera. Since the low cost
camera used has no orientation sensor, the knowledge of
its position in each moment required the development of an
external algorithm capable of estimate its instantaneous pan
and tilt angles (αr and θr, respectively).

The target identification is the main purpose of the image
processing block. An active contour method, usually denomi-
nated as snakes, was selected to track the important features
in the image. The approach selected consists of estimating the
target contour, providing the necessary information to compute
its center coordinates (u, v) and its distance (d) to the origin
of the world reference frame. This quantities correspond to
the measurements that are used to estimate the position (x̂),
velocity (v̂), and acceleration (â) of the body to be tracked.
Note that the computation of d requires the knowledge of the
real dimensions of the target, since the proposed system uses
one single camera instead of a stereo configuration.

To obtain estimates on the state and parameters of the un-
derlying dynamic system, an estimation problem is formulated
and solved. However, the dynamic model adopted and the
sensor used, have nonlinear characteristics. Extended Kalman
filters included in a multiple-model adaptive estimation archi-
tecture were selected to provide estimates on the system state
(x̂, v̂, and â), to identify the unknown target angular velocity
w (ŵ), and the estimation error covariance P , as depicted in
Fig. 1.

The command of the camera is the result of solving a
decision problem, with the purpose of maintaining the target
close to the image center. Since the range of movements
available is very restricted, the implemented decision system is
very simple and consists in computing the pan and tilt angles
(αc and θc), that should be sent to the camera at each moment.
Large distances between the referred centers are avoided, thus
the capability of the overall system to track the targets is
increased.

III. SENSOR: PTZ CAMERA

In this section, the camera and lens models are developed.
Moreover, the techniques selected to tackle the identification
and calibration of the sensor are detailed.

A. Camera model

1) Pinhole model: given the high complexity of the camera
optical system, and the consequent high number of parameters
that should be considered in order to model the whole image
acquisition process, it is common to explore a linear model

1In this section some quantities are presented informally to augment the
legibility of the whole document.

to the camera. In this project it was considered the pinhole
model [6].

Let M = [x, y, z, t]T be the homogeneous coordinates of a
visible point, in the world reference frame, and m = [u, v, s]T

the corresponding homogeneous coordinates of the same point
in the image frame. According to this model, the relation
between the coordinates expressed in these two coordinate
frames is given by

λm = PM, (1)

where λ is a multiplicative constant, related with the distance
from the point in space to the camera, and P the projec-
tion matrix that relates 3D world coordinates and 2D image
coordinates. The transformation given by this matrix can be
decomposed into three others: one between world and camera
coordinate frames, other responsible for projecting 3D points
into the image plane, and a third one that changes the origin
and units of the coordinate system used to identify each point
in the acquired images.

The transformation between world and camera coordinate
frames can be obtained by a rigid body transformation

Mc = cg
M

M
M

, cg
M

=
[

R T
0 1

]
∈ <4×4,

where MM corresponds to the homogeneous coordinates of a
point in the world reference frame, Mc to its correspondent
homogeneous coordinates in the camera coordinate frame, R
is a rotation matrix, belonging to SO(3), i.e. verifying RT R =
I and det(R) = 1, T ∈ <3 is a translation vector, and 0 is a
null vector of dimension 1×3. The transformation parameters
{R,T} are the extrinsic parameters of the camera, since they
only depend on its position and orientation with respect to the
world reference frame.

The 3D to 2D transformation can be expressed in homoge-
neous coordinates by

zc




xp

yp

1


 = π




xc

yc

zc

1


 , π =




f 0 0 0
0 f 0 0
0 0 1 0


 ,

where (xc, yc, zc) are the cartesian coordinates of a point in
the camera coordinate system, (xp, yp) are its correspondent
coordinates in the image plane, and f is the focal length of
the pinhole camera model, where this distance is expressed in
mm and is measured between the optical center and the image
plane. Without loss of generality, f is assumed to be unitary
in the world coordinate system (f = 1), leading to

π0 =




1 0 0 0
0 1 0 0
0 0 1 0


 .

The transformation studied before considers a 2D coordinate
system centered in the principal point (intersection of the
optical axis with the image plane), whose coordinates (xp, yp)
are measured in mm. However, in practical applications it is
common to use a reference frame located on the image top
left corner, with coordinates (u, v) measured in pixels. The
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relation between the two referred coordinate systems can be
expressed in homogeneous coordinates by




u
v
1


 =




αu 0 u0

0 αv v0

0 0 1







xp

yp

1


 ,

where u0 and v0 are the coordinates in pixels of the principal
point, and αu and αv are the conversion factors from mm
to pixels. This transformation matrix will be denoted as A in
this work. It corresponds to the intrinsic parameters matrix,
since its elements depend on the internal properties of the
camera (such as its zoom level, for instance), but not on its
orientation and/or position in the world coordinate system.

The product of the three previous transformations results in
the overall expression for the P matrix, which is given by
P = A.π0.

cgM , and establishes the relation between a point
in the 3D world and its correspondent in the acquired images.

2) Camera calibration (Method of Faugeras): the use of
the previous model implies the determination of the intrinsic
and extrinsic parameters referred before. In this work, the
classical approach proposed by Faugeras [6] was selected
and implemented. This method is linear and implicit, i. e.
the intrinsic and extrinsic parameters are computed from the
previously estimated P matrix.

The disadvantages of this method are the required prepa-
ration of the scene in which the camera is inserted, and to
disregard the distortion of the lens. However, the impact of
these constraints is moderate since the camera in this applica-
tion is supposed to be placed in a fixed location in the world
(the calibration needs to be performed just once). A separate
algorithm that compensates for lens distortion is implemented,
see section III-C for details. The major advantages are that
only one image is required and reliable results can be obtained.

It should also be referred that, despite the ability of the
camera selected to move, the calibration process can be
performed in a fixed position, leading to the determination
of the intrinsic parameters. The extrinsic parameters, that vary
according to the camera movements, must be actualized over
time (this problem is addressed in the next section).

As stated before, the classical method by Faugeras consists
in performing an initial estimation of the projection matrix,
that is done from a set of points with known coordinates in
world and camera reference frames. Writing (1) and reorga-
nizing the expression obtained to every one of the n points
used in the calibration process, and considering that the index
i identifies the coordinates of the ith used point, yields, for
each point,

[
xi yi zi 1 0 0 0 0 −uixi −uiyi −uizi −ui

0 0 0 0 xi yi zi 1 −vixi −viyi −vizi −vi

]
.p = 0,

with

p =
[
p11 p12 p13 p14 p21 p22 p23 p24 p31 p32 p33 p34

]T
,

where pjk is the P element whose line and column are j and
k, respectively.

The previous equations, when applied to the entire set of
used points, lead to a system of the form Lp = 0, where L

is a 2n× 12 matrix. The solution of this system corresponds
to the eigenvector associated with the smallest eigenvalue of
LT L, or, equivalently, to the singular vector of L associated
with the smallest singular value of its SVD (Single Value
Decomposition). Since the projection matrix has 12 elements,
and each point considered contributes with two equations,
there is a minimum of 6 points that must be used in the
calibration process.

The resulting p vector should be normalized by√
p2
31 + p2

32 + p2
33, that, as can be concluded from the explicit

expression for P:

P =




αur11+u0r31 αur12+u0r32 αur13+u0r33 αutx+u0tz
αvr21+v0r31 αvr22+v0r32 αvr23+v0r33 αvty+v0tz

r31 r32 r33 tz


 ,

corresponds to the norm of the third line vector of the
estimated rotation matrix, i.e. [p31, p32, p33] = [r31, r32, r33].
This value must be 1 given the orthonormal nature of this
family of matrices.

Once estimated the projection matrix, the intrinsic and
extrinsic parameters of the camera can be computed as

u0 = p1.p3, v0 = p2.p3,
|αu| = ||p1 − u0p3||, |αv| = ||p2 − v0p3||,
r3 = p3, r2 = p2−v0r3

αv
,

r1 = p3−u0r3
αu

, tz = p34,

tx = p14−u0tz

αu
, ty = p24−v0tz

αv
,

where pk =
[

pk1 pk2 pk3

]
, and pi.pj represents the

internal product of the vectors pi and pj .
The signals of αu and αv must be chosen according to the

relative orientation between the coordinated image axis (in
pixels), and the coordinated axis of the image plan (in mm).
Moreover, the determinant of a rotation matrix in the special
orthogonal group must be 1. If, during the calibration process,
a determinant equal to −1 results, the normalization should
be done with −||p3||.

B. PTZ camera internal geometry

The camera used in this project has the ability to describe
pan and tilt movements, which makes possible the variation
over time of its extrinsic parameters. Thus, the rigorous
definition of the rigid body transformation between camera
and world reference frames implies the adoption of a model
to the camera internal geometry and the study of its direct
kinematics.

Since the used Creative WebCam Live! Motion camera has a
closed architecture, its internal geometry model was estimated
from the analysis of its external structure and based on a small
number of experiments.

The proposed model includes five transformations: one
between the world reference frame and frame 0, whose origin
coincides with the rotation center of the camera; three related
to pan, tilt and roll rotation movements, that take place accord-
ing to this order, and that gives the transformation between the
frames 0 and 3, and a fifth one between the resulting referential
of the previous transformations and the camera reference frame
(whose origin coincides with its optical center). Despite the
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used camera inability to realize roll movements, the inclusion
of this degree of freedom in the considered model makes
possible to place the camera in any position and with any
orientation relatively to world coordinate system.

This model considers that the camera optical and rotation
centers are aligned with exception of an offset in the optical
axis direction, which is plausible given its external geometry.

The previously transformations can be presented as

M

g0 =




1 0 0
M

Pxc − δ

0 1 0
M

Pyc

0 0 1
M

Pzc

0 0 0 1


 ,

0g1 =




1 0 0 0
0 cos(ψ) − sin(ψ) 0
0 sin(ψ) cos(ψ) 0
0 0 0 1


 ,

1g2 =




cos(α) sin(α) 0 0
− sin(α) cos(α) 0 0

0 0 1 0
0 0 0 1


 ,

2g3 =




cos(θ) sin(θ) 0 0
0 0 1 0

sin(θ) − cos(θ) 0 0
0 0 0 1


 , and

3gc =




0 0 1 δ
0 −1 0 0
1 0 0 0
0 0 0 1


 ,

where α, θ and ψ correspond to the pan, tilt and roll angles,
respectively, δ is the offset between the camera optical and ro-

tation centers, and
M

Pc =
[

M

Pxc,
M

Pyc,
M

Pzc

]T

represents
the optical center coordinates in the world reference frame,
when α = θ = ψ = 0o.

The composition of the introduced transformations leads to
the global transformation between world and camera reference
frames:

cgM = Mg−1
c , Mgc = Mg0

0g1
1g2

2g3
3gc, (2)

that is fundamental to determine the camera projection matrix
over time.

The expressions introduced require, however, the knowledge
of five parameters: pan, tilt and roll angles, the position of the
camera optical center when α = θ = ψ = 0o in the world
coordinate frame, and the offset between this point and the
camera rotation center.

Since there is neither an orientation sensor in the camera
nor a closed loop control system capable of placing it in the
orientation α = θ = ψ = 0o, the determination of

M

Pc

was based upon interpolation methods. The approach adopted
consisted in calibrating the camera for different orientations
relatively to world reference frame, and, from the obtained
angles and optical center coordinates, estimate the coordinates
of the optical center when α = θ = ψ = 0o by means of a
linear interpolation.

The determination of the offset between the camera optical
and rotation centers (δ) was based on the utilization of four
points with known world coordinates. Calibrating the camera
for different orientations, and writing the pair of equations

uP3M−P1M = 0
vP3M−P2M = 0

as a function of δ, to each one of the referred points, where Pi

corresponds to the ith line of each obtained projection matrix,
and can be written as Aδ = b, where the matrices A and
b result from collecting the data available. The value of the
offset between the camera optical and rotation centers can then
be computed resorting to the least mean squares method.

In what concerns camera orientation, it is determined in real
time using reference points in the 3D world, whose image
coordinates should be set on an initial stage. These points
must be identified in each acquired image. The orientation of
the camera can be obtained comparing the relative orientation
of both i) the axis that connects the camera optical center
to those points in the image, and ii) the camera optical axis,
obtained as the output from the calibration process. Note that
this procedure applies only to the camera pan and tilt angles,
since these are the two unique degrees of freedom (ψ maintains
the value estimated in the calibration process).

In the approach adopted, the camera optical and rotation
centers were considered coincident, thus resulting in a more
computationally efficient determination of orientation, and, as
a consequence, suitable to real time applications. Besides, the
influence of this approximation can be minimized by using
reference points placed at high distances from the camera,
when compared with the few millimeters that separate both
centers.

C. Lens distortion

The mapping function of the pinhole camera between the
3D world and the 2D camera image is linear, when expressed
in homogeneous coordinates. However, if a low-cost or wide-
angle lens system is used, the linear pinhole camera model
fails. In this case and with the camera used in this work,
the radial lens distortion is the main source of errors and no
vestige of tangential distortion was identified. Therefore, it is
necessary to compensate this distortion by a nonlinear inverse
radial distortion function, which corrects measurements in the
2D camera image to those that would have been obtained with
a linear pinhole camera model.

The lens distortion compensation method adopted in this
project is independent of the calibration process responsible
for determining the pinhole model parameters, and is based
on the idea that straight lines in the 3D space must remain
straight lines in 2D camera images.

The inverse radial distortion function is a mapping that
recovers the coordinates (x, y) of undistorted points from
the coordinates (xd, yd) of the correspondent distorted points,
where both coordinates are related to a reference frame with
origin in image distortion center (x0, y0). Since radial defor-
mation increases with the distance to the distortion center, the
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inverse radial distortion function f(rd) can be approximated
and parameterized by the following Taylor expansion:

r = f(rd) = rd + rd

∞∑

i=0

kir
i−1
d ,

with

r =
√

x2 + y2 and rd =
√

x2
d + y2

d,

that results in

x = xd + xd

∞∑

i=0

kir
i−1
d and y = yd + yd

∞∑

i=0

kir
i−1
d . (3)

In this project, it were only taken into account the parameters
k3 and k5, that, as stated in [16] and according to practical
tests, are sufficient to obtain good results. Using more param-
eters brings no major improvement to the approximation of
f(rd) for images in video resolution, and an estimation of
less parameters is more robust.

Ideally, if acquired images were not affected by distortion,
3D world straight lines would be preserved in 2D images.
Hence, the inverse radial distortion model parameters esti-
mation was based on the resolution of the following set of
equation





fi1 = (yi1 − ŷi1(mi, bi, xi1))2 = 0
...

fiNp = (yiNp − ŷiNp(mi, bi, xiNp))2 = 0
i = 1, . . . , Nr

with

ŷij(mi, bi, xij) = mixij + bi,

where Nr and Np are the number of straight lines and
points per straight line acquired from the distorted image,
respectively; (xij , yij) correspond to the jth point of the ith

straight line estimated coordinates given by the considered
inverse distortion model, and ŷij(mi, bi, xij) corresponds to
the y coordinate of the ith straight line jth point, given by its
estimated slope-intercept equation. A set of Nr ∗Np nonlinear
equations in the parameters to estimate (k3, k5, x0, y0, mi,
bi, i = 1, . . . , Nr) results and its solution was found resorting
to the Newton’s method.

Note that since intensity of radial distortion depends upon
the distance to image distortion center, straight lines provided
to the algorithm must be selected from different areas of the
image, in order to avoid the polarization of the estimated
parameters by image local properties.

IV. IMAGE PROCESSING

In this section, advanced image processing algorithms are
described to implement the target isolation and identification,
leading to the measurements to be provided to the estimation
system.

A. Target isolation and identification

In this work, the isolation and identification of the target
to be tracked in each acquired image is done resorting to an
active contours method.

Active contours [10], or snakes, are curves defined within
an image domain that can move under the influence of internal
forces coming from within the curve itself and external forces
computed from the image data. The internal and external
forces are defined so that the snake will conform to an object
boundary or other desired features within an image. Snakes are
widely used in several computer vision domains, such as edge
detection [10], image segmentation [12], shape modeling [15],
[14], or motion tracking [12], as happens in this application.

There are two main types of active contour models: para-
metric active contours [10] and geometric active contours [5].
In this project the first type is used, in which a parameterized
curve evolves over time towards the desired image features,
usually edges, attracted by external forces given by the nega-
tive gradient of a potential function. This forces interact with
internal ones responsible for holding the curve together and
keep it from bending too much.

1) Parametric active contours (traditional method): snakes
are curves x(s) = [x(s), y(s)], s ∈ [0, 1], that evolve through
the spacial domain of an image seeking to minimize its energy

Esnake = Eint + Eext, (4)

that, as can be seen, include a term related to its internal
energy Eint, which has to do with its smoothness, and a term
of external energy Eext, based on forces extracted from the
image. Traditionally, snakes evolve in order to minimize the
energy functional

E =
∫ 1

0

1
2
[α|x′(s)|2 + β|x′′(s)|2] + Eext(x(s))ds, (5)

where the parameters α and β control the snake tension and
rigidity, respectively, and x′(s) and x′′(s) denote the first
and second derivatives of x(s) with respect to s. The term
Eext(x(s)) corresponds to image contribution to the snake
evolution, and is derived from the image so that it has smaller
values at the interest points.

There are several typical methods of designing the external
energy of an image that would lead a snake towards the desired
features [10]. In this project it was considered

Eext(x, y) = −|∇[Gσ(x, y) ∗ I(x, y)]|2, (6)

where I(x, y) represents image intensity at the coordinates
(x, y), Gσ(x, y) represents a 2D Gaussian function with stan-
dard deviation σ, and ∇ is the gradient operator. Although
large values of σ cause boundaries to become blurry, such
values increase the capture range of the active contour.

A curve x(s) that minimizes (5) must satisfy the Euler
equation

αx′′(s)− βx′′′′(s)−∇Eext = 0, (7)

which is verified when the internal and external forces, Fint =
αx′′(s) − βx′′′′(s) and F(p)

ext = −∇Eext, respectively, reach
an equilibrium.
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In order to solve (7), consider the snake x also as a function
of time t, and let its evolution be governed by its partial
derivative with respect to t

xt(s, t) = αx′′(s, t)− βx′′′′(s, t)−∇Eext, (8)

that corresponds to the first member of (7). A solution of (7) is
achieved when xt(s, t) vanishes and, as a consequence, x(s, t)
stabilizes. Note that the energy of the snake may not be a
convex function, thus being possible the existence of local
minimum that leads the snake towards boundaries other than
the desired ones. However, the impact of this limitation can
be significantly minimized by the initialization of the snake in
the neighborhood of the interest features.

Approximating the derivatives in (8) by the spacial finite
differences method, with step h, yields

(xt)i =
α

h2
(xi+1 − 2xi + xi−1)− β

h4
(xi+2 − 4xi+1+

+ 6xi − 4xi−1 + xi−2) + F(p)
ext(xi), (9)

where xi = x(ih, t), and F(p)
ext(xi) represents the image

influence at the point xi.
The temporal evolution of the active contour in the image

domain occurs according to the expression

xn+1 = xn + τxn
t ,

where τ is the considered temporal step. The iterative process
ends when the coordinates of each point of the snake remain
approximately constant over time.

In addition to the snakes initialization limitation, it should
also be considered the traditional snakes poor convergence to
boundary concavities. Therefore, in this project the gradient
vector flow (GVF) approach proposed by Chenyang Xu and
Jerry L. Prince in [17] was followed, where a new class of
external forces for active contour models that addresses both
problems referred above is introduced.

2) Gradient vector flow snakes: the overall GVF approach
proposed in [17] consists in using a new external force, here
denoted by v(x, y) = F(g)

ext, which defines the gradient vector
flow field. Therefore, the new dynamic snake equation is
similar to (8), whose potential force −∇Eext is replaced with
v(x, y), yielding

xt(s, t) = αx′′(s, t)− βx′′′′(s, t) + v. (10)

The parametric curve that solves the above dynamic equation
is called GVF snake, and is computed numerically by iterative
processes, after discretization, in a procedure similar to the
one followed in the traditional snake method.

In what concerns GVF field is defined as the vector field
v(x, y) = [u(x, y), v(x, y)] that minimizes the functional

ε =
∫ ∫

µ(u2
x +u2

y +v2
x +v2

y)+ |∇f |2|v−∇f |2dxdy, (11)

where the indices x and y represent the partial derivatives
with respect to x and y, respectively, and f is a scalar field
f(x, y) = −Eext(x, y). When |∇f | is small, the energy is
dominated by the sum of squares of the partial derivatives
of the vector field, yielding a slowly varying field. On the

other hand, when |∇f | is large, the second term dominates the
integrand, and is minimized by setting v = ∇f . This keeps
v nearly equal to the gradient of f when it is large (making
this approach similar to the traditional one in this regions), but
forces the field to be slowly-varying in regions where I(x, y)
is approximately constant. This second feature contributes to
extend the capture range of the traditional external force fields,
since the small magnitude of |∇f | in regions where I(x, y)
is approximately constant does not contribute to pull snakes
towards boundaries.

The parameter µ is a regularization parameter governing
the tradeoff between the first and the second terms in the
integrand. This parameter should be set according to the
amount of noise present in the image, i.e. images with more
noise require the choice of larger values for the parameter µ.

Using the calculus of variations [9], it can be shown that
the GVF field that minimizes (11) can be found by solving
the following Euler equations:

µ∇2u− (u− fx)(f2
x + f2

y ) = 0 (12)

µ∇2v − (v − fy)(f2
x + f2

y ) = 0, (13)

where ∇2 is the Laplacian operator.
The solution of this equations can be computed by means

of an iterative numerical procedure, that, as deduced in [17],
corresponds to propagate the GVF field components according
to the iterative expressions

un+1
i,j = (1− bi,j∆t)un

i,j + r(un
i+1,j + un

i,j+1+

+ un
i−1,j + un

i,j−1 − 4un
i,j) + c1

i,j∆t (14)

vn+1
i,j = (1− bi,j∆t)vn

i,j + r(vn
i+1,j + vn

i,j+1+

+ vn
i−1,j + vn

i,j−1 − 4vn
i,j) + c2

i,j∆t, (15)

where

b(x, y) = fx(x, y)2 + fy(x, y)2, (16)
c1(x, y) = b(x, y)fx(x, y), and (17)
c2(x, y) = b(x, y)fy(x, y). (18)

The notation adopted is the one proposed by Xu and Prince
in [17], so that fx and fy correspond to the partial derivatives
of f with respect to x and y; indices i, j and n correspond to
x, y and t, respectively; ∆t corresponds to the time step for
each iteration, and

r =
µ∆t

h2
, (19)

with h = ∆x = ∆y (∆x and ∆y correspond to the spacing
between pixels).

According to numerical analysis theory [1], stability of
equations (14) and (15) is guaranteed whenever the restriction

0 < 4t ≤ h2

4µ + h2||b|| , ||b|| = max
∀i,j

bi,j ,

is verified. As can be concluded from the expressions above,
convergence of the iterative process can be made faster on
coarser images, i.e. for larger values of the spatial sampling
h. On the other hand, smoother GVF fields, with larger values



7

of the parameter µ, make the convergence rate slower. These
last cases correspond to smaller values of the sampling period
4t.

B. Sensor measurements

Once defined the target contour identification procedure,
it is important to make a brief overview on the way this
information is used. The measurements that will be provided to
the estimation process are the target center coordinates (u, v)
and its distance (d) to the origin of world reference frame.

Target center coordinates in each acquired image are com-
puted easily from its estimated contour, as being the mean of
the coordinates of the points that belong to this contour. Target
distance to the origin of world reference frame is computed
from its estimated boundary. Its real dimensions in the 3D
world, and the knowledge of the camera intrinsic and extrinsic
parameters, allows to establish metric relations between image
and world quantities. Estimates on the depth of the target can
then be obtained. A complete stochastic characterization can
be found in [7] and will be the measurements of the estimation
method detailed next.

The use of triangulation methods for at least two cameras,
would allow the computation of the target distance without
further knowledge on the target. However, the present tracking
system uses a single camera. Thus, additional information
must be available. In this work, it is assumed that the target
dimensions are known.

V. TRACKING SYSTEM

In this section, the implemented nonlinear estimation meth-
ods is described. Estimates on the target position, velocity
and acceleration, in the 3D world, are provided and angular
velocity is identified. This estimator is based on measurements
from the previously computed target center coordinates and
distance to the origin of world reference frame.

A. Extended Kalman filter

The Kalman filter [8] provides an optimal solution to the
problem of estimating the state of a discrete time process
that is described by a linear stochastic difference equation.
However, this approach is nod valid when the process and/or
the measurements are nonlinear. One of the most successful
approaches, in these situations, consists in applying a linear
time-varying Kalman filter to a system that results from the
linearization of the original nonlinear one, along the estimates.
This kind of filters are usually referred to as Extended Kalman
filters (EKF) [8], and have the advantage of being computa-
tionally efficient, which is essential in a real time applications.

Consider a nonlinear system with state x ∈ <n expressed
by the nonlinear stochastic difference equation

xk = f(xk−1,uk−1,wk−1), (20)

and with measurements available z ∈ <m given by

zk = h(xk,vk), (21)

where the index k represents time, and wk ∈ <n and vk ∈
<m are random variables that correspond to the process and

measurement noise, respectively. These variables are assumed
to be independent, i.e. E[wkvk

T ] = 0 and with Gaussian
probability density functions

p(wk) ∼ N(0,Qk)
p(vk) ∼ N(0,Rk),

where Qk and Rk represent the process and measurement
noise covariance matrices, respectively.

Introducing the notation:
• x̂−k : a priori state estimate at step k given the estimated

state at step k − 1;
• x̂k: a posteriori state estimate at step k (given measure-

ment zk);
• e−k = xk − x̂−k : a priori estimate error;
• ek = xk − x̂k: a posteriori estimate error;
• Pk

−: a priori estimate error covariance;
• Pk: a posteriori estimate error covariance;
• Ak: Jacobian matrix of partial derivatives of f with

respect to x;
• Wk: Jacobian matrix of partial derivatives of f with

respect to w;
• Hk: Jacobian matrix of partial derivatives of h with

respect to x;
• Vk: Jacobian matrix of partial derivatives of h with

respect to v;
and starting from initial estimates for x̂k−1 and Pk−1, the state
and error covariance estimates evolution over time is given by
the following equations, see [8] and referenced therein:

Predict step

x̂−k = f(x̂k−1,uk−1, 0)
P−k = AkPk−1AT

k + WkQk−1WT
k

Update step

Kk = P−k HT
k (HkP−k HT

k + VkRkVT
k )−1

x̂k = x̂−k + Kk(zk − h(x̂−k , 0))
Pk = (I−KkHk)P−k ,

where Kk is the Kalman gain.
In the case of linear dynamic systems, the estimates pro-

vided by the Kalman filter are optimal, in the sense that the
mean square estimation error is minimized. Estimates com-
puted by EKF are suboptimal. It is even possible that it does
not converge to the system state in some situations. However,
the good performance observed in many practical applications,
made this strategy the most successful and popular in nonlinear
estimation.

The implementation of an EKF requires a mathematical
model to the target and sensors used. The choice of appropriate
models is extremely important since it improves significantly
the target tracking system performance, reducing the effects
of the limited observation data available in this kind of
applications. Given the movements expected for the targets to
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be tracked, the 3D Planar Constant-Turn Model as presented
in [13], was selected.

According to the adopted model and considering x =
[x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈]T the state of the target, yields

xk = f(xk−1,uk−1,wk−1)
= diag[F(w),F(w),F(w)]xk−1 + wk−1

F(w) =




1 sin(wT )
w

1−cos(wT )
w2

0 cos(wT ) sin(wT )
w

0 −wsin(wT ) cos(wT )


 ,

(22)

where T is the sampling interval and w the target unknown
angular velocity.

The absence of the control input u from the previous expres-
sion is due to its unknown nature. In fact, this is an important
source of uncertainty in target motion, and constitutes one of
the major challenges in the positioning systems domain.

According to the same model, the process noise covariance
matrix is given by Q(w) = diag[SxU(w), SyU(w), SzU(w)],
where diag[Sx, Sy, Sz] corresponds to its power spectral den-
sity matrix and

U(w)=




6wT−8 sin(wT )+sin(2wT )
4w5

2 sin4(wT/2)
w4

−2wT+4 sin(wT )−sin(2wT )
4w3

2 sin4(wT/2)
w4

2wT−sin(2wT )
4w3

sin2(wT )
2w2

−2wT+4 sin(wT )−sin(2wT )
4w3

sin2(wT )
2w2

2wT+sin(2wT )
4w




.

The characterization of the whole system state dynamics
requires yet the definition of the matrix W, that, as follows
directly form its definition and (22), corresponds to the identity
matrix of dimensions 9× 9.

Note that the presented dynamics and the process noise
covariance matrices depend explicitly upon the target angular
velocity. Since this information is not available, its identi-
fication was done by means of a multiple model adaptive
estimation approach (MMAE), that will be studied ahead. An
alternative would be to add w to the state vector, however
this option would increase its dimension and would make the
model, that is linear in the state, highly nonlinear.

In what concerns the sensor measurements available in each
time instant, that correspond to the target center coordinates
(u, v) and target distance (d) to the origin of world reference
frame, are given by

u =
p11x + p12y + p13z + p14

p31x + p32y + p33z + p34
+ vu

v =
p21x + p22y + p23z + p24

p31x + p32y + p33z + p34
+ vv

d =
√

x2 + y2 + z2 + vd, (23)

where pij is the projection matrix element in the line i and
column j, and v = [vu, vv, vd]T is the measurement noise (the
time step subscript k was omitted for simplicity of notation).
The measurement vector is given by z = [u, v, d]T .

As can be inferred from (23), function h, defined in (21),
is nonlinear, which justifies the implementation of the EKF.
The linearization of this function leads to the matrix H (not
included in this document, due to space constraints, see [7]

for details) and to the matrix V, that corresponds to the
identity matrix of dimensions 3× 3, as follows directly form
its definition and (23).

The complete measurement dynamics characterization re-
quires yet the definition of the measurement noise covariance
matrix R. This matrix can be obtained from an accurate study
of the available sensors, which, in this project, consisted in
executing a set of experiments aiming to compute the standard
deviation of the error committed in the estimation of the image
coordinates of a 3D world point, and the standard deviation
of the error in target depth estimation.

B. Multiple-model

The model considered to the target requires the knowledge
of its angular velocity. However, this value is not known
in real applications, which led us to the application of a
multiple model based approach, identifying simultaneously
some parameters of the system and estimating its state.

The implemented method, known as Multiple-Model Adap-
tive Estimation (MMAE) [2], considers several models to a
system that differ in a parameters set (in this case the target
angular velocity). Each one of these models includes an ex-
tended Kalman filter, whose state estimates are mixed properly.
The individual estimates are combined using a weighted sum
with the a posteriori hypothesis probabilities of each model
as weighting factors.

The a posteriori hypothesis probability of a model i evolves
over time from an initial estimate (pi

0), according to the
following expression (see [2] for details):

pi
k =

βi
ke−

1
2 ωi

k

N∑
j=1

βj
ke−

1
2 ωj

kpj
k−1

pi
k−1,

with

βi
k =

1
(2π)m/2

√
det(Si

k)
ωi

k = (rT
k )i(S−1

k )iri
k

and

ri
k = zk − z̃i

k

Si
k = Hi

k(P−k )i(HT
k )i + Rk,

where N corresponds to the number of considered models,
i = 1, . . . , N to each one of these models, ri to the residual
vector of the ith Kalman filter (difference between the sensor
measurements and the ones predicted by the model i), Si to
the residual covariance matrix associated with the ith Kalman
filter, m to the number of measurements (number of elements
of zk), and k to the time instant.

From the individual state estimates of each model, its
error covariance matrices, and the a posteriori probability of
each hypothesis, it is possible to compute the weighted state
estimate

x̂k =
N∑

j=1

pj
kx̂

j
k,
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and the global covariance matrix

Pk =
N∑

j=1

pj
k[Pj

k + (x̂j
k − x̂k)(x̂j

k − x̂k)T ].

It should be stressed that the methods used to compute the
a posteriori probabilities of each model and the final state
estimate are optimal if each one of the individual estimates
is optimal. However, this is not the case in this application,
since the known solutions to nonlinear estimation problems at
present do not provide optimal results.

VI. EXPERIMENTAL RESULTS

In this section some brief considerations about the de-
veloped positioning and tracking system are made, and the
experimental results of its application to real time situations
are presented.

A. Application description

The positioning and tracking system proposed in this project
was implemented in Matlab, and can be divided into three
main modules: one that addresses the interface with the cam-
era, other that implements the image processing algorithms,
and a third related to the estimation process.

1) Interface with the camera: since the camera used in this
project has a discrete and limited range of movements, its
orientation in each time instant is determined according to
a decision system whose aim is to avoid that the distance
between the image and the target centers exceed certain values.

The CCD sensor built-in the camera acquires images with
a maximum dimension of 640 × 480 pixels, which is the
resolution chosen for this application. Despite its higher com-
putational requirements, smaller targets can be tracked with
an increase on the accuracy of the system.

2) Image processing: the GVF method studied before is an
iterative process that proved to be too slow for a real time
application. The computation of the GVF field halves easily
the number of images processed by unit of time, and, as a
result, the sampling interval doubles. Given the significant
impact of this parameter in the performance of the system,
this algorithm was not included in the developed application,
that resorts uniquely to the traditional snake method. The used
values of α and β were 0.5 and 0.05, respectively, since these
values were the ones that led to better results.

The developed application is optimized to follow red targets,
whose identification in acquired images is easy, since image
segmentation is itself a very complex domain, and does not
correspond to the main focus of this thesis.

3) Estimation process: the adopted MMAE approach was
based on the utilization of four initially equiprobable tar-
get models, that differ on target angular velocity values:
2π 1

50 [0, 1, 2, 3] rad/s.
Each one of the referred models requires the knowledge of

the power spectral density matrix of the process noise, that
is not available. The matrix considered to this quantity was
diag[0.1, 0.1, 0.1], since it led to the best experimental results.

The sampling interval of the developed application was
made variable, however the use of the previously referred
parameters imposed an inferior bound of approximately 0.5 s.

B. Application performance

The results presented in this section are relative to the
tracking of a red balloon attached to a robot Pioneer P3-DX,
as depicted in Fig. 2, programmed to describe a circular tra-
jectory, namely its position, velocity, acceleration, and angular
velocity.

Fig. 2. Real time target tracking. Left: Experimental setup; Right: Target
identification, where the initial snake is presented in black, its temporal
evolution is presented in red, and the contour final estimate is presented in
blue.

In Fig. 3, the 3D nominal and estimated target trajectories
are presented.The target position, velocity and acceleration
along time are depicted in Fig. 4. Despite the significant
initial uncertainty in the state estimate, the target position,
velocity, and acceleration estimates converge to the vicinity
of the real values. Moreover, given the suboptimal nature of
the results produced by the extended Kalman filter in nonlinear
applications, in some experimental cases where an excessively
poor initial state estimate was tested, divergence of the filter
occurred.
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Fig. 3. 3D position estimate of a real target. The real position of the target
in the initial instant is presented in black.

The position, velocity, and acceleration estimation errors are
presented in Fig. 5. These quantities have large transients in the
beginning of the experiment, due to the initial state estimation
error, and decrease quickly to values beneath 20 cm, 4 cm/s,
and 0.5 cm/s2, respectively. There are several reasons that
can justify the errors observed: i) the uncertainty associated
with the characterization of the real trajectory described by the
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Fig. 4. Position (left pan), velocity (center pan), and acceleration (right pan)
estimates of a real target in the world. The slender and tickler lines correspond
to the estimated and real values, respectively.
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Fig. 5. Position (left pan), velocity (center pan), and acceleration (right pan)
estimation error of a real target in the world.

target, and ii) possible mismatches between the models consid-
ered for the camera and target, and iii) incorrect measurement
and sensor noise characterization.

The results of the adopted MMAE approach are presented
in Fig. 6. For the trajectory reported the real target angular
velocity is 2π0.0217 rad/s. Thus, the probability associated
to the model closer to the real target tends to 1 along the
experiment, as depicted on the left panel of Fig. 6. On the right
panel of that figure, the real and estimated angular velocities
are plotted.
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Fig. 6. MMAE evolution over time. On the left, the a posteriori hypothesis
probabilities. On the right, real (red) and estimated (blue) target angular
velocity .

In what concerns the range of operation for the proposed
system, it depends significantly on the camera used and on the
size of the target to be tracked. In the experiments reported,
an elliptic shape with axes of length 106 mm and 145 mm,
was identified and located, with the mentioned accuracies up
to distances of approximately 7 m from the camera. The lower
bound of the range of distances in which the application works
properly, is limited by the distance at which the target stops
being completely visible, filling the camera field of vision. For
the target considered, this occurs at distances bellow 40 cm.

VII. CONCLUSIONS AND FUTURE WORK

A new indoor positioning and tracking system architecture
is presented, supported on suboptimal stochastic multiple-
model adaptive estimation techniques. The proposed approach
was implemented using a single low cost pan and tilt camera,
estimating the real time location of a target which moves in
the 3D real world with accuracies on the order of 20 cm.

The main limitations of the implemented system are the
required knowledge on the target dimensions, and with the
inability to identify targets with colors other than red.

In the near future, an implementation of the developed
architecture in C will be pursued, which will allow for the
tracking of more unpredictable targets. Also, an extension of
the proposed architecture to a multiple camera based system is
thought. Distances to targets will then be computed resorting
to triangulation methods, thus avoiding the requirement on the
precise knowledge of their dimensions.

Finally, it is also recommended the integration of a sensor
in the vision system that retrieves camera orientation in each
time instant, and the implementation of an image segmentation
algorithm that can identify a wider variety of targets.
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